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Introduction

1 Seasonal forecasts are issued as the arithmetic mean
(equal weights: EW) of an ensemble of simulations
initialized by assimilating observations.

2 During the operational production of the forecast
(considering the buffer-time needed to ensure timely
delivery), new unused observations can be available
(typically a week).

Objective

Defining an optimal weighted average (OW)
that can use independent data to enhance the skill of
the forecast on a subseasonal time scale with respect
to equal weighted averages (EW).

Setup of the experiment

•Forecasts x:
The Norwegian Climate Prediction Model
(NorCPM) is providing skillful seasonal forecasts
(Wang et al. 2019). A 60 member ensemble
reanalysis reanalysis has been recently produced
by assimilating monthly sea-surface temperature
(SST) and T-S profile data with the ensemble
Kalman filter. Retrospective hindcasts of 60 members
- initialised from the reanalysis - have been produced
for the period 1985 to 2010 with 4 start
dates per year.
•Observation y:
A weekly NOOA sea-surface , optimally interpolated
(Reynolds et al. 2002) after the analysis month is used
to determine the weights.

Estimation of the Optimal Weights
(OW)

For a forecast xn of index n (1 ≤ n ≤ N , N is the size of
the ensemble) and a grid point i, the weight is determined
by:
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where
•d = (y− xn)
•ρi is a localization vector whose elements are:

ρik = f (d(i, k)/L) , ρik = 0 if d(i, k) > L
•R = (λo)2Eobs, is the observation error. Eobs is the
diagonal error provided with the NOAA product and
λo is an inflation factor.

Illustration with a Lorenz model

The algorithm has been tested using a Lorenz 96
model with a observation at 0.2 time after the analysis
time.

•The forecast skill (in RMSE) is improved until a
time of 1 (> 3 Lyapunov time)
•The error of the OW mean at the observation time
is comparable to the error of the analysis (initial
time)

Results

The validation is performed on the sea-surface temperature by comparing with future observations. All the confi-
dence intervals and significativity of the results are computed by bootstrapping with 100 samples.

Figure: Global correlation space- and time-wise as a function
of the lead month for the optimal weights (OW) and the equal
weights (EW) hindcast.

IThe optimal weights hindcast has higher skill up
to 2-3 leading months.

Figure: Gobal correlation space-wise for a two monhts leading time as a
function of the date for the optimal weights (OW) and the equal weights
(EW) hindcast. The filled circles (resp. unfilled) correspond to the dates
where the differences are significant (resp. not significant).

IThe improvement is found for the whole period.

Figure: Time-wise correlation 1985-2010 at a two months leading time for the hindcast computed with equal weights (the baseline on the
left panel) and with optimal weights (the center panel). The right panel shows the difference between the weighted hindcast correlation and
the equal weights hindcast correlation, positive values indicating that optimal weights have improved the correlation.

IThe improvement is consistent on the whole domain but has different magnitude depending on the region.

Regional improvement

Correlation at a two month leading time globally and for
different regions

Region Correlation
OW EW

Global 0.50 0.44
ENSO 0.93 0.90
Bar 0.50 0.33
Norw 0.63 0.63

ISome regions with low skill using EW have better skill
with the optimal weights (OW), e.g. the Barents Sea.

Conclusion

ISeamless update of the forecast between two oper-
ational forecast releases with the arrival of fresh data
I Improvement up to a 3 months lead-time
INo need to recompute the forecast
ILittle sensitivity to the hyperparameter tuning

Sensitivity

Two hyperparameters need to be tuned to determine the
optimal weights:
•The localization radius L: represents the spatial
radius around a grid point where the observations
have an impact on the weight.
•The inflation factor λo: represents the confidence in
the new observation.

The algorithm can also be sensitive to the size of the
ensemble N .

IThe algorithm is sensitive to each parameter individu-
ally but the increasing of the localization L can be com-
pensated by the increasing of the inflation factor λo lead-
ing to similar skill.
IThe algorithm skill is slightly degraded with a smaller
ensemble.
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