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Abstract—Empowered by network softwarization, 5G systems
have become the key enabler to foster the digital transformation
of the vertical industries by expanding the scope of traditional
mobile networks and enriching the network service offerings. To
make this a reality, we propose an automation solution for vertical
services provisioning and hierarchical Service Level Agreement
(SLA) management. Service scaling is one of the most essential
operations to adapt the service deployments and resource allo-
cations to ensure SLA fulfilment. Three different scaling levels
are addressed in this work: application-, service- and resource-
level. We have implemented our solution in a proof-of-concept
of a virtualized mobile network platform, spanning over three
geographically-distributed sites. To evaluate our solution, we
leverage field tests, focusing on automotive vertical services com-
prising a mission-critical application (collision-avoidance) and an
entertainment one (video streaming). The results demonstrate
the excellent performance of our solution, and its ability to
automatically deploy vertical services and ensure their SLAs
through different levels of service scaling.

Index Terms—S5G, Vertical Services, Service Provisioning, SLA
Management, Scaling, Service Orchestration.

I. INTRODUCTION AND MOTIVATION

5G systems are envisioned to expand the scope of traditional
mobile networks to support various vertical services, such as
eHealth, automotive, media, and cloud robotics, hence greatly
enriching the telecom network ecosystem. In this new scenario,
the imperative for telco service providers is to promptly
support vertical industries to deploy their services over the 5G
systems, fulfill their diverse requirements, and adjust the ser-
vice deployments to the dynamic users and traffic demands. To
this aim, network softwarization becomes a revolutionary tech-
nological shift, thanks to Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) enabling the dy-
namic creation of Network Slices, i.e., logically independent
network partitions over a shared infrastructure. Network slices
are provisioned as end-to-end network services composed of a
set of interconnected Virtualized Network Functions (VNFs).
Importantly, they are created by properly configuring virtual
resources (network, compute, and storage), and tailoring them
to address the specific requirements of the vertical services
(e.g., bandwidth and end-to-end latency). Such a 5G system
is beyond providing mobile radio access network (RAN) and
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core network functions as defined by 3GPP, but more about
providing end-to-end network slicing solutions able to support
heterogeneous network and RAN technologies for providing
communications suitable for individual vertical services.

Despite the advanced development of network slicing so-
lutions leveraging SDN/NFV, how to automatically deploy
a vertical service on a reliable network slice in telco’s op-
erational networks is still a real challenge in practice. In
particular, what is laboured is for network slices to fulfill at any
point in time the required service quality, as per the Service
Level Agreement (SLA) established between the vertical and
the telco provider. Indeed, SLAs specify a set of service
business aspects and quality parameters that telco providers
have to guarantee to verticals not to incur in penalties, e.g.,
required bandwidth, end-to-end latency between service end-
points, mean time to service recovery. Since vertical services
are deployed and operated over network slices sharing a
common infrastructure, some degradation or violation of the
slice service parameters may occur that could impact the
performance of the vertical service offered to final users, and,
hence, could affect the reputation or business leadership of the
vertical itself. For this reason, legal aspects are also regulated
in SLAs between telco providers and verticals, identifying
which party is responsible for reporting service failures or
paying fees.

To meet the vertical SLAs, telco service providers need to
map and translate high-level SLA business requirements into
network slice- and infrastructure-related requirements, which
can be actually handled and addressed at the network level. It
follows that other agreements at the network operational level
have to be generated in cascade between the telco provider and
other parties (e.g., network engineering departments, or cloud
infrastructure providers). In an open NFV ecosystem, the SLA
management is therefore a multi-dimensional provisioning
and management problem, where multiple and interdependent
aspects need to be addressed. This calls for a coordinated
SLA framework accounting for different levels of performance
inter-dependency and obligations, namely, at the application,
service, and resource level.

Towards these challenges, the EU H2020 5G-PPP 5G-
TRANSFORMER (5GT) project [1] has developed an open
and flexible 5G transport and computing platform, able to au-
tomatically onboard and deploy vertical services. Importantly,
this platform can also manage the service life-cycle and the
SLAs, so as to fulfill diverse service requirements. It includes:

« a vertical portal to translate vertical service requirements

into network slice-related requirements. This portal also



maps vertical services onto network slices, realizing the
latter through Network Services, as defined in NFV
(NFV-NS);

e a service orchestration layer to manage the NFV-NSs
and construct their logical networks. This is achieved
by placing and connecting the service components in
the virtual infrastructure, and by allocating the required
virtual resources;

« an infrastructure layer that not only manages the under-
lying infrastructure resources but also handles the actual
mapping of a logical network onto the shared physical
network. It thus realizes the deployment of the vertical
services into slices.

The above three layers may be owned and managed by
different providers and entities in the real network scenarios,
thus a hierarchical SLA management is essential to provide
an automated and coordinated vertical service management
throughout the whole stack of the system. As part of the
SLA management, service scaling is one of the important
operations to automatically adapt the service deployments
according to (i) mutable needs of the vertical service and
application components deployed on a slice (e.g., varying
demand of service instances or of total resources required by
the vertical services), (ii) the priorities of different vertical
services running into the network slice instances, or (iii) real-
time availability of (virtual) resources in the infrastructure
underpinning the deployed network slices. Along this line,
different levels of service scaling are provided at the different
layers of the SGT platform for such hierarchical SLA man-
agement.

In this paper, we present the hierarchical SLA management
framework that we have designed and developed on top of the
5GT platform (Sec.I), and we introduce the service scaling
mechanisms that we have defined at the different levels,
namely, application, service, and resource level (Sec.III). We
then describe the proof-of-concept test-bed where we imple-
mented the scaling mechanisms (Sec.IV), which, importantly,
have been released as open-source software'. Finally, we
provide a thorough experimental evaluation in the relevant,
practical case of automotive vertical services, as an example to
demonstrate the ability of our framework to enable automatic
service provisioning and ensure a successful SLA management
(Sec. V), and as well as a summary of related work (Sec. VI).

II. THE 5G-TRANSFORMER PLATFORM

The 5GT platform consists of three main building
blocks [2], as shown in Fig. 1 and described in the following.

The Vertical Slicer (SGT-VS) is the aforementioned verti-
cal portal and acts as one-stop shop entry point for the verticals
to request a custom network slice, tailored to their needs.
A vertical service is a composition of vertical applications
as well as network functions, defined by its functional and
behavioural specification, as detailed in the Vertical Service
Blueprint (VSB). In particular, the vertical requests a service
by selecting a VSB from the catalogue offered by the SGT-VS
and customizes it with additional details at the service-level
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(e.g., expected number of users, coverage area, required SLAs,
etc.) thereby defining a Vertical Service Descriptor (VSD). In
turn, the SGT-VS, through its Translator module, maps these
service requirements into a potential set including Network
Service Descriptor (NSD), Deployment Flavour (DF), and
Instantiation Level (IL). This triple defines the characteristics
of the target network slice (deployed through an NFV-NS) in
terms of:

« the functional elements and the structure of an NFV-NS
underpinning the network slice able to host the requested
vertical service. This is defined through the NSD and the
related VNF descriptors;

o the number and capacity of the VNFs, and the virtual
links needed to meet the performance requirements of the
vertical service. Specifically, the DFs define the different
options to instantiate the service, including a min-max
range for the number of VNFs to be instantiated, while
each IL indicates the specific number of VNF instances
and their required computing resources.

In the 5GT system, the definition of network slices is
aligned with the latest networking slicing model from 3GPP
[3] and has been extended to consider not only the mobile
communication segments of the end-to-end service (as in
the standard), but also the involved vertical applications.
Furthermore, the SGT network slice model is rather generic
and can support any RAN and wireless technologies (although
the latter aspects are beyond the scope of 3GPP). Network
slices are deployed through NFV-NSs, which are instantiated
according to a specific [NSD, DF, IL] set, selected on the basis
of the service characteristics. The network slice components
can be instantiated through a dedicated NFV-NS, to guarantee
the maximum level of isolation, or exploit VNFs already
instantiated for other services to optimize resource allocation.
Some works in the literature analyse the challenges of RAN
and core network slicing and resource sharing (e.g., [4] [5]
[6]). In 5GT, the decisions on the sharing strategy applied to
each network slice depend on the particular service and slice
profile (such as coverage area, resource sharing/isolation pol-
icy, and performance requirements), and determined through
arbitration at the level of vertical services using those slices.

Specifically, according to the network slice model defined
by 3GPP, a network slice can include multiple slice subnets,
where each subnet can be shared among multiple end-to-end
network slices, thus improving the infrastructure utilization
efficiency. The number of network slices sharing a slice subnet
and, consequently, the number of vertical services running over
a slice subnet has an impact on its resource requirements (e.g.,
in terms of traffic load to be supported). Also, any decision
about re-using a slice subnet instance should be compliant
with the isolation requirements of the services using it. As
depicted in Fig. 1, the SGT-VS includes an Arbitrator module
that, starting from the candidate [NSD, DF, IL] set generated
by the Translator and taking into account the network slices
currently instantiated in the system, decides how to deploy the
network slice for the requested vertical service. In particular,
the SGT-VS Arbitrator determines: (i) the [NSD, DF, IL] of
the new network slice to be instantiated and the existing slice
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Fig. 1. The 5G-TRANSFORMER (5GT) system architecture

subnets that can be re-used to build the new slice, and (ii)
for each slice subnet to be re-used, if and how it needs to
be scaled to meet the requirements of the additional vertical
service. The actions defined as output of the Arbitrator involve
the instantiation and scaling of NFV-NSs, which are requested
to the Service Orchestrator.

It is worth to point out that the SGT-VS actions cover
the entire lifecycle of a network slice, as defined by the
3GPP TR28.530 specification [7], from the preparation to
the decommissioning phase. In particular, the definition and
the on-boarding of VSBs and related NSDs correspond to
the design and the on-boarding steps of the network slice
preparation, respectively. The definition of the VSD and the
instantiation of the service with the related network slice
correspond to the creation step of the slice commissioning
phase and its activation in the operation phase. Any action
related to the scaling of network slice subnets and associated
NFV-NSs can be mapped to the modification step during the
slice operation, while the service termination actions include
the de-activation and termination of the network slice, in the
decommissioning phase.

The Service Orchestrator (SGT-SO) [8] provides both net-
work service and resource orchestration capabilities in order
to instantiate and manage network slices (deployed as NFV-
NS instances) over shared resources, across single or multiple
administrative domains [9]. This requires an interaction with
(1) the 5GT-VS to receive NFV-NS service requests, (ii) the
Monitoring Platform to configure metrics and respond to
alerts, (iii) the Mobile Transport and Computing Platform to
allocate resources, and (iv) other SGT-SOs in case of multi-
administrative domain service orchestration. As such, it is a
central point for the coordination of all the architectural enti-

ties required to fulfill the SLA requirements of the requested
service.

Therefore, the SGT-SO implements the workflows for the
(1) NFV-NS service lifecycle management (including on-
boarding, instantiation, scaling, query, termination), (ii) intra-
domain and multi-administrative domain orchestration, (iii)
selection of VNF placement and inter-VNF links, and (iv)
allocation of virtual networking, computing and storage re-
sources through the SGT-MTP based on service requirements
and availability of the resources offered by each administrative
domain. The SGT-SO also integrates core MAN and Orches-
tration (MANO) platforms, such as Open Source MAMO
(OSM) or Cloudify, through wrappers, hence enabling the
interworking between different core MANO platforms used
by different administrative domains.

The Mobile Transport and Computing Platform (5GT-
MTP) is responsible for managing the compute, storage, and
networking resources (both physical and virtual) in the in-
frastructure where network slices and services from the above
layers are eventually executed. The resources are generally
spread in different technological domains (e.g., computing
Point of Presence (PoP), Wide Area Network (WAN), RAN)
and, hence, the SGT-MTP provides a coordinated management
and orchestration of all these resources toward the fulfilment of
5GT-SO requests. On the one hand, the SGT-MTP aggregates
the underlying resource pool in the infrastructure to be ab-
stracted and exposed as a single coherent whole to the 5GT-SO
at Single Logical Point of Contact. On the other hand, the 5SGT-
MTP translates the SGT-SO requests from abstract to low-level
resource requests to be allocated in each domain. For the 5GT-
MTP to interwork with underlying resources, each technology
domain exposes the API of its controller (e.g., Openstack,



SDN controller, RAN controller) to the SGT-MTP. The 5GT-
MTP commands each controller through a corresponding plug-
in acting as client of such APIL This includes the transport
WAN Infrastructure Manager (WIM), the Virtual Infrastructure
Manager (VIM), the Multi-access Edge Computing (MEC),
and the RAN plug-ins.

Transversal to the three aforementioned building blocks, the
5GT architecture includes a cross-layer Monitoring Platform
(SGT-MON) that collects monitoring data from the SGT-VS,
5GT-SO, and SGT-MTP, and generates notifications (alerts) as
input for SLA management decisions at the different layers. It
is based on the Prometheus and the Grafana software, for the
collection/storage/elaboration and the visualization of monitor-
ing data, respectively. The SGT-MON aggregates metrics and
KPIs generated at the different layers, e.g., load of physical
infrastructure and virtual resources, performance of network
services, metrics associated with vertical applications. Starting
from the elaboration of these data, the SGT-MON recognizes
any performance degradation or anomalous conditions on the
basis of thresholds defined in the descriptors (e.g., in the NSD)
and notifies the SGT components through asynchronous alerts.
These notifications trigger the reaction of the SGT platform
(e.g., scaling or recovery actions) to guarantee the continuous
fulfilment of the SLAs established at the different layers.

III. HIERARCHICAL SLA MANAGEMENT AND SERVICE
SCALING: CONCEPT & IMPLEMENTATION

To automatically manage vertical services through the SGT
system and fulfill the service requirements specified by the ver-
tical, we propose a hierarchical SLA management framework,
as illustrated in Fig. 2. From the top down, we define per-layer
SLAs, along with the associated management mechanisms, as
detailed below.

Vertical SLAs. They are business-level SLAs, which are
negotiated between the 5GT telco provider’s OSS/BSS (Op-
erations Support System and Business Support System) and
the vertical, and are managed by the SGT-VS. On the one
hand, the vertical provides the vertical service requirements in
the service request, specifying business-level and service-level
parameters (i.e., required service KPIs like maximum service
provisioning time, required device density, maximum service
latency). On the other hand, the telco provider’s OSS/BSS
can offer different business service level classes. The matching
between the vertical service requirements and the service level
classes offered by the 5GT telco provider defines a Vertical
SLA. In the 5GT-VS, the Vertical SLA management functions
include: (i) mapping the Vertical SLAs to Network Service
SLAs (NS SLAs) that will be requested to the 5GT-SO,
including network service related policies such as rules for
the automatic scaling of a NFV-NS instance; (ii) mapping
a vertical service on network slice(s), either instantiating a
new network slice or re-using existing slice subnet(s); and (iii)
handling service arbitration and service scaling actions to deal
with the dynamic changes on the service itself and according to
the service Vertical SLAs, the total available resource budget,
and the services priority.

NS SLAs. They are defined at the NFV-NS level and are
managed by the 5GT-SO. NS SLAs define distinct guarantees

on resource availability and KPIs, such as guaranteed data
rate, geographical availability, and end-to-end latency. Their
management is provided by end-to-end service and resource
orchestration, including (i) deciding the optimum placement
of the VNFs in certain PoPs/servers and the inter-PoP/inter-
server connectivity, and (ii) handling the NFV-NS auto-scaling
operation to adapt to the dynamic network conditions follow-
ing the aforementioned NFV-NS auto-scaling rules defined in
the NSD.

Infrastructure SLAs. They are managed by the 5GT-
MTP, which is in charge of the actual resource allocation
for a specific service, as requested by the 5SGT-SO. The
Infrastructure SLAs are specified based on the NS SLAs and
define different guarantees on infrastructure-level QoS (such
as CPU load, network delay, packet losses, link throughput).
At the infrastructure level, the resource management function
is in charge of the placement of virtual machines (VM) (or
containers) in physical servers, and managing their required
networking connectivity such as routing and path provisioning.

In summary, each layer is fully responsible for: (i) trans-
lating its SLAs to lower-level SLAs and requesting them
to the lower layer, and (ii) guaranteeing the corresponding
SLAs through its internal SLA management functions. To this
end, each layer interacts also with the monitoring platform,
which provides monitoring data about SLA-related metrics
and triggers alerts whenever a degradation or violation of the
SLAs is detected. Finally, each layer may notify the higher
layer about the results of the SLAs it is managing.

As highlighted above, one of the crucial SLA management
functions is scaling. Depending on the layer at which it is
performed, we can define:

1) Application-level scaling, which is triggered by the
vertical and implies the scaling of a vertical service
deployment based on the operational context information
[10]. This typically results in a renovated slice service
demand to the telco service provider (i.e., the to SGT-
VS), with different service parameters;

2) Service-level scaling, which is triggered by the SGT-VS
as a result of an arbitration procedure among service
instances and yields the scaling of one or more of them;

3) Resource-level scaling, which is triggered by the 5GT-
SO after detecting lack of sufficient resources to meet
certain NS SLAs. It leads to the scaling of the virtual
resources underpinning the network slice deployment.

A. Application-level Scaling

Application-level scaling consists in adjusting vertical ser-
vice deployments into the network slices during their run-
time, according to evolving vertical’s business targets (e.g.,
enlarging the geographical area that is served) or following the
dynamics of the application operational context (e.g., average
and peak number of user requests). In both cases, the scaling
decision results in a renovated slice service request to the
SGT-VS but with different service parameters. Examples of
such service parameters could be the number of mobile users
or content items for a Content Delivery Network in the case
of a multimedia service. For an automotive safety service, a
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relevant parameter could be the maximum number of cars to
be served in a given area. To support the application-level
scaling, the SGT-VS provides a vertical north bound interface
(NBI) that allows the verticals to issue slice service requests
with revised service parameters specified in the VSD.

The verticals and their applications have thus a fundamental
role in the application-based scaling model. They are not
only responsible for detecting the need to scale a service and
deciding its target size (expressed in terms of service-level
parameters within the target VSD), but also for triggering
the entire scaling procedure by interacting with the SGT-VS.
In particular, the need for a new VSD with updated service
parameters can be stated by the vertical service administrator
through a manual configuration (la in Fig. 2), or can be
detected automatically by a service control logic internal
to the application (Ib in Fig. 2). In the former case, the
system administrator uses the SGT-VS web GUI to manually
request the modification. In the latter case, the application
itself interacts directly with the NBI of the 5SGT-VS, through
the REST APIs. The mechanisms for making decisions about
application-based scaling are service-dependent and they rely
on business considerations or application-level performance
metrics. The applications implement their own monitoring
procedures to gather and elaborate the required application-
level metrics. Their internal logic makes decisions about the
required scaling actions, e.g., based on the thresholds defined
in compliance with the SLAs established between the verticals
and their customers.

At the 5GT-VS level, the enforcement of the vertical service
scaling is managed in two phases. In the first phase, the SGT-
VS uses the Translator module to map the new VSD into the
definition of a network slice able to meet its requirements.
This mapping follows the same procedure performed during
the instantiation phase and it identifies the characteristics of

the target network slice. In particular, the output identifies
the kind, size, and capacity of NFV-NS(s) corresponding to
the end-to-end network slice, including its slice subnets. If
the target network slice differs from the current one (e.g.,
in terms of DF and/or IL of the correspondent NFV-NS(s)),
the current network slice(s) must be updated (i.e., scaled
in or out); thus, the 5GT-VS starts a second phase that
involves the Arbitrator module. Therein the system verifies
the compatibility between the new network slice with its new
target size/capacity and the SLAs established with the vertical,
taking into account the whole set of network slices already
active for the given vertical. In this phase, the arbitration
algorithm (see Sec. III-B) computes the modifications required
for all of the different services owned by the vertical, based on
their relative priorities. As output, the Arbitrator decides the
feasibility of the scaling action and its impact on the existing
network slice and slice subnet instances. It thus identifies the
NFV-NSs of those services with lower priority and belonging
to the same vertical that may need to be scaled down to make
some resources available to services with higher priority. The
overall resulting set of changes are then applied to the NFV-
NSs (realizing the network slices) scaling actions and then
requested in an ordered manner to the SGT-SO, which will
modify the NFV-NSs as requested.

B. Service-level Scaling

Service-level scaling consists in adjusting the size (i.e.,
number of VNF instances) and/or the capacity (i.e., total
resource demand) of network slice instances hosting the ver-
tical services, as a result of a decision made by the 5GT-
VS Arbitrator. As mentioned before, the Arbitrator is the
entity responsible for making any decision about network slice
sharing and scaling. In particular, upon receiving a vertical’s
request to deploy a new service instance, the Arbitrator looks



up the corresponding Vertical SLA, namely: (1) the priority
level of the new, as well as the existing, service instances
requested by that vertical, (2) the set of VNFs composing
the service and how they are inter-connected, (3) the relative
virtual CPU (vCPU) and memory/storage requirements of the
involved VNFs as well as the networking requirements for
their inter-connectivity, and (4) the vertical’s KPI requirements
(e.g., end-to-end latency, service availability, or reliability
level). Note that such information is described in the NSD
created by the Translator for the received VSD.

Given such an input information, the Arbitrator makes the
following decisions:

1) it determines whether the newly requested service must
be created from scratch, thus instantiating all its ele-
ments ex-novo, or, instead, one or more already existing
slice subnets can be reused;

2) if the service has to be deployed entirely (or partially)
ex-novo, it determines (a) the amount of resources that
may be needed for the service (or part of it) to be
instantiated and to handle the expected traffic load, and
(b) whether or not such an amount is compatible with
the resource budget available to the vertical, as per the
Vertical SLA;

3) when existing slice subnets can be re-used, it decides
which (if any) scaling action for any of them is necessary
to fit the service requirements, and also feasible as per
the Vertical SLA.

Thus, for every new or to-be-reused slice subnet, the Arbitrator
provides as output the associated pair [DF, IL], so as to ensure
that the vertical KPI requirements are met, while accounting
for the services priority level and the remaining resource
budget available to the vertical, as per the Vertical SLA.

Let us first consider that no existing sub-slices can be reused
for the deployment of a newly requested service, and let us
denote with C, B, and S the total amount of, respectively,
vCPU, bandwidth, and storage that can be allocated for the
services of that vertical as per the Vertical SLA. As the first
step, the Arbitrator orders all service instances, both the one
to be deployed and the existing ones, from the highest priority
level to the lowest. It then considers the highest-priority service
instance, say, s, and allocates storage resources based on the
needs exhibited by the VNFs composing s.

A more complicated procedure, however, is required for the
vCPU and bandwidth allocation. In particular, let us focus
on the service latency as the main performance metric, and
denote with D the target latency for service s. Two factors
contribute to the service latency: (i) the processing time, due
to the execution of the VNFs composing the service, and (ii)
the network time, i.e., the time it takes to transfer data from
a VNF to the next one[11]. While the former depends on the
vCPU allocated to the VM or containers running the VNFs,
the latter depends on the deployment decisions made by the
5GT-SO, and on the bandwidth associated with the virtual
links connecting the servers hosting the VNFs.

In the best case, the whole set of VNFs composing service
s, denoted by V), can be deployed within the same server. In
this scenario, the network time is negligible [12], hence the
bandwidth required for data transfers over virtual links for s,

(3%, can be set to zero. Additionally, the latency budget, D, can
be entirely used as processing time, thus reducing the required
amount of vCPU, ub. To determine such value, we follow a
widely adopted approach (see, e.g., [13], [14]) and model each
VNF instance as an M/M/1-PS queue. Note that the choice of
the processor sharing (PS) policy for the queue model closely
emulates the behavior of a multi-threaded application running
on a VM. Then p’ can be computed so as to satisfy the below
inequalities:

1 . b
ZMLMSDS, p<C. ey
The first inequality imposes that the total latency due to the
processing at the service VNFs does not exceed the maximum
target value. In particular, the left hand side term represents the
total latency due to the processing at every VNF v € V [15],
with f,,,ub being the output rate of the VNF queue v and \,
being the service request rate input to v. Also, f, is the relative
computational requirement of VNF v, with ZU ey fo=1.The
second inequality, instead, imposes that the vCPU allocation
does not exceed the vertical vCPU budget, C.

Assuming that all VNFs run within the same server, how-
ever, might be overly restrictive. Thus, the Arbitrator also
considers a worst-case scenario, accounting for the network
latency component as well. As a smaller portion of the latency
budget would be available for processing, the amount of pro-
cessing resources required in this case increases. Specifically,
in the worst case, each VNF in V is deployed in a different
server, hence the allocated vCPU, p', and bandwidth, 8%,
have to satisfy the following constraints:

1 d,, .
oo+ L <D, ()
veY fv,LLw o )\v (u,v)EE fu,vﬂ
p’<C and pY<B 3

where f, , is the relative bandwidth requirement for the virtual
link connecting the servers where VNFs « and v are deployed,
and d, , is the amount of data that needs to be transferred
from VNF u to VNF v. In (2), the two left hand side terms
represent the latency due to, respectively, the VNF execution
and the travel time over the virtual links connecting any
two adjacent functions in the VNF set (£ denotes the set
of edges interconnecting the VNFs composing the service).
The constraints in (3), instead, impose that the total vCPU
and bandwidth allocations do not exceed the corresponding
budgets available to the vertical, as per the Vertical SLA.

Next, given the pairs (u’,0) and (u®, ™) for service s,
the Arbitrator can compute the corresponding per-VNF and
per-virtual link values, by leveraging the f, and f, . values
expressing the relative computation and bandwidth require-
ments of each VNF and virtual link (resp.). The Arbitrator then
selects an ordered list of [DF, IL] pairs, as encoded in the NSD,
with the first pair corresponding to the best-case allocation and
the last one to the worst-case allocation; a practical example
is provided in Sec.IV.

Once the 5GT-SO receives from the SGT-VS the instantia-
tion request, it deploys the service selecting the most efficient
[DF, IL] pair among the viable ones suggested by the SGT-
VS. The quota of resources used by the vertical is updated



at the 5GT-VS, based on the 5GT-SO’s choice. Given such
a value, the Arbitrator proceeds with the second service in
the list, following the same steps as above but replacing C
and B (in (1)—(3)) with the amounts of vCPU and bandwidth
still available to the vertical. The procedure is repeated for
all (newly requested or already deployed) service instances;
it is clear that, in case of resource shortage, some lower-
priority service instances may not be accommodated, or may
be terminated due to the need to reallocate resources to higher
priority services.

As a relevant case in terms of scaling, consider now that
a service instance requested by the vertical can be deployed
by reusing one or more of the existing slice subnets. As
mentioned, sharing a slice subnet across multiple end-to-end
slices may impact its performance and, consequently, the per-
formance of the vertical services using it. Thus, to guarantee
the required performance, the size and/or the capacity of a
slice subnet instance may need to be adjusted according to the
number and characteristics of the end-to-end slice instances
that are sharing it. In this case, the Arbitrator adds the traffic
load due to the newly requested vertical service to the load
of the existing VNFs (\,) and virtual links (d, ,), and re-
computes the necessary vCPU and bandwidth allocation, as
described above. Again, the Arbitrator uses the vCPU and
bandwidth values obtained in the best and worst cases, to
update the [DF, IL] pairs associated with the involved VNFs
and virtual links.

Finally, we remark that the same procedure is performed
when a service instance is terminated: the SGT-VS updates the
amount of resources available to the vertical and recomputes
the [DF, IL] pairs for the remaining services, upgrading some
of them if needed.

C. Resource-level Scaling

Resource-level scaling involves monitoring and reconfig-
uration of virtual resources orchestrated by the SGT-SO (in
coordination with the SGT-MTP), to prevent the performance
degradation of VNFs/NFV-NSs. More specifically, it regards
the auto-scaling of NFV-NSs according to the scaling rules
given in the NSD, by configuring related monitoring jobs and
alerts in the monitoring platform, and by properly reacting to
such alerts. Scaling rules are defined by the vertical, based
on business-related considerations or the application-related
operational context, and are part of the VSB definition when
on-boarded in the system. These scaling rules are encoded in
the NSD and then forwarded from the SGT-VS to the SGT-SO.

Each auto-scaling rule contains (a) the conditions to be
met by certain metrics, to trigger alerts based on the service
monitored data, and (b) a corresponding reaction (i.e., a
scaling out/in action). During the NFV-NS instantiation phase,
the 5GT-SO configures the SGT-MON monitoring platform
according to the conditions encoded in the NSD auto-scaling
rules, in order to receive the required alerts at the NFV-NS
runtime. Whenever the SGT-SO is notified by the SGT-MON
that one of the conditions is met (e.g., exceeded vCPU usage),
it triggers the NFV-NS scaling according to the corresponding
reaction specified in the auto-scaling rule. To this end, it also

coordinates the operation of the core MANO and 5SGT-MTP.
In particular, in case of scaling out, the SGT-SO issues a new
resource allocation request to the SGT-MTP for scaling the
VNF instances and, hence, to reconfigure the virtual resources
towards the new instantiation level specified in the auto-
scaling rules. The SGT-MTP applies all needed settings for
the required resource re-allocations, while the SGT-SO notifies
the SGT-VS about the scaling operation outcome. In case of
scaling-out failure, due to, e.g., resource shortage, the SGT-SO
undoes or rolls-back the scaling operation and also informs the
5GT-VS about the failure.

In terms of implementation, the SGT-SO provides resource-
based scaling thanks to two internal submodules, namely
the Monitoring Manager and the SLA Manager [8]. The
former configures the monitoring jobs required to measure
the resource metrics involved in scaling decisions. The latter
requests the configuration of the alerts associated with these
metrics in the SGT-MON and also processes the received alerts
to trigger scaling actions according to the auto-scaling rules.
The 5SGT-MON configuration is then coordinated through a
Configuration Manager component, which offers REST APIs
and wraps the logic of the configuration for the different
Prometheus components involved in the monitoring task.
Specifically, 5G-MON leverages the following Prometheus
components: (i) Monitoring jobs, used to retrieve monitor-
ing data from different sources through the mediation of
Prometheus exporters specialized for infrastructure or appli-
cation metrics, (ii) Thresholds, used to trigger alerts towards
the SLA manager, and (iii) Dashboards, used to visualize the
monitoring data through Grafana.

IV. PROOF-OF-CONCEPT: TESTBED AND SCENARIOS

In this section, we present the proof-of-concept testbed we
deployed to evaluate our framework. The testbed implements
the whole 5GT platform introduced in Sec.II, and the appli-
cations required by an automotive vertical to be provided to
mobile users and vehicles. It is worth noting that here we focus
on the scaling of NFV-based vertical services rather than on the
network functions related to the mobile infrastructure. More
importantly, our solution is generic to support any network
functions (including RAN or core network functions) and
vertical applications, and hence, as also underlined below, our
solution can work well with any radio access technology.

Below, we start by introducing the testbed architecture and
the vertical targeted services (Sec.IV-A), then we describe the
scenario and the experiments that we performed in our field
tests (Sec. IV-B). The performed field tests aim to demonstrate
the effectiveness of the developed 5GT platform and our
proposed solutions, able to: (i) automatically deploy vertical
services upon receiving the service requests, and (ii) perform
automated management of the vertical services across different
layers of the architecture. In particular, SLA assurance is
achieved through service-level scaling to handle the arbitration
among different services of the same vertical according to their
priorities, and by resource-level scaling to handle the scaling
of resources (i.e., in terms of the number of VNF instances),
according to resource dynamics and load variations.
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Fig. 3. Testbed architecture and a possible deployment of the considered NFV-NS across the available PoPs

A. Testbed and Supported Services

The testbed, depicted in Fig. 3, spans over three geograph-
ical sites, which are connected through VPN tunnels encap-
sulating both control traffic and data traffic. The Barcelona
site, in Spain, hosts all layers of the SGT platform, including
the 5GT-VS, 5GT-SO, SGT-MTP and 5GT-MON, an instance
of an Openstack-based VIM, and an instance of a WIM
controlling the core transport network. The SGT platform uses
OSM Release 6 as MANO platform. The WIM, as described
in [16], follows an IETF Application-Based Network Oper-
ation (ABNO) architecture using the Control Orchestration
Protocol (COP) to communicate with the SGT-MTP and inter-
acts with the forwarding elements of the underlying transport
networks by means of open source SDN controllers like Ryu
and OpenDaylight. Then, two instances of an Openstack-based
VIM are deployed at, respectively, the Pisa and the Torino site,
in Italy, with the latter acting as MEC host. The Torino site also
hosts an IEEE 802.11p Roadside Unit (RSU) physical network
function to provide radio access to vehicles equipped with
On-Board Units (OBU), and a Radio Network Information
Service (RNIS) providing channel state information to the
applications requiring it. An equivalent testbed was deployed
in Torino [17], using the open-source Open Air Interface (OAI)
2 implementation of the LTE E-UTRAN and EPC, which
is compliant with 3GPP LTE Releases 8/10. Laboratory tests
[18] showed that the proposed system architecture and scaling
solution work effectively also under these settings. However,
during field tests an IEEE 802.11p-based radio access was
preferred, so as to deal with vehicular communications and
ensure a sufficiently large outdoor coverage.

The testbed supports two services requested by an automo-

Zhttps://openairinterface.org

tive vertical, namely, (i) vehicle collision avoidance at inter-
sections, and (ii) video content delivery, which are relevant
examples of, respectively, safety and entertainment services
for vehicular users.

The vehicle collision avoidance service will be referred to as
Extended Virtual Sensing (EVS), since it leverages vehicular
communications as a virtual sensor collecting data related to
vehicle mobility [19], [20], [17]. Specifically, it exploits the
Cooperative Awareness Messages (CAMs), defined by ETSI,
which are periodically transmitted by vehicles and carry the
position, speed, acceleration, and heading of the sender. By
processing such data, the EVS service can detect dangerous
situations and generate warnings accordingly. These warnings
are encoded in the ETSI Decentralized Environmental Notifi-
cation Messages (DENMs) and delivered to human drivers, or
to an emergency braking system aboard vehicles. The VNFs
composing the EVS service are as follows:

o the CIM (Cooperative Infrastructure Manager), which
receives, decodes, and stores CAMs sent by the vehicles
within the area covered by the EVS service;

« the Collision Detector (CD), which queries the CIMs for
new CAMs and runs a trajectory-based algorithm (e.g.,
the one presented in [19], [20]), to detect pairs of vehicles
on collision course;

« the DENM Decider, which timely encodes the warning
messages and sends them to the vehicles deemed to be
on collision course.

The video content delivery service refers to a Video Stream-
ing (VS) service that may be provided in full-fledged or
reduced configuration. The full-fledged version consists of the
following two VNFs:

o the Video Streaming controller (VSC), which exploits a

Radio Network Information Service (RNIS) and a radio



link manager, recording information on the quality of the
user radio channel. This information is given as input
to an optimization algorithm [21] that selects the most
suitable bit rate for streaming the video to the user;

« the Video Streaming Server (VSS), featuring a Python-
based front-end, which applies the selected video bit rate
to the video segments to be transmitted. It is based on
HTTP streaming and contains a video catalogue, a front-
end, the Media Presentation Description (MPD) files, and
the media chunks. The front-end receives the selected
video bit rate and edits the MPD files with such a rate.

The reduced VS service differs from the full-fledged version
in the fact that it includes the VSS only, i.e., it is unable to
adapt video encoding to the user channel conditions. Finally,
we remark that both the EVS and the VS services require
a mobile transport function that realizes the communication
between the network infrastructure and the vehicular users.

B. Evaluation Setup and Experiments

The evaluation setup consists of (i) a vertical service de-
ployment in the form of NFV-NSs, and (ii) a vertical service
operation once the NFV-NSs are deployed.

As for the vertical service deployment, upon receiving the
automotive vertical request for services, the corresponding
VSD is compiled at the SGT-VS. Importantly, at this stage, the
vertical specifies (i) the services’ priority (with EVS having
higher priority than VS), (ii) the services’ configuration, (iii)
the storage requirements for the VS and EVS VNFs, (iv) the
geographical area that has to be covered by each service,
and (v) the estimated number of users to serve. Also, since
the EVS should be combined with other collision avoidance
mechanisms based on physical sensors aboard the vehicles, the
maximum target latency specified by the vertical in the VSD
is set to 20 ms. The VSD is then translated into the NFV NSD,
and the [DF, IL] pairs are set for each VNF instance according
to the output of the arbitration algorithm running at the SGT-
VS. In particular, for all VNFs composing the VS and the EVS
service, except for the CD, only one instance using up to 1
vCPU is foreseen as both minimum and maximum allocation,
since the processing latency of such VNFs is limited and does
not significantly increase with the traffic load. For the EVS
CD, instead, the [DF, IL] indicates the possibility to have from
1 up to 2 instances, each using 1 vCPU. The SGT-SO, which
is aware of the computing and network resources available
as exposed by the SGT-MTP (which, in turn, interacts with
underlying VIMs and WIMs), computes the most appropriate
placement for the VNFs, and instantiates them as Openstack
VMs, following the NSD requirements. Service monitoring is
performed by the SGT-MON, which pulls and stores metrics
from the VMs hosting the aforementioned VNFs.

With regard to the vertical service operation, the test field
used for our experimental evaluation consists (unless otherwise
specified) of a urban intersection with two vehicles, one
of which is an automated car equipped with an Automatic
Emergency Braking (AEB) system. Both vehicles are equipped
with an IEEE 802.11p OBU, thus they transmit CAMs every
100ms and can receive DENMs. The vehicle equipped with

Fig. 4. Map of the geographical area served by the EVS service, featuring
two intersections and including an IEEE802.11p RSU: one EVS instance and
corresponding covered intersections highlighted in yellow (left), two EVS
instances and corresponding covered intersections highlighted in pink (right)

the AEB can also process DENMs and has the necessary on-
board logic to translate the DENM content into a command
for the AEB. The vehicles travel on perpendicular roads and
approach the intersection at full urban speed (namely, 50
km/h).

The field trial includes three phases, as detailed below.

o Phase 1: The vertical asks for the deployment of two
VS instances, one full-fledged and the other in reduced
configuration. This first part of the trial shows how
an automotive vertical can use the 5GT platform to
instantiate two different VS services, just by providing
high-level service parameters and without any detailed
knowledge of the underlying infrastructure.

o Phase 2: The vertical asks for the deployment of an EVS
instance, which, being a safety service, has higher priority
than VS. Due to limited resource budget available as per
the vertical SLA, the instantiation of the EVS requires
that service priority is properly handled by the Arbitrator
at the 5G-VS (service-level scaling).

o Phase 3: The vehicle density on the area served by
the EVS increases, which impacts significantly on the
computing load and in turn the application latency. Thus,
whenever load changes, scaling at the resource level is
needed to keep up with the SLA latency requirements
(resource-level scaling).

To emulate a high vehicle density, in Phase 3 we consider
a urban section of the city of Torino, depicted in Fig. 4(left),
including two urban intersections, and we leverage a mobility
trace obtained with the SUMO simulator [22]. This trace is
processed so as to generate the CAMs corresponding to the
simulated vehicles; such CAMs are then injected through the
same data plane connections used for real cars in the field trial.
This allows us to handle such CAMs in exactly the same way
as those generated by real vehicles, i.e., they are transmitted
on air and, upon being received, the information they carry is
stored in the CIM.

V. FIELD TRIAL PERFORMANCE RESULTS

In this section, we report the actions taken by the 5GT
platform during the Phase 1 to 3 of the field trial, as well
as the performance of the services that are deployed. We first
report the decisions made by the SGT-VS upon receiving the
VS and EVS set-up requests, and the decisions made by the
5GT-SO as the vehicle density increases (Sec. V-A). Then we
present some results obtained by profiling the service creation
time components, for both VS and EVS (Sec. V-B). Finally, we
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show results related to service-level and resource-level scaling,
which take place during, respectively, Phase 2 (Sec. V-C) and
Phase 3 (Sec. V-D) of the trial.

A. Services Performance — All phases

In Phase 1, upon receiving the request of the two VS
services, the SGT-VS goes through all the steps described in
the previous sections and ultimately generates two NFV-NSs.
One NFV-NS is for the full-fledged VS service with an IL
corresponding to a large amount of allocated resources and
enforcing that the VSC is placed in the MEC. The other NFV-
NS is for the reduced VS version, with an IL for low resource
footprint. We recall that the VSC must be deployed in the
MEC, since it includes a radio manager requiring the RNIS
(MEC) service for the tracking of the user channel quality.
The 5GT-SO then deploys the VSS instances of the two VS
NFV-NSs as VMs in the Pisa site, and one VSC instance in
the Torino (MEC) site, and sets up the links to interconnect
the VSC with its associated VSS in the Pisa site through the
Barcelona transport infrastructure by interacting with the SGT-
MTP.

Fig. 5 (Phase 1: from O to 273 s) shows the bit rate of the two
VSs (i.e., with and without VSC). The full-fledged VS (purple
line) increases the video segment bit rate when the quality of
the radio channel (reflected by the Channel Quality Indicator
(CQI), blue line) is high, while the reduced VS (green line)
maintains the same video segment bit rate.

In Phase 2, the SGT-VS receives the request for an instance
of EVS, characterized by a target maximum end-to-end latency
of 20ms, which implies that the corresponding NFV-NS
constraints the service deployment in the MEC (Torino site).
However, following the Arbitrator algorithm in Sec. III-B, the
5GT-VS detects that the amount of resources necessary to
deploy the EVS exceeds the total resource budget specified in
the vertical SLA, and that the resources previously allocated
for the VS services must be revised. In particular, the algorithm
indicates that the full-fledged VS service must be terminated
so that the resources allocated to the VM implementing the
VSC VNF in the MEC host are made available to the EVS
service.

Fig.5 (Phase 2: from 273 to 5855s) reports the bit rate of
the video segment after arbitration, when only the reduced
video service (the one without VSC) remains in place. Thanks
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Fig. 6. VNF implementing the CD algorithm: processing time (left) and CPU
load (right), as functions of the vehicular density

to the availability of real cars, this part of the trial not only
demonstrates the correct behavior of the Arbitrator, but also
that the EVS is successfully deployed and meets the automo-
tive safety requirements and the maximum target latency of
20 ms. In particular, the value of end-to-end latency, from the
transmission of the CAM to the reception of the corresponding
DENM, averaged over 10 different tests, is equal to 8.870 ms,
with a standard deviation of 1.447 ms, and a maximum and a
minimum value equal to 11.637 ms and 5.050 ms, respectively.

In Phase 3, the reduced VS service and the EVS service run
simultaneously, one in the Pisa site and the other in the Torino
(MEC) site. With regard to the EVS, as the vehicle density
in the area highlighted in yellow in Fig. 4(left) increases, the
CAM and processing load grows as well. Such an increased
load of the VMs implementing the VNFs yields an increased
processing time, hence an increased end-to-end latency for the
EVS. In particular, we observed that the major contribution
to the processing time is due to the VM implementing the
CD algorithm, while the contribution of the other VNFs is
negligible (e.g., 10 times smaller) and does not significantly
scale up as the vehicle density grows. As a consequence, we
focused on the CD VNF and measured its processing time
(Fig. 6(left)) and the corresponding CPU load (Fig. 6(right)),
for different values of vehicular density.

Given the latency contributions of the other VNFs and the
latency of the data radio transfer, we computed a threshold for
the processing time of the CD algorithm (namely, 5 ms) that
cannot be exceeded. Then, leveraging the results in Fig. 6(left),
we identified the critical vehicle density (e.g., 22.5 vehicles/km
in the plot) below which a CD processing time of less than
5ms is recorded for the 99.9% of the time. Finally, we used
this density value in Fig. 6(right) and derived the critical CPU
load (namely, 23%) as the threshold for resource scaling.

Once we determined the critical CPU load threshold, we
configured the monitoring jobs and alerts in the SGT-MON
platform to generate an alert whenever the CPU consumption
of the CD VM reaches such a value. The alert is handled by
the SLA Manager module of the SGT-SO, which generates a
scale-out request, i.e., the deployment of a second CD instance,
and makes the EVS service self-reconfigure to split the load
between the two CD VNFs. In this way, half of the cars in
the area covered by the service can be handled by the initial
CD VNF and the rest by the new CD VNE. Specifically,
with reference to Fig. 4(right), each CD instance processes



only the CAMs generated by the vehicles crossing one of
the intersections highlighted in pink. As a consequence, the
CPU load is halved, and the target latency required by the
EVS service can be fulfilled. An initial functional prototype
was demonstrated in [18]. Importantly, the above discussion
applies to scale-in operations as well. Hence, when the density
decreases and some resources can be freed, a scale-in operation
is performed exploiting the same mechanism as described
above.

B. Service Creation — Phase 1

We analyzed Phase 1 from the viewpoint of the 5GT
platform. The focus is on profiling of the service creation
and instantiation process for the requested VS and the EVS
services, considering the different ILs available for each con-
sidered NFV-NS (see Table I). We remark that, in all plots
presented here and in the following sections, boxplots repre-
sent the experienced maximum, minimum, average, median,
20th- and 80th-percentile of the ten repetitions performed for
each experiment.

Fig. 7 shows the various components of the service creation
time, when deploying the EVS service consisting of 2 CD
VMs The phase taking longer is the Allocate VNFs one, whose
duration is roughly 6 times higher than the longest of the
remaining components. This phase accounts for the time it
takes to the OSM wrapper to interact with OSM, which, in
turn, deploys the VMs that implement the EVS service by
interacting with the SGT-MTP and Openstack. In this case,
there are four VMs to deploy, i.e., 1 CIM VM, 1 DENM
Decider VM, and 2 CD VMs. The following components in
order of importance are the creation of the intra-PoP networks
(6.986s on average) and the SGT-VS processing (6.385s on
average). The former accounts for the time it takes to the OSM
wrapper to interact with the MTP, which, in turn, interacts
with Openstack to create all the required intra-PoP networks
of the 2 CD-EVS service. The latter one has a much larger
dispersion due to the polling that the 5GT-VS does to the
5GT-SO to know if the instantiation process has finished (in
addition to the internal processing, which is much lower).
The configured polling period is of 20s. Next, the 5GT-SO
Resource Orchestrator Engine (ROE) processing accounts for
the interaction with the SGT-MTP to retrieve the topology
and available resources (with the largest component equal to
1.964 s on average), the interaction and placement calculation
in the Placement Algorithms (PA) server (522.3 ms), and other
much smaller components. Finally, the processing in the 5GT-
SO Service Orchestrator Engine (SOE) lasts 292.6ms on
average. This operation accounts for the time it takes to the
SOE to interact and coordinate the operations at the different
entities in the SGT-SO module.

Fig. 8 presents the service creation time for the full-fledged
VS service featuring same pattern of EVS service creation time
in terms of relative importance of the components. The only
remarkable differences compared to the above EVS service
are the larger time for intra-PoP network creation (12.862s
on average) and the smaller time for VNF allocation (29.732 s
on average). As for the former, this happens even if the service

90 4 = Minimum = S
80 —+ » Mean _L —
70 | —Median
- Maxi T
&5 aximum ]
N
E 40
F a0
20
10 m iy
0 T o T T T T
And oF 0% (%S WS ot
es8\" 0% o RO WO eV 1
pro® o we 002
W S \our2 = p
cre®

Fig. 7. Service creation time for the scaled-out EVS service (2 CD VMs)

70

60 - Minimum
+Mean

50 -Median

40 4 = Maximum

2, 30 L
@
£ 2 =
[= ‘ i

10 -~ |

0 - =
A \ \3 s s A\

?‘0“'355‘“9 505° g0 wo® 9“3{‘“0‘“ no® S o

NS 2P0 M
Gtaa\e“‘“

Fig. 8. Service creation time for the full-fledged VS service

to deploy is simpler (i.e., 2 VNFs instead of 4), because in
the previous case all 4 VNFs were deployed within the same
host (the MEC in Torino) and the same intra-PoP networks
were used by all of them. Conversely, in this case each VNF
is deployed in a different PoP. Therefore, two sets of intra-PoP
networks must be created and the SGT-SO must interact twice
with the SGT-MTP, which, in turn, interacts with different
Openstack instances to create them. Furthermore, since these
two intra-PoP networks must be stitched to allow both VNFs
to interact as part of the vertical service logic, the deploy-
ment time of inter-PoP logical links is not zero (293.2ms
on average), which also makes the processing time at the
ROE larger (3.271s vs. 2.501 s on average), despite being a
simpler service. This time also includes the interaction with the
SGT-MTP, which, in turn, interacts with the WAN controller
to configure the required transport network connection [16].
Finally, the shorter VNF allocation time in this case is due to
the fact that only two VNFs, instead of 4, have to be deployed
by the respective Openstack intances at each PoP.

Fig. 9 presents the experienced service creation time for the
different NFV-NSs and ILs presented in Table I, ordered by
the total amount of VNFs in the NFV-NS. We can observe
that similar considerations can be made for the other services
involved (i.e., 1-CD EVS and reduced VS). The main com-
ponents are the time for allocating VNFs and the time for
creating intra-PoP networks, with the latter being of the same
order as that obtained for the EVS service with two CD VNF
instances, since there is only a single PoP involved.



TABLE 1

DESCRIPTION OF MAIN SERVICE CREATION TIME COMPONENTS

Service configuration

Composition

Observation

reduced VS

1 VSS VNF

Low resource footprint IL

full-fledged VS

1 VSS VNF, 1 VSC VNF

High resource footprint IL

EVS (IL with 1 CD)

1 CIM VNF, 1 DENM VNF, 1 CD VNF

Initial IL

EVS (IL with 2 CD)

1 CIM VNF, 1 DENM VNEF, 2 CD VNFs

IL for high density scenarios or after scale out operation
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Fig. 9. Service creation time for the different considered NFV-NSs and ILs

C. Service-level Scaling — Phase 2

As mentioned, in Phase 2 an EVS service creation request
arrives at the SGT-VS, but this vertical is already running
two VSs (i.e., full-fledged and reduced VS) that consume
most of the available resource budget. As a consequence, the
Arbitrator decides to terminate the full-fledged VS service to
make resources available for the (higher priority) EVS service.

Fig. 10 shows the three components of the service-level scal-
ing time. First, the Rx-to-decision time accounts for the time
it takes to the Arbitrator to realize that the new service request
does not fit in the vertical’s budget and to decide to terminate
the full-fledged VS service. This is the smallest component,
since it only involves internal processing inside the SGT-VS
(165ms on average). Out of this time, 45% (on average) is
spent inside the Arbitrator module. Second, VS service termi-
nation accounts for all the operations (including interactions)
carried out into the 5SGT platform stack to remove the inter-
PoP logical links, to terminate the VMs, and to terminate the
intra-PoP networks created in the PoPs. These interactions
are triggered by a message from the 5GT-VS to the 5GT-
SO once the decision has been made at the Arbitrator, and
it involves the SOE, the wrapper, the core MANO platform,
the ROE inside the SGT-SO and its interaction with the 5GT-
MTP. The latter, in turn, interacts with the underlying network
infrastructure (WAN controllers) and Openstack instances of
the involved PoPs (acting as VIMs). Finally, the databases
at all layers are also updated. The whole process takes on
average 52.020s. Third, once enough resources are freed for
the new service, the EVS instantiation phase accounts for the
deployment of the EVS service (80.009 s on average). In this
case, the deployed EVS NFV-NS counts a single instance of
the CD VNF. As shown in Fig. 10, the addition of these three
components (Rx-to-instantiation) results in a total average of
132.194 s, from the reception of the high priority service
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request to its instantiation after having terminated other low
priority service.

D. Resource-level Scaling — Phase 3

We also evaluated the resource-level scaling process by the
5GT-SO, according to the auto-scaling rules that are generated
as a consequence of the evaluation presented in Sec. V-A.

Fig. 11 shows the components of the scale-out operation
for the EVS service. Out of the total scale-out time (30.862 s
on average), the largest time component corresponds to the
deployment of a new instance of the CD VNF in a VM (see
Wrapper apply component of Fig. 11). In this case, this step
(30.481's on average) accounts for the time from requesting
scaling to the wrapper (sent by other building blocks of the
5GT-S0), the interaction with OSM and the SGT-MTP, and the
interaction with Openstack to deploy the new VM and to attach
it to the corresponding intra-PoP network. The remaining
components are much smaller (tens or hundreds of ms), as
depicted in Fig. 11 (notice the applied logaritmic scale). First,



the SOE processing (33.8 ms on average) measures the time
the SOE takes to handle the scaling request coming from the
SLA Manager as a consequence of an alert being triggered at
the SGT-MON. This alert (and the associated monitoring job)
was previously configured at instantiation time based on the
scaling rules (and monitoring jobs) in the NSD of the EVS
service. Database update operations are also included in the
SOE processing time. Second, the ROE processing (161.8 ms
on average) accounts for the time it takes to prepare all the
information to be sent to the wrapper to switch from the initial
EVS (the running service) to the scaled-out EVS (with an
additional CD VNF instance to balance the vertical service
load). Furthermore, the ROE is also in charge of creating the
new logical links between the new CD VNF and the rest of
VNFs of the service (in the same way it was done at the
instantiation time for the original one) to maintain the service
logic for the vehicles that are going to be served by the new
VNF. Third, Wrap decision (163.9 ms on average) accounts for
the time to prepare/translate the scaling request received by the
wrapper to trigger the associated procedure at the core MANO
platform (i.e., OSM). Finally, update monitoring (16.3 ms on
average) measures the time to update the monitoring jobs to
also monitor the new created CD VNF instance and to make
this data accessible through the corresponding interface.

Fig. 12 shows the components of the scale-in operation
for the EVS service. in Fig. 12. This is the process through
which the SGT-SO autonomously decides to downscale the
resources assigned to the service by changing the scaled-out
EVS to the initial EVS IL with only one CD VNF. The scale-
in process is triggered by the SGT-MON by noticing that the
CPU consumption is below a certain threshold. The process is
equivalent to the above one but for freeing resources (logical
links and VMs) instead of creating them. Terminating services
and freeing resources (scale in) takes less time (21.051s on
average) than allocating resources (30.862s on average for
scale out), as can be observed in Fig.12. More specifically,
all components described above other than those related with
the core MANO platform (i.e., OSM) are very similar: (i)
SOE processing (33.5ms), (ii)) ROE processing (163.7 ms),
(iii) Wrap decision (157.9ms), and (iv) Monitoring update
(15.0 ms). However, the main component (Wrap apply), related
to releasing the resources by interacting with the SGT-MTP
(and Openstack), is 10s smaller (20.676s vs. 30.481s on
average).

VI. RELATED WORK

Several resource and service orchestration solutions have
been investigated (both within and outside NFV scope) to
effectively improve user experience and SLAs [23], [24]. SLA
management is also a quite well-investigated topic within
network and service management in different areas, e.g., cloud
computing [25], enterprise networks [26], web services [27],
and considering multi-domain scenarios [28]. None the less,
an important challenge still needs to be addressed: how to
automate SLA management operations to avoid, or promptly
respond, to possible agreement violations. Existing solutions
to this issue often differ in the level of dynamicity of the con-
sidered context, i.e., how quickly the resource usage changes.
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Most of them, however, focus on making monitoring and
enforcement tasks as flexible as possible [29].

In the context of network slicing and of the NFV ecosys-
tem, SLA management has mainly focused on the automated
scaling of network services, performed by NFV orchestrators
to meet the target KPIs despite load surges [30]. In particular,
most works have dealt with mechanisms based on virtual re-
source usage prediction [31], or strategies for virtual resource
reallocation [32]. In these cases, policy-based rules and input
data used for triggering scaling are provided manually for
each network service. In [33], scaling rules are specified in
the network service descriptors, which is indeed a prefer-
able option toward more agile and less error-prone scaling
solutions in automated slice management operations. In [34],
an autonomic policy-based network service deployment with
SLA is presented where high-level parameters (performance,
availability, security) specified in the SLA are linked to low-
level requirements encapsulated in the respective policies.
The policy associated with a network service-level SLA is
included in a specific descriptor that is created, validated, and
uploaded to a catalogue and then applied when the network
service is instantiated. Other scaling solutions rely on Artificial
Intelligence (Al)-assisted operations to adapt slice or VNF
capacity under varying user demand [35] or while minimizing
the waste of resources [36].

Recently, consensus has emerged on the need for a net-
work slicing-aware NFV orchestration where management and
orchestration functionalities are extended to the slice level
(i.e., managed at the telco OSS/BSS), so as to handle end-to-
end operations and efficiently address SLAs negotiated with
verticals [37]. The study in [38] addresses the modeling,
deployment, and orchestration of an end-to-end network slice,
which includes the RAN, core, and transport network. Slice
management functions are performed through the Open Net-
work Automation Platform (ONAP) 3, and the authors propose
an architecture to enforce negotiated SLAs. This solution
exploits monitoring information and the policy enforcement
component from ONAP to realize automated closed-loop
management, while scaling operations are presented at the

3https://www.onap.org/



conceptual level. A data-driven approach for intelligent slice
management is presented in [39]. Therein the authors propose
a framework for data-driven slicing resource provisioning,
including the development of slice traffic predictors, resource
allocation models, and constrained SLA enforcement. Both the
above works, however, address SLA during slice deployment
(i.e., SLA enforcement), while they do not focus on scaling
operations. Additionally, some recent works have envisioned
SLA solutions in the context of network slicing for 5G
services, also leveraging Al-based solutions. Most of them,
however, address SLA from a theoretical point of view [40],
[41], [42], [43], or, even if they present operational solutions
to NFV orchestration, they focus on the service deployment
phase without specifically addressing scaling operations [44],
[45].

To the best of our knowledge, there exist only few works
on the application and benchmarking of SLA management
in combination of scaling operations, triggered by manage-
ment and orchestration platforms (MANO) in experimental
setups. In addition to the system evaluation we present, and
demonstrated in [18], our framework is designed to integrate a
hierarchical SLA management in NFV orchestration, involving
multiple levels at which service scaling can be handled.

In this context, relevant works to ours are [46][47]. The
study in [46] presents a benchmarking analysis with respect
to scaling, between the SONATA MANO platform and other
open-source MANO solutions like OSM and Cloudify. In [46],
however, the SLA management is performed at the NFV-
NS level only, unlike in our work where this is just one
of the possible levels at which we can act. [47], instead,
presents an integrated SLA management framework within the
SONATA MANO platform for real 5G environments, aiming at
binding business requirements between network operators and
verticals, with measurable attributes. The framework proposed
therein is demonstrated as a web and multi-platform applica-
tion that allows the management of the whole SLA lifecycle
for a network service. After the network service instantiation
into a network slice, the SLA framework is populated with
infrastructure monitoring information, in order to assess the
agreement with real-time usage data, and efficiently avoid or
manage possible violations. However, scaling needs of the
verticals or shared slice subnets are not considered in the
scaling process.

Ultimately, most of the above previous works on SLA
management focus on the network service and the resource
level, with the aim to let them adapt to the time varying
resource demand as well as resource availability from the
underlying infrastructure. To our knowledge, none of them
accounts for the vertical services and the application level, or
takes into account dynamic changes in the service demand
and/or in the application needs.

As far as service arbitration is concerned, a large body
of work has addressed call and service admission control in
the context of wireless networks, focusing on radio resource
allocation (see, e.g., [48], or [49] for a survey on this topic).
Relevant examples of works on resource allocation include
[50], [51]. In particular, [S0] leverages reinforcement learning
to proportionally allocate budget-constrained radio resources

to competing services whose properties are partially unknown
at the time of decision making. [51], instead, introduces
methods for computational resource arbitration among virtual
networks within a node, and for migrating network functions
among nodes within a virtual network. Note however that,
unlike resource arbitration in 5G, to the best of our knowledge
the problem of service arbitration aimed at guaranteeing the
SLAs between verticals and the 5G provider has not been
previously tackled. Indeed, none of the existing studies have
considered the support of vertical services in a 5G network,
accounting for SLAs in place between verticals and network
provider. This scenario implies not only a finite resource
budget for a set of services, but also that resources are properly
allocated (i) using a coarse knowledge of the resource status
such as that available from a business perspective, and (ii) in
a way that the allocation itself can be varied over time so as
to adapt to the network and services dynamics as well as to
the target KPIs specified by the verticals. An initial study on
such aspects was presented in our conference paper [52].

In summary, though previous works dealt with various
aspects of SLA management, this has been done in a quite
focused way for the specific problem at hand. When moving to
complex and heterogeneous virtualized networks, the number
of network components, and most importantly, of architec-
tural objects to manage (e.g., vertical service, network slice,
network service, virtual function, virtual link) substantially
increases. This also has implications in the layers and entities
included in the MANO stack (see Fig.1). Therefore, when
deploying a given service, typically there exist SLA constraints
involving different architectural objects associated to different
architecture layers and stakeholders (e.g., verticals, service
providers, operators, infrastructure providers). Unlike previous
studies, our work presents a global hierarchical framework for
SLA management that is capable of handling SLA at various
layers, it is hence concerned with various key architectural
objects related with the vertical service, network slice, and
network service (including associated resources). Furthermore,
the understanding of the dynamics of SLA management
and scaling procedures in operational deployments and the
availability of representative datasets allow for an efficient
integration in our proposed approach of functional Al-based
solutions, as presented in [53].

VII. CONCLUSIONS

5G networks have expanded the scope of traditional mobile
networks to support the digital transformation of vertical
industries such as automotive, factories, media, e-Health, and
robotics. It follows that nowadays telco providers need to
simultaneously deploy and manage multiple vertical services
over a shared mobile network infrastructure. In this paper,
we presented a hierarchical service and SLA management
framework, which leverages service scaling mechanisms at
different levels, namely, application-, service- and resource-
level, and we have implemented the proposed framework
and different scaling functions over the 5GT platform. We
demonstrated the performance of our solution using a proof-
of-concept testbed. Our results, obtained through the real



field tests with relevant automotive vertical services, show

the

feasibility of the proposed solution and its ability to

automatically deploy and update service instances, while fully
meeting the established SLAs. Importantly, the hierarchical
service and SLA management framework presented here has
been adopted as a baseline solution for future 5G vertical
industry technology developments, as the ones considered in
the 5Growth project [54][55].
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