

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

BOOSTING AUTONOMOUS NAVIGATION SOLUTION BASED ON DEEP LEARNING

USING NEW RAD-TOL KINTEX ULTRASCALE FPGA

D. Gogu (1), F. Stancu (1), A. Pastor González (2), D. Fortún Sánchez (2), D. Gonzalez-Arjona (2), O. Müler (3), M.

Barbelian (3), V. Pana (3)

(1) GMV Innovating Solutions S.R.L, SkyTower, 32nd floor 246C Calea Floreasca, Sector 1, 014476 Bucharest,

Romania, and Email: info@GMV.es
(2)GMV Aerospace and Defence, Isaac Newton, 11 P.T.M., Tres Cantos, E-28760 Madrid, Spain, Email: info@GMV.es

(3) UPB-CCAS, Str. Gheorghe Polizu Nr.l, CP 011061, Sector 1, Bucharest, Romania, Email: octavian.grigore-

muler@upb.ro

ABSTRACT

In this paper we present an ad-hoc architecture for on-

board deep neural networks (DNN) inference

implemented on a radiation-tolerant FPGA, creating

building blocks which can be used for different DNN

architectures, running on platforms with different

amounts of resources and covering different

requirements. The problem analyzed is based on an

autonomous descent and landing scenario on the Moon,

trying to compare it against traditional techniques. The

implementation of the Deep Learning (DL) algorithm is

focused on the extraction of features from navigation

camera images. The proposed solution on FPGA allows

for a reduced power consumption while maximizing the

execution performance, as opposed to many on-ground

solutions. A space-representative demonstrator has been

developed to validate the solution.

Additionally, we present another approach to running

inference of a DNN model on-board space

representative avionics. In this case, it is based on using

the specific Computer Vision and Artificial Intelligence

(CVAI) accelerator Myriad 2 as the processing element

instead of an FPGA. We describe the avionics

architecture and the AI concept for two scenarios: crater

localization on the Moon and specific patches detection

on asteroid images.

1. Introduction

The majority of the embedded systems have been

designed using linear algebra and linearization, but as

the universe has non-linear behavior, they impose

constraints and limitations on the potential current

technology. This is true also for the space industry,

where more demanding space missions could greatly

benefit from the application of non-linear systems,

specifically DL and DNNs.

The autonomous descent and landing on the lunar

surface based on visual based systems is a complex

challenge that can ensure pin-point landing. These

Absolute Navigation systems are able to estimate a

spacecraft position based on a previously generated

landmark database and landmarks extracted from the

navigation camera images using real time landmarks

crater identification.

In this paper a more modern approach based on artificial

intelligence (AI) solution is presented which benefits

from the advantages of FPGA implementations.

The NN-VISNAV and AITAG are vision based

navigation systems based on AI that can use common

FPGA implementation. The NN-VISNAV is focused on

descent and landing scenarios focused on the South Pole

of the Moon. Two different landing points have been

selected Schrödinger basin and Shackleton crater. The

neural network is trained using different datasets of

images which are generated in different conditions, like:

illumination conditions, simulated image blur,

navigation camera exposure and lens distortion.

In this paper we present two different approaches of

how to apply inference of DNNs on on-board avionic

platforms. This work stems from projects NN-VISNAV

and AITAG developed in GMV for ESA.

We present the approaches taken in this two projects,

where the inference of a DNN is executed on space-

representative avionics. One of them uses an FPGA

while the other uses an AI accelerator, the Myriad 2.

Two different visual-based scenarios are analyzed.

Autonomous descent and landing on lunar surface and

specific patches detection on asteroid observation. The

FPGA-based approach covers the former while the AI

accelerator covers both, while only partially the former.

We will firstly present the FPGA-based approach used

in the NN-VISNAV project. A comparison between the

conventional methods and the AI-based approach is

presented. The FPGA design is described in detail.

Finally the validation is presented.

The AI accelerator-based approach is described with

fewer depth, as the activity is still ongoing. The AI

concept is described and the demonstrator avionics are

presented afterwards.

2. Absolute navigation for descent and landing on

the Moon surface

Visual-based autonomous descent and landing on lunar

surface are a complex challenge. Systems capable of

solving it are called Absolute Navigation systems, and

can ensure pin point landing, estimating spacecraft

position based on a previously generated landmark

database.

The images are generated using planet and asteroid

natural scene generation utility (PANGU), [11]. High

definition models of the target surface have been

developed using PANGU and are used to generate

representative synthetic images.

2.1. Conventional vs AI-based approach

Previous work on using Absolute Navigation system

conventional approach, presented in [1] and [2], showed

a considerable increase in landing accuracy, from

kilometers to a few hundreds of meters landing

accuracy. The Absolute Navigation systems developed

by GMV, in ESA – ANTARES and PILOT-B+, is based

on recognition and matching of craters (as

representative landmarks) on the lunars surface. Craters

are excellent landmarks because can be found in large

numbers with different size. The presence of different

crates sizes has a big impact in the design of the

AbsNav system which is targeting different craters’ size

at different altitudes, bigger craters at high altitude and

smaller craters at low altitudes. Furthermore, the craters

have rotation and illumination invariance properties

which contribute substantially to the robustness of the

Absolute Navigation system.

The conventional Absolute Navigation system is

composed by two main parts: off-line part and on-line

part. The off-line part is mainly focused on extraction of

landmark databases which can be built in an automatic

way using specially developed SW or manually using

human interaction. In this process Digital Elevation

Models (DEMs) or geo-referenced images can be used

to extract the lunar landmarks to generate the database.

The on-line part is mainly focused on on-board

computation which ensures Real Time detection and

matching of landmarks extracted from the images

captured by navigation camera. During this process the

craters are extracted from the images using optimized

image processing algorithms followed by an estimation

in shape and size using ellipse approximation. The last

step is the matching procedure where the online

extracted craters are matched with the ones existing in

the landmark database. The matched set can be used to

compute the absolute position in camera frame and a

navigation filter can use the absolute navigation output

together with on-board sensor measurement to provide a

complete estimation of spacecraft’s states. The

conventional Absolute Navigation system approach is

presented in Figure 1.

Figure 1: Conventional Absolute Navigation system

architecture

The on-line part is composed by several functionalities

designed to extract and match lunar craters in order to

estimate spacecraft states: Landmarks Extraction,

Database filtering & Database 2D projection, Landmark

Matching, Landmark Check, Position estimation and

Navigation filter. The Absolute Navigation system is

working with 1024 pixel squared image. The Landmark

Extraction is using the navigation image to extract

craters and is composed by three stages: border

detection where edge detection and crater rim detection

is selected, rim grouping where crater curvature check

and crater border coupling is performed and ellipse

fitting where the size and shape of the crater is

approximated.

The Database filtering & Database 2D projection is

using the on-board Landmark database and estimated

spacecraft states to select from the database the craters

which are predicted to be seen in the camera FoV.

Afterwards, the selected craters are processed by

Database 2D projection algorithm which projects the

craters in the image frame based on spacecraft’s

estimated attitude and position.

The Landmark matching functionality is performing the

point matching by using the craters extracted from the

image (Landmarks extraction) and the projected craters

in image frame from the database (Database 2D

projection). The output of Landmark matching is a list

of crater pairs (the craters extracted from the image and

its matches from the database) which are matched

during this procedure. The Landmark check is in charge

to eliminate false matches based on proximity criteria (if

near the matched pair exists other craters, relatively

close to this pair, the match is discarded). The Position

estimation is using attitude information knowledge,

landmark database and matched craters to compute the

3D absolute position estimation. The navigation filter is

a Linear Kalman Filter that integrates different sensors

measurements in order to obtain precise estimated

spacecraft’s states.

In ESA project, NN-VISNAV, a new modern technique

based on AI is implemented to perform visual

navigation. The NN-VISNAV project is developed in

collaboration with UPB-CCAS and implies to provide a

DNN complete solution, starting with research and SW

implementation until HW implementation on space-

graded FPGAs. The preliminary evaluation of neural

network solution and implementation is performed in

TensorFlow and neural network training is performed

using 2048 pixel squared image. The HW

implementation of the neural network is performed by

GMV.

Figure 2: AI-based Absolute Navigation architecture

The Crater Edge Detection is designed using neural

network techniques, trained with perturbed and non-

perturbed data (in this case images) with the scope to

perform crater edge detection. The crater frame position

is a SW function that identifies and approximate craters

shape and position in the image by using the extracted

edges. The crater 2D projection is in charge to select

and project crates from database in the image frame by

using the spacecraft estimates states, similar as in the

classical Absolute Navigation system. Then Crater

Frame Matching is in charge to perform the matching of

the craters detected in image frame with the ones from

crater database. The Spacecraft Position Prediction

function is in charge to estimate spacecraft estimated

states. The presented approach for AI based Absolute

navigation assume a HW-SW co-design approach,

where Crater Edge Detection neural network is

implemented on dedicated FPGA to increase the

execution performances and the rest of the

functionalities are implemented on a space graded

processor.

2.2. DNN inference on FPGA

The avionics for this approach is formed of the main

OBC, where images from an on-board optical device are

collected. These images are then to be subjected to

inference using a DNN model, previously trained

offline. The execution of the inference processing is

carried out in an FPGA, leveraging its capabilities to

parallelize multiple processing operations and its higher

power efficiency with respect to other solutions such as

CPUs or GPUs. In this way, the OBC acts as the client

which requests the execution of the inference of an

input image to the FPGA, which acts as the server.

The interface between the OBC and the FPGA is built

on an Ethernet connection, using a tailored protocol

working over raw Ethernet packets, i.e. the network,

transport and application layers are custom. The

designed protocol supports for packet fragmentation,

and multi-packet acknowledgment. The application

layer is based on a series of commands that enable the

client to send images, request execution of inference,

retrieve results from intermediate and final layers, and

monitor the status of the server.

In order to generalize to different DNN architectures,

specific implementations for each type of layer and its

parameters are described in a Hardware Description

Language (HDL) and verified. Through

parameterization these modules can be

programmatically generated and generic models be

constructed, as long as they are built up from

implemented layer types. The sequence of execution

steps and control signals can be generated offline and

then be fed to a controller module that internally

handles the orderly execution of each instruction.

From a model generated using TensorFlow and Keras, a

Python library has been generated in order to extract the

required information: layer types, input and output

dimensions, weights and biases. This library then

generates the required inputs for the FPGA

implementation: scheduling instructions, parameter

files, and memory distribution.

A demonstrator of this architecture has been built under

the NN-VISNAV. The used FPGA board has been the

Alpha Data SDEV Kit-2, which contains a Xilinx

Kintex UltraScale KCU060 FPGA, of the same family

of the radiation tolerant XQRKU060 FPGA. An

Ethernet expansion module was used to connect the

board to a workstation, which is used to emulate the

OBC and the camera. The setup for the testing of the

demonstrator is shown in Figure 3:.

Figure 3: Setup of the demonstrator

In order to ease its use and to abstract the complexity of

the inner layers, a Python-based command line tool has

been developed to control the execution of the different

tests on the demonstrator. A series of commands can be

used to carry out all the steps necessary to prove the

functionalities of the system. This includes loading the

bitstream, loading model parameters, sending query

images, executing the inference, retrieving results from

any layer of the model, and monitoring the status of the

system.

The U-Net model implemented in the demonstrator

implements the crater edge detection step of the

Absolute Navigation. It expects a 2048x2048 8-bit

pixels input image, and generates a 2048x2048 pixels

output feature map. It contains 30 layers of different

types (Conv2D, DepthwiseConv2D, MaxPool2D,

Concatenation) and with different activations (ReLu and

sigmoid).

2.3. FPGA design

Our design is based on a library of in-house VHDL

modules, which allow for a modular implementation of

generic DNN architectures.

This modular solution eases the adaptation to different

FPGA platforms with different amounts of resources, as

it allows for trade-offs in the utilization of specific

resources such as BRAMs and DSPs, where the

bottleneck could vary from platform to platform.

Figure 4: Avionics diagram

The communication with the client is handled by an

Ethernet MAC implementation and a system controller.

The system controller continuously monitors the status

of the interface, and manages both the retrieving of

incoming packages and the transmission of outbound

packets. The full application layer is also managed by

the system controller, which translates incoming

commands from clients into specific actions within the

design and generates and transmits the proper response

back. This involves, among others, the control of the

data flow between the DDR and the outside world. It

manages the fragmentation of transmission packets and

the addressing and redirection of reception packets. It

also takes care of the acknowledge mechanism by which

multiple packets can be sent in a burst and an

acknowledge for each of them is expected from the

receiving side, otherwise having to re-transmit the

unacknowledged packets.

2.3.1. DNN implementation

The architecture of the DNN is formed of two parts. The

controller and the processing pipeline. The controller

manages the accesses to memory, the sequence of steps

necessary for the execution and the interface with the

outside world. The processing pipelines contain the

main processing elements, the Processing Units (PU),

which are the elements that effectively execute the

arithmetic operations that constitute each DNN layer.

The architecture is configurable and adaptable to the

available resources as well as to the characteristics of

the DNN, enabling a trade-off between resources,

performance, and power consumption.

Figure 5: Block diagram of the DNN

The control of the DNN is exercised by several Finite

State Machines (FSM). In this way, the system handles

accesses to memory, in order to read parameters and

inputs and to write outputs of each layer. It is also

responsible for activating the PUs required for each

layer, and acts as the interface for controlling and

monitoring the status of the DNN implementation from

the outside.

The controller has a scheduler ROM, whose content is

loaded in the initialization phase with the required

instruction sequence to control the execution of the

inference. This way, the instructions are fetched as

required, traversing the sequence of commands once for

every input image.

The memory distribution made is designed so that there

is no data overlap in memory. Each layer of the DNN

has an allocated memory block in which to store the

output tensors. Subsequent layers may access blocks of

their previous layers, and this process is repeated

sequentially until all layers are traversed.

The DNN parameters have their own allocated memory

block, and are loaded into memory in the initialization

phase. The used memory layout for weights is

CoutCinHW, and CHW for intermediate feature maps,

where C is the channel dimension, W the width, H the

height, and Cin and Cout the input and output channel

dimension of weights. Biases are interleaved with the

weights around the Cout dimension.

The PUs in charge of performing the processing are

composed of the following elements: an Upsampling

block, a MaxPooling block, Convolution blocks and

BRAM memory blocks that act as input caches. A PU

can only perform one type of operation at a time,

although in the case of convolutions it can

simultaneously use multiple blocks on smaller input

images.

Figure 6: Block diagram of the Processing Unit

As convolution requires in general multiple input pixels

per clock cycle, a large number of memory blocks are

needed in the PU. The size required for these memories

is determined by the maximum size of the channels and

can be adjusted depending on the DNN to be

implemented. Similarly the number of PUs determines

the number of channels that can be calculated

simultaneously and can also be adjusted if the DNN to

be implemented is different.

Inside the DNN but external to the PUs there are

multiple DSPs, placed by levels in an invert pyramid,

which add the results of the convolutions and the

corresponding bias until obtaining the result. This value

may then be optionally passed to an activation function

(ReLu or sigmoid). For the Xilinx UltraScale FPGA

family, these DSPs are capable of performing

multiplications of up to 27x18 bits, giving an output of

48 bits.

The internal representation of values in the FPGA is 16

bits fixed point. The number of integer and decimal

positions to be used needs to be calculated using

representative images with the trained model. In order

to limit the precision loss do to the use of fixed point

arithmetic, the whole set of observed values is

inspected. The most significant bit required to represent

the values observed in each layer determines the 16 bits

that are used in the FPGA.

2.4. AI HW validation

2.4.1. NN-VISNAV Validation

The DNN for visual based navigation is implemented in

VHDL which involves transformation in fixed point

arithmetic. During fixed point arithmetic transformation

process the neural network is transformed from 32 bits

floating point to 16 bits fixed point, which can cause

losses in edge detection accuracy. An extensive

evaluation validation of the neural network VHDL

implementation is performed by evaluating the response

at edge level until final results of the absolute

navigation system. The validation of the HW

implementation results is performed with respect to SW

implementation results. The evaluation is performed

using the nominal scenario which involves descent and

landing in Shackleton crater. For validation purposes the

SW results of the neural network are considered to be

the reference.

The Crater Edge Detection neural network provides a

mask of the crater edges that are present in the image

The HW implementation results are evaluated at pixel

level by comparing the edges in both SW and HW

implementations. They are proved to match for 98.6%

of the pixels, which ensures high degree of result

similarity. The crater edges extracted using the HW

neural network implementation are used to run the

Crater Frame Position and the Crater Frame Position in

order to evaluate the overall results of the AI based

Absolute navigation system. The estimated center and

radius of the craters error with respect to SW results

were found to be subpixel.

Table 2.4.1-1

 Center

detection

precision

on x axis

Center

detection

precision

on y axis

Radius

detection

precision

Mean 0.83 0.75 0.29

The number of common matches is an important metric

to be evaluate in order to fully validate the HW

implementation. Similar number of matches are seen

over the entire nominal scenario execution:

Table 2.4.1-2

 SW Matches HW Matches

Mean 171.74 171.41

The following graph illustrate the comparison between

the crater matches of the SW implementation vs HW

implementation. As can be observed the output between

both implementation is very similar.

Figure 7: Number of matched craters validation, SW vs

HW

The output of the Absolute Navigation system based on

the DNN HW implementation is presented in Figure 8.

Figure 8: AI based Absolute Navigation HW results, top

left corner zoomed area

In Figure 8 the red dot represents the crater estimated

center and the blue circle is the size of the crater using

the estimated radius.

2.4.1.1. Crater matching and localization on Moon

surface

The objective of this scenario is to use DNNs to be able

to identify and locate craters in visual images of the

Moon in descent and landing trajectories. This approach

aims to produce a list of detected craters as well as their

location and apparent size using a single DNN. This

may result in an improvement over other approaches

that make use of conventional methods or even other AI

based systems that limit their DNN to predicting a mask

of crater rims. If this approach produces adequate

performance results, it could well substitute many

iterative steps that were conventionally executed on SW

2.4.2. AITAG Validation

Training DNNs requires extensive amounts of images.

Applicable space images are scarce and their labelling is

costly, so for the AITAG scenarios, training will be

done using synthetic images. Available real images will

be used in the validation phase however, so once

finished this activity should provide results on how well

the training on synthetic images ports to real imagery.

Figure 9: Avionics architecture using the Myriad 2

CVAI accelerator

2.4.2.1. DNN inference on AI accelerator

The second approach to executing inference of DNNs

on on-board avionics is the use of specific AI

accelerators. The avionics in this case are formed of the

accelerator component that implements the DNN, and

the OBC which is in charge of configuring the

accelerator, feeding the images, and retrieving the

results.

In the AITAG activity, a demonstrator is being built in

order to test this approach. The selected accelerator is

the UB0100 CubeSat Board from Ubotica. It is based

around the Intel Movidius Myriad 2 Vision Processing

Unit (VPU). They are designed for application to image

processing and NN inference. This VPU is designed for

use in low-power edge applications providing in excess

of 1 TOPs of compute power. This VPUs have also

been characterized for their use in space.

The OBC is implemented on a Xilinx KCU105 board,

which contains a Kintex UltraScale KCU040. This

FPGA is based on the same architecture as the radiation

tolerant XQRKU060. A LEON 5 softcore

microprocessor is implemented on the FPGA fabric and

is the responsible of managing the interface to the

external world, configuring and monitoring the

accelerator, and providing the images as well as

retrieving the results.

2.4.2.2. Specific patches detection on asteroid images

The goal of the second scenario analyzed in the AITAG

project, the asteroid scenario, is to be able to detect

selected visual patches on images of an asteroid. This

scenario is based on the HERA spacecraft of the ESA-

NASA AIDA mission. The spacecraft will measure the

impact and the asteroid deflection on the Didymos

double asteroid made by the DART impactor. It will

enable characterization of the volume and surface

properties with different instruments, including a

camera, done on successive hyperbolic trajectories.

On the first stages of the observation, camera images are

sent to ground, where scientists can decide which

patches of the surface have more scientific interest. The

goal of the scenario is to be able to detect in real time

when one of these patches of interest appears in the

images from the camera. For that purpose a DNN-based

system has been designed and is currently being

developed. This DNN system would enable the

autonomous orientation of the camera towards these

patches, and it would also reduce the required downlink

throughput for camera images, as it would enable to

filter the images based on their content.

A conventional approach to tackle this problem would

require characterizing one or multiple specific features

of the patch, some kind of descriptor, and then detecting

this same features on the query images. The proposed

DNN design relies on a Siamese network to compare

and measure the similarity of the reference patch and

the query image from the camera. Two parallel base

architectures generate a feature map for each the

reference patch and the query image, which acts as a

descriptor. A distance function between descriptors is

used to obtain a similarity metric between them.

The system is trained with a triplet loss function, which

aims to reduce the distance between equivalent patches

and to increase the distance between unrelated patches.

In this way, the system generates a similarity matrix for

each image where a threshold value may be applied to

the maximum similarity values to detect the reference

patch.

3. Conclusions

This paper presented a modern AI based Absolute

Navigation in a HW-SW co-design where the most

computation intensive processing is implemented in a

dedicated FPGA. The performance is boosted by taking

advantage of the characteristic data flow pipelining and

parallelization characteristic of FPGAs. The edge

detection is the best candidate taking into consideration

that large images of 2048x2048 pixels are used to

extract navigation information.

Processing Units are the elements that effectively

execute the arithmetic operations that constitute each

DNN. By adjusting the amount and size of its

components, PUs maximize the flexibility of the design

for future implementations, enabling tradeoffs between

utilization of resources and processing speed. Different

DNNs can be more easily adjusted to fit in different

FPGA platforms and to optimize the utilization of the

resources available.

The DNN from the NN-VISNAV scenario is fully

implemented in VHDL and contains 30 layers. This

involves the utilization of approximately 96% of the

critical component, the BRAMs.

The HW implementation of a DNN offer subpixel errors

on center and radius estimation with respect to the SW

implementation. Also the output of common matches is

similar over the entire nominal scenario execution.

ACKNOWLEDGEMENTS

This research effort was sponsored by the European

Space Agency (ESA) contract number

4000122394/17/NL/Cbi/hh (NN-VISNAV) and

4000130092/20/NL/CRS (AITAG). The views and

conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or

implied, of the European Space Agency.

REFERENCES

[1] M. A. Rodrigálvarez, M. Mammarella, A. M.

Sánchez Montero, Pablo Colmenarejo, 2011,

System Design and Performance Evaluation of

Advanced Optical Terrain Absolute Navigation for

Pinpoint Lunar Landing, 8th International ESA

Conference on Guidance, Navigation & Control

Systems.

[2] M. Mammarella, M. A. Rodrigálvarez, A. M.

Sánchez Montero, Bach Van Pham, Simon Lacroix,

2010, Comparison of Optical Terrain Absolute

Navigation Techniques for Pinpoint Lunar Landing,

IAC-11-A3.2B.7

[3] Sze Vivienne, Chen Yu-Hsin, Yang Tien-Ju, Emer

Joel S., Efficient Processing of Deep Neural

Networks: A Tutorial and Survey, Proceedings of

the IEEE, Vol. 105, Issue: 12, pp. 2295-2329, Dec.

2017

[4] David Gonzalez-Arjona, Lorenzo Cercós Pita,

Adrian Danciu, Marcos Avilés Rodrigálvarez,

Klaus Hornbostel, Marco Mammarella, Imanol

Cruz, Cristian Corneliu Chitu, Exploration

Symposium (A3), Advances in the

Hardware/Software co-design for the Absolute and

Relative Vision Based Navigation systems for the

Lunar Landing Scenario, 66th International

Astronautical Congress 2015

[5] R. Szeliski, S.B. Kang, Recovering 3-D shape and

motion from image streams using non-linear least

squares, Journal Visual Communication and Image

Representation, vol. 5, No.1, pp 10-28, March 1994

[6] Larry H.Matthies, Andrew E.Johnson, Precise

Image-Based Motion Estimation for Autonomous

Small Body Exploration, Proceedings of 5th

International Symposium on Artificial Intelligence,

Robotics and Automation in Space (ESA SP- 440),

pp.627-634, ESTEC, Noordwijk, 1-3 June 1999.

[7] Gupta, P., Loparo, K.A., Mackall, D., Schumann,

J., and Soares, F.R, “Verification and Validation

Methodology of Real-time Adaptive Neural

Networks for Aerospace Applications”, February

2014.

[8] Manning, J., Langerman, D., Ramesh, B., Gretok,

E., Wilson, C., George, A., MacKinnon, J., and

Crum, G, “Machine-Learning Space Applications

on SmallSat Platforms with TensorFlow”,

November 2019.

[9] “Deep Learning Crater Detection for Lunar Terrain

Relative Navigation”, Downes, L., Steiner, T. J.,

and How, J. P, January 2020.

[10] “U-Net: Convolutional Networks for Biomedical

Image Segmentation”, Ronneberger, O., Fischer, P.,

and Brox, T, May 2015.

[11] Planet and Asteroid Natural scene Generation

Utility, University of Dundee, UK,

https://pangu.software/

