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A B S T R A C T

This paper examines the importance of including operational scenarios representing short-term stochasticity
in the long-term capacity expansion models with high shares of variable renewables. As scenario generation
routines often are probabilistic, for example based on sampling, it is crucial that they ensure stable results in
the capacity expansion model, so that it is the underlying uncertainty that decides the optimal solution, and
not the approximation of that uncertainty in the model. However, it is unclear which operational scenario
properties that are important to ensure good results and stability in stochastic models. This paper evaluates
three sampling-based scenario generation routines in a multi-horizon stochastic capacity expansion problem
representing the European electricity system. We compare the use of stochastic versus deterministic modelling
with high shares of variable renewables. Further, we perform in-sample and out-of-sample stability tests on 90
scenario trees for each routine, and we compare the routines’ ability to produce stable system costs and capacity
investments when approximating the optimal value from the real distribution. Results show that stochastic
modelling with more than 80% share of variable renewables leads to more investments in both dispatchable
and variable renewable capacity compared to deterministic modelling, which means that stochastic modelling
should be used with very high shares of variable renewables. The scenario generation routine based on stratified
sampling increases stability with the same number of operational scenarios compared to its alternatives, and
scenario generation routines using stratified sampling should be further explored.
1. Introduction

The European energy roadmap 2050 specifies the level of green-
house gas (GHG) emissions to be 80–95% of 1990 levels by 2050. This
roadmap is aligned with keeping global warming below 2 ◦C. Hence,
the European power system as an important part of the European
energy system [1] will experience high share of variable renewable
energy sources (VRES) to achieve net zero emissions in 2050 [2].
VRES such as wind and solar are not deterministic, meaning it is not
possible to reliably forecast weather condition decades into the future.
The variability and uncertainty of VRES will affect the power system
operation [3], and a high VRES share in the energy mix calls for
the consideration of high temporal resolution [4] and stochasticity of
VRES supply and load when modelling energy systems [5,6]. This study
focuses on short-term stochasticity and the comparison of different
stochastic scenario generation routines, which influence power system
operations and therefore also long-term investments.

To understand the impact of short-term uncertainty related to VRES,
energy system models apply stochastic programming [7] using repre-
sentative scenarios in an approximate scenario tree formulation [8].
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The scenario tree formulation results in a dramatic growth in the com-
putational effort with many discrete scenarios representing realizations
of stochastic processes, and the trade-off between the granularity of a
model and computational effort should be taken into consideration [9].
Planning power system generation and transmission expansion in the
long-term under uncertainty can be done endogenously with two levels
of decisions: long-term strategic investment decisions and short-term
operational decisions [10], where explicit representation of opera-
tional decisions influence and improve the strategic decisions [11],
including the consideration of different climatic scenarios [12]. Al-
though Ludig et al. [13] conclude that considering deterministic short-
term operations with increased temporal resolution seems to stabilize
results, Seljom and Tomasgard [14] and Pineda and Morales [15]
show that a stochastic representation of short-term VRES reveals limi-
tations with deterministic modelling of short-term operations. Ringkjøb
et al. [16] confirm the findings in [14] with a larger case study, and
they recommend using stochastic models for long-term modelling of
vailable online 18 August 2021
306-2619/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.apenergy.2021.117538
Received 9 May 2021; Received in revised form 30 July 2021; Accepted 3 August
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2021

http://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:stian.backe@ntnu.no
https://doi.org/10.1016/j.apenergy.2021.117538
https://doi.org/10.1016/j.apenergy.2021.117538
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2021.117538&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Applied Energy 302 (2021) 117538S. Backe et al.
Abbreviations

EEV Expected result of using the expected
value solution

EV Expected value problem
RAM Random access memory
SD Standard deviation
SGR Scenario generation routine
SP Stochastic problem
VRES Renewable energy sources
VSS Value of stochastic solution

energy system with high shares of VRES. Thus, several capacity ex-
pansion models are considering stochastic VRES, e.g., EMPIRE [17–20],
TIMES [14,16], EMPS [21], and E2M2 [22].

The collection of representative scenarios in stochastic capacity
expansion models, the scenario tree, is generated with a scenario gen-
eration routine (SGR). Most of the SGRs are probabilistic, for example
based on sampling, meaning that they provide a different tree every
time the routine is used, even for the same underlying data. The
difference in optimal solutions and expected total costs for the energy
system model when using different trees from the same SGR with the
same underlying data, reflects the stability of the results. Also, as the
scenario trees are approximations of the real underlying distributions,
the model solution also likely deviates from the true solution of the
true stochastic program. In a well-functioning SGR, increasing the tree
size should lead to convergence towards stable solutions and expected
costs.

SGR stability is evaluated in repeated numerical experiments es-
timating in-sample and out-of-sample stability [23]. The in-sample
stability test evaluates whether the SGR produces similar optimal objec-
tive function values when generating different scenario trees. The SGR
is in-sample stable if different scenario trees of the same size with the
same underlying data result in similar objective function values. The
out-of-sample stability test evaluates whether the first-stage decisions
produced when solving the problem using different trees from the SGR
yield similar optimal objective function values in the ‘true’ problem.
It is commonly hypothesized that if the statistical properties of the
scenario tree and the real world align, stability can be achieved with
smaller trees. Kaut and Wallace [23] claim that practical performance,
instead of theoretical properties, should be considered when evaluating
SGRs, because the usefulness of the SGR depends on the structure of the
model.

In this paper, we present a case study using the multi-horizon
stochastic programming model EMPIRE [17–20] to model capacity
expansion for the European power system from 2020 to 2050 subject to
carbon emission constraints in line with the decarbonization pathway
laid out in [24]. The focus of this paper is not on the resulting tech-
nology mix itself, but rather on the difference between using stochastic
modelling compared to deterministic modelling. Further, we focus on
the difference between results using three sampling-based SGRs with
increasingly high shares of VRES. We perform in-sample and out-of-
sample tests [23], compare the results across the SGRs, and evaluate
which SGR that performs best in our context. We also investigate how
capacity expansion decisions are impacted by the different SGRs, and
how this links to the stability of the SGRs.

The main contributions of this paper are the following:

1. We present the impact of using single deterministic operational
scenarios compared to several stochastic operational scenarios in
a long-term multi-horizon capacity expansion model with high
shares of VRES.

2. We present which SGR that yield most stability in energy system
modelling with VRES.
2

The structure of the paper is as follows: Section 2 presents existing
research related to scenario generation and its application in stochastic
capacity expansion models. Section 3 presents EMPIRE and the details
of the three SGRs, while Section 4 presents the design of our case study.
Section 5 presents and discusses the results from our case study, while
Section 6 concludes the paper.

2. Background

Stochastic optimization methods are applied to study the impact
of uncertainty on decision making, in particular within finance and
energy [25]. Giglio [26] presents an early attempt of designing mod-
els that support capacity expansion decisions for a facility subject to
uncertain demand and facility lifetime. Hennessy [27] study how risk
attitudes and potential rewards impact the optimal capacity choice in
a two-stage problem.

Long-term planning of power systems with high share of VRES
should take into account the stochasticity of different processes in order
to find robust and stable solutions. Caramanis et al. [28] present one
of the first attempts to deal with non-dispatchable generation in long-
term capacity expansion models. Pineda and Morales [15] develop a
stochastic expansion model representing a two-stage electricity market
to consider wind forecasting errors, and they find that endogenous
forecasting uncertainty leads to less VRES compared to no forecasting
uncertainty. As discussed in Section 1, it is recommended to consider
a wide range of possible stochastic scenarios to reflect the uncertain
nature of VRES. Today, we are not able to use such a large tree in
our model due to computational effort, thus SGR’s are designed to
generate stochastic scenarios representative of true tree. A good SGR
produces stable results while also capturing crucial stochastic process
characteristics with minimal computational effort. The design of the
SGR itself often rely on historical observations, statistical properties,
and/or expert’s opinion of stochastic processes. We consider two SGR
categories: statistical-based SGRs and measure-based SGRs.

Statistical-based SGRs construct scenarios given statistical informa-
tion about stochastic processes. Quan et al. [29] use Monte Carlo
simulation [30] based on prediction intervals and empirical distribution
functions to construct VRES scenarios applied in a unit commitment
problem. Ottesen and Tomasgard [31] construct scenarios for schedul-
ing energy flexibility by assuming a certain variation from a forecast
profile. Simulation-based moment methods are statistical-based SGRs
that construct scenarios with known statistical moments of stochastic
processes [32]. Høyland et al. [33] present an SGR constructing multi-
variate scenario trees matching specified moments and correlations for
financial optimization. Jin et al. [34] use the method in [33] in a two-
stage stochastic mixed-integer capacity expansion model to generate
scenarios for demand and gas price. Ponomareva et al. [35] present a
less computationally demanding SGR for financial optimization based
on constructing scenario trees that exactly matches specified mean,
covariance, and third and fourth moments of a random vector. Hochre-
iter and Pflug [36] discuss the potential failure of moment matching
methods to represent the stochastic parameters by demonstrating that
two distributions with the same first four moments can have totally
different shape.

Measure-based SGRs produce discrete samples directly from histori-
cal data rather than assuming statistical properties, and, given sufficient
measurement data, these SGRs therefore can preserve more information
about stochastic processes than statistical-based SGRs. Gil et al. [37]
and de Oliveira et al. [38] use historical hydrological data as the basis
for scenario generation in power generation models, and they further
perform scenario tree reduction [39] to find a subset of scenarios that
best match the statistical properties of the whole tree. Xu et al. [40]
use machine learning in their SGR to generate hydro flow scenarios
based on historical observations, and they further use a Monte Carlo
method for scenario tree reduction. Jin et al. [41] perform scenario
reduction based on historical data to represent long-term uncertainty
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in wind profiles in a capacity expansion model. Park and Baldick
[42] use a Gaussian copula method to generate scenarios based on
historical load and wind data in a capacity expansion problem, and
they use a fast backward method to reduce the scenario tree. Skar et al.
[18] randomly sample historical electricity load and VRES normalized
production profiles in the EMPIRE model, and they further perform a
quality check on the scenario tree to ensure similar mean and variance
as the historical data. Seljom and Tomasgard [14] perform random
sampling of historic data related to VRES availability and electricity
prices in the TIMES model, and they further sample many candidate
scenario trees in [43] and pick the one which best matches the four
first moments of all historical data. Seljom et al. [44] use similar
historical sampling, and they also sample heat demand scenarios that
are simulated using regression models based on temperature data.

The majority of the power and energy system modelling literature
with stochastic programming do not present stability tests as part of
the analyses. To the author’s knowledge, the exception is Seljom and
Tomasgard [14] who use 90 wind scenarios in a stability test with
the TIMES model, and the same authors [45] perform more extensive
in-sample and out-of-sample evaluations and compares stability with
sample average approximation [46]. Although stability tests have been
presented in previous research for similar models, e.g., Seljom and
Tomasgard [14,45], we have not identified any research that use sta-
bility testing to compare different SGRs for the same model. Therefore,
the novelty of this study and our contribution to the literature is to
design and compare different SGRs for the same modelling framework.
The SGRs that we develop and present in this paper can be replicated
and applied in similar models.

In this paper, we evaluate SGR stability in energy system modelling
with high shares of VRES, and we compare the performance of a
statistical-based SGR and a measure-based SGR. In all three SGRs tested
in this paper, representative time series are randomly sampled from his-
torical data. The statistical-based SGR uses stratified sampling, where
historical data are clustered into strata that are sampled from. The
measure-based method uses moment matching, where scenario trees
are produced by approximating moments of all historical data. Note
the difference between the two SGR designs: In the former, statistical
properties are used to modify the sampling itself, while in the latter,
statistical properties are used to select scenario trees after the sampling
is done. The EMPIRE model and the three SGRs tested in this paper are
presented in the following section.

3. Method

This section presents the overarching structure of the EMPIRE model
(Section 3.1), and the details related to the three SGRs that are used and
compared in terms of stability (Section 3.2).

3.1. EMPIRE

The EMPIRE model is used to analyse the transition pathway to-
wards a power system with large shares of VRES. An open version of
EMPIRE can be downloaded from [47].

EMPIRE represents the power system by a network structure of
nodes and arcs. The nodes represent markets, balancing demand and
supply of electricity, and the arcs represent transmission exchange
between these markets. EMPIRE optimizes capacity expansion of power
system assets within nodes and arcs, including generation, storage,
and transmission between markets, towards minimizing discounted
investment costs and expected operational costs. EMPIRE considers
asset lifetime, and initial asset capacity is defined in nodes and arcs.
For further mathematical details on the objective function and the
constraints in EMPIRE, please refer to Skar et al. [18].

EMPIRE considers scenarios for operation and market clearing in
3

a linear two-stage stochastic program [7]: The first-stage decisions
represent long-term investments, and the second-stage decisions rep-
resent operations in short-term time steps within multiple seasons
and scenarios. To enable both multiple long-term periods for invest-
ments and multiple stochastic scenarios for operations while preserving
computational tractability, EMPIRE is a multi-horizon stochastic pro-
gram [48,18]. Because we do not consider long-term uncertainty, the
only condition for using the multi-horizon approach in EMPIRE is
that any realization of short-term uncertainty within one long-term
period does not affect short-term uncertainty in later long-term periods.
Correlations between short-term time steps within the same long-term
period is included. We consider this reasonable as the outcomes of
variables for stochastic wind or solar generation in time periods in 2020
do not influence the same generation in 2030 or 2050.

Fig. 1 illustrates a scenario tree in EMPIRE: a collection of outcomes
over short-term time steps. Each scenario in the scenario tree con-
tains a sequence of realizations of stochastic processes for short-term
time steps. The operational time series are temporally and spatially
correlated for each stochastic process, and cross-correlated across the
stochastic processes. Each scenario consists of two categories of sea-
sons: 𝑆 regular seasons, e.g. winter or summer, and 𝑃 peak seasons,
e.g. high load situations. For each stochastic process, 𝑙reg data points
represent each regular season and 𝑙peak data points represent each peak
season. We refer to different outcomes of the same season as scenarios,
and there are equally many scenarios for all seasons. The season-
scenario structure is the same across all the long-term investment
periods. We assume there is no correlation across seasons and long-term
periods. The collection of time series representing the stochastic pro-
cesses for all seasons, scenarios, and long-term periods is the scenario
tree that is used as input to solve one instance of EMPIRE.

Scenarios contain unique realizations of stochastic processes for
every short-term time step within every long-term period. VRES have
scenario dependent availability in each short-term time step for all
long-term periods. The stochastic scenarios include realizations of the
following six stochastic processes:

• Solar generation,
• Onshore wind generation,
• Offshore wind generation,
• Hydro run-of-river generation,
• Regulated hydro generation,
• Electricity load.

For solar, wind, and hydro run-of-river, the stochastic scenarios
consist of hourly capacity factors that express how much of the installed
capacity is available for electricity production in a specific hour. For
regulated hydro, each stochastic scenario contains seasonal potentials
restricting how much electricity that can be produced in one week,
which reflects different hydro inflows and reservoir levels.

Although the electricity load is a stochastic process in EMPIRE, the
total electricity demand for a region is the same for all scenarios within
each long-term period. Hourly electricity load is therefore shifted in
every scenario such that the electricity demand for a market is the same
for all scenarios in each long-term period, see [20] for details.

3.2. Scenario generation in EMPIRE

3.2.1. Basic SGR
The basic SGR in EMPIRE is probabilistic and sampling-based, and it

starts with gathering historical data for the stochastic processes consid-
ered. Our sampling frame is the historical realizations of the stochastic
processes listed above with hourly resolution from 2015–2019. The
basic SGR is summarized in Fig. 2 and illustrated in Fig. 3.

To preserve autocorrelation in the basic SGR (Fig. 2), the chronol-
ogy of all historical time series is respected. However, we partly break
this correlation by sorting time series to always start a scenario on the
same hour of the week. To preserve cross correlation, the same historic

time periods are used for all stochastic processes and all regions in
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Fig. 1. Illustration of a scenario tree in EMPIRE: a collection of outcomes for short-term time steps uniquely defined as chronological time series by season, scenario, and long-term
investment period.
Fig. 2. Schematics of the basic scenario generation routine algorithm based on random sampling within each season in EMPIRE.
Algorithm Fig. 2. Note that unique scenarios are generated for each

season and investment period in EMPIRE (Fig. 1), in line with the
4

multi-horizon structure of EMPIRE assuming independent stochastic

processes between the long-term periods.
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Fig. 3. Illustration of the three scenario generation routines used in this paper: The basic SGR (top), the strata SGR (middle), and the moment SGR (bottom).
We partition our sampling frame into seasonal sub-populations in
the basic SGR (Fig. 2). Each seasonal sub-population contains data
from the same months for all years, and we sample a random year,
month, and starting hour from each season to ensure that all seasons
are represented in our scenarios. This feature makes the basic SGR
in EMPIRE a stratified sampling method [49]. Note that we assume
seasonal independence.

In addition to four seasons, the basic SGR (Fig. 2) includes two
peak load situations in every scenario. The first peak season adds the
maximum aggregated electricity load situation for all regions for a
randomly sampled year. The second peak season adds the maximum
electricity load situation for a single region in the same year. Note that
the peak seasons contain correlated data for all six stochastic processes,
not just electricity load.

For each scenario, all regular seasons are scaled in the objective
function of EMPIRE to represent a complete year minus the duration
of the two peak seasons. The peak seasons are not scaled and thus
represent 2𝑙peak hours of operation in EMPIRE.

In the following, we present two further developments of the basic
SGR presented in Fig. 2, namely the strata SGR and the moment SGR
(Fig. 3).

3.2.2. Strata SGR
The strata SGR, illustrated in the middle of Fig. 3, improves the

representation of different electricity load realizations in the scenario
tree by defining strata beyond the seasons. All seasonal sub-populations
are further partitioned using 𝑘-means clustering [50] based on ag-
gregated electricity load data. We then make sure that each scenario
tree contains an equal number of scenarios from every cluster within
each season. The strata SGR is an extension of the stratified sampling
introduced in the basic SGR: We randomly sample scenarios for each
season independently while ensuring that at least one scenario from
each cluster is represented in each investment period in the scenario
tree. The number of clusters therefore must be divisible by the number
of scenarios per investment period. For a more detailed explanation of
the strata SGR, see Appendix A.
5

3.2.3. Moment SGR
The moment SGR, illustrated in the bottom of Fig. 3, focuses on

ensuring that electricity load in the scenarios statistically resembles
historical electricity load data. Here, the basic SGR (Fig. 2) is run 𝑇
times producing 𝑇 scenario trees (Fig. 1). The moment SGR selects the
scenario tree among the 𝑇 candidates that has its first four moments
most similar to all historical data. For a more detailed explanation of
the moment SGR, see Appendix B.

4. Case study

To enable large scenario trees in EMPIRE when testing the SGRs
presented in Section 3.2, we use an instance that is less computationally
challenging than in [18–20]. The geographical scope covers Europe as
illustrated in Fig. 4, however, we aggregate data from country nodes to
represent three European regions, North (blue), West (green), and East
(red). The aggregation procedure involves summing country specific
input data for each region.

We consider three investment periods each covering ten years rep-
resenting 2020–2030, 2030–2040, and 2040–2050. The CO2eq. cap is
defined for the power sector in total to be fixed per investment period
to 1110, 770, and 66 Mton CO2eq. per year, respectively, following [24].
The CO2eq. emissions are assumed to be direct emissions from op-
erations only, and they are estimated for each technology according
to [51]. We further assume no CO2eq. emissions from renewable
sources including biomass. EMPIRE allows load shedding at the cost of
EUR 22,000/MWh following [52]. Short-term operations consist of four
regular seasons spanning weeks, each with 168 consecutive hours, and
two peak seasons spanning days, each with 24 consecutive hours. We
consider 16 generator types and two storage types presented in Fig. 4
with costs according to [53] and initial capacity according to [54].
Fuel costs are according to [1], while transmission expansion costs are
according to [18].

As input to the three SGRs, we use hourly historical electricity load
data and hydro power production from the ENTSO-E Transparency
Platform [55] for the years 2015–2019. Hourly solar availability data
for the same years are gathered from simulations based on satellite
data [56]. Hourly wind availability come from [57]. The electricity load
data in the raw scenario trees are scaled in EMPIRE to match future
annual demand projections towards 2050 according to [1]. For solar
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Fig. 4. Technology options in our EMPIRE instances and illustration of the aggregated European regions: North (blue), West (green), and East (Red). Grey countries are not
considered.
and wind, we consider representative countries per region such that
data from Great Britain, France, and Germany is used for the North,
West, and East regions, respectively.

In our case, the ‘true’ problem is out of reach for two reasons: (1) it
relies on data about the long-term future in which the properties of the
stochastic processes are uncertain and (2) it is numerically infeasible
to represent the true underlying distributions as discrete scenarios.
As suggested in [23], we therefore approximate the ‘true’ problem
by solving EMPIRE with a large reference tree containing as many
realizations of the stochastic processes as possible. Our reference tree is
generated using the basic SGR to minimize biases, and it contains 600
scenarios per investment period. With 4+2 seasons, 600 scenarios, and 3
investment periods, the reference tree represents about a quarter of all
possible starting hours from the five years of data. The same reference
tree is used for all SGRs and instances in the out-of-sample tests.

EMPIRE is implemented in Pyomo [58,59], and all SGRs are imple-
mented in Python. For each SGR, we solve 30 × 3 instances of EMPIRE
with different scenario trees containing 10, 50, and 100 scenarios per
investment period. With four regular representative weeks and two
peak days, we have 168 × 4 + 24 × 2 = 720 representative hours per
scenario, which means the whole planning horizon in EMPIRE contains
21,600 h with 10 scenarios, 108,000 h with 50 scenarios, and 216,000 h
with 100 scenarios, and 1, 296, 000 hours for the reference tree with 600
scenarios. The actual number of hours in the 30 year planning horizon
is 263,000 h.

In total, we solve 270 × 2 instances for the in-sample and out-
of-sample test. We assume equal probability for all scenarios within
each scenario tree. For the strata SGR, we consider 𝑘 = 10 clusters
for all scenario trees, such that each strata is represented 3, 15, and 30
times per season with 10, 50, and 100 scenarios per investment period,
respectively. For the moment SGR, we generate 𝑇 = 20 potential trees
for each of the 90 instances and use the scenario tree with the smallest
relative four-moment distance to the whole sampling frame as defined
in (3).
6

Table 1
Objective function values for stochastic and deterministic instances of EMPIRE, as well
as the value of stochastic solution (VSS), for a scenario tree with 200 scenarios.

Problem Objective [bn EUR]

EV 1142
EEV 16,650
SP 1366
VSS 15,264

5. Results

5.1. Value of stochastic solution (VSS)

We evaluate the value of the stochastic solution (VSS) for a scenario
tree with 200 scenarios produced with the basic SGR. The expected
value problem (EV) is solved first, which is done by replacing the 200
scenarios with a single scenario consisting of the mean of all realiza-
tions of the random variables across the 200 scenarios. After solving
the EV, we solve the second stage given the EV’s first stage decisions
in all 200 scenarios, and the mean of the resulting objective function
values is the expected result of using the expected value solution (EEV).
The difference between the EEV and the objective function value of the
stochastic problem (SP) is the VSS.

Results are presented in Table 1. The VSS is an order of magnitude
larger than the SP value. This is because the first stage decisions of the
EV are not able to fully supply electricity demand in all hours of the
200 scenarios, which leads to very costly load shedding.

Fig. 5 illustrates the difference between the EEV and the SP in terms
of installed generation capacity and expected annual generation in the
three investment periods, and Table 2 presents the installed capacity
of each technology in the EEV and the relative difference in the SP.
Technologies without difference in capacity between the EEV and the
SP are not presented in Table 2. The share of VRES grows towards 2050,
driven by assumed cost reductions in line with De Vita et al. [53] and
emission constraints in line with the European Commission [24], and
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Fig. 5. Expected annual production (TWh/yr) and installed capacity (GW) for Europe as a whole for the expected result of using the expected value solution (EEV) and the
recourse problem (SP) for a scenario tree with 200 scenarios.
Table 2
Installed generation capacity for Europe in GW for selected technologies in all investment periods for the
EEV and the relative difference in the SP.

Investment period 2020–2030 2030–2040 2040–2050

Technology EEV SP diff. EEV SP diff. EEV SP diff.

Fossil 420 GW 0% 210 GW +60% 95 GW +149%
Bio 31 GW 0% 17 GW 0% 9 GW +1049%
Hydro (run-of-river) 78 GW 0% 78 GW +13% 85 GW +58%
Wind (offshore) 17 GW 0% 81 GW +65% 280 GW −10%
Wind (onshore) 237 GW −5% 506 GW −28% 629 GW +9%
Solar 112 GW 0% 114 GW +56% 436 GW +43%
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the share of expected production by VRES seems to be the main reason
for the differences between the EEV and the SP.

Between 2020 and 2030, there are similar results for the EEV and
the SP in terms of installed capacity and expected production, and
the share of wind and solar is around 20% of the European mix. The
similarity between the EEV and the SP in 2030 is because the flexibility
from dispatchable generators in the EEV is able to handle load and
VRES variations for the 200 stochastic scenarios for all regular and peak
seasons. The only difference is 5% less onshore wind capacity in the SP
compared to the EEV, which means that the EEV slightly overestimates
the cost-optimal amount of onshore wind capacity compared to the SP.
In 2030, there is 3% less VRES capacity and 3% less expected VRES
roduction in the SP compared to the EEV.

Between 2030 and 2040, the expected share of wind and solar
roduction is around 40% of the European mix, and the installed capac-
ty of dispatchable generators in the EEV is underestimated compared
o the SP, especially capacity by fossil, wind offshore, and solar. As
pposed to all other technologies, the installed capacity of onshore
ind is overestimated by 28% in the EEV compared to the SP, which

s a larger overestimation than the previous period. In total, there is
ess onshore and offshore wind capacity in the SP compared to the EEV
ntil 2040, which is aligned with the findings of Seljom and Tomasgard
14] and Pineda and Morales [15], who present a similar comparison
etween deterministic and stochastic modelling in Danish case studies.
ingkjøb et al. [16] also find that the investments in VRES are higher

n the deterministic than the stochastic versions of the TIMES model
n a European case study. Although there is 2% less VRES capacity in
040 in the SP, our case study shows that there is 2% more expected
RES production in the SP compared to the EEV, which is in contrast
ith [14] and [16]. We find that between 2030 and 2040, there is
igher capacity utilization in the SP compared to the EEV, especially for
olar and offshore wind (Fig. 5), which also leads to 44% less expected
7

urtailment of surplus VRES. c
Between 2040 and 2050, the expected share of wind and solar
roduction is around 70% of the European mix, and the EEV leads to
% (more than 200 TWh/yr) of expected load shedding (blackouts),
hich would be unacceptable in practice. The most significant dif-

erence is over 10 times more dispatchable bio capacity and 149%
ore dispatchable fossil capacity in the SP compared to the EEV,
hich reflects a strong underestimation of the need for dispatchable

apacity in the EEV. More installed capacity of dispatchable generators
n the SP compared to the EEV does not imply significantly more
xpected production (Fig. 5), which means that the capacity factor for
ispatchable generators are significantly reduced in the SP compared to
he EEV. Similar results are shown by Brouwer et al. [60], who suggest
hat future power markets need revised market designs to ensure system
dequacy. Compared to the previous investment period, underestima-
ion of capacity from fossil, bio, run-of-river hydro, and onshore wind
s increased. As opposed to the previous periods, offshore wind, rather
han onshore wind, is overestimated in the EEV compared to the SP,
ut the total onshore and offshore wind capacity is higher in the SP
ompared to the EEV. These findings are in contrast to the findings
f Seljom and Tomasgard [14], Pineda and Morales [15], and Ringkjøb
t al. [16] who find that there is less VRES in the stochastic model
ompared to the deterministic model. The conflicting results from [14]
ould be because of the strict emission constraints after 2040, which
esults in more than 80% expected production by VRES, i.e., wind,
olar, and hydro run-of-river, in our case study. The share of VRES
n [16] is 62% in 2050. As wind power is the most cost-efficient solution
o respect emission constraints in our study (Fig. 5), and because the
mission constraint excludes fossil alternatives, the SP results in 18%
ore installed VRES capacity than the EEV (Table 2). In 2050, there

s 7% more expected production from VRES in the SP compared to the
EV, which also results in 31% higher expected curtailment of surplus
RES in the SP compared to the EEV. Note that our case study does not

onsider utilization of surplus VRES, e.g., green hydrogen production.
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Table 3
Results from in-sample stability test solving 30 instances for each routine and scenario
tree size.

Tree size Routine Mean (𝜇) SD (𝜎) Relative SD (𝜎/𝜇)

10 Basic 1.35E+12 2.11E+10 1.56%
Strata 1.37E+12 2.24E+10 1.63%
Moment 1.35E+12 2.59E+10 1.92%

50 Basic 1.36E+12 1.04E+10 0.76%
Strata 1.39E+12 1.07E+10 0.78%
Moment 1.36E+12 1.10E+10 0.81%

100 Basic 1.36E+12 8.19E+09 0.60%
Strata 1.39E+12 8.68E+09 0.63%
Moment 1.37E+12 7.26E+09 0.53%

There is no capacity expansion of electricity storage in the EV, as
pposed to the SP expanding 25 GW charging/discharging capacity and

19 GWh energy storage capacity. Electricity storage is used for load
shifting to balance supply and demand in the different scenarios in
the SP, while the EV only plans for one realization of load and VRES
availability not resulting in any expansion of load shifting capacity.

There is no transmission expansion in neither the SP nor the EV.
Expected transmission exchange is 9% higher in the EEV compared to
the SP. More utilization of transmission in the EEV is due to a general
lack of generation and storage capacity because capacity expansion is
done with a narrower scope of different load and VRES situations.

Although the SP favours more VRES surplus and less utilization of
cross-border transmission than the EEV, more generation and storage
capacity in the SP compared to the EEV means that the very high cost
of 3% expected load shedding is avoided. Therefore, the SP does not
overestimate the need for generation and storage capacity because the
alternative is very costly.

In short, stochastic modelling of the European power system at
minimized cost and minimized blackouts, compared to deterministic
modelling, comes with the consequences of: more capacity investments
in VRES, storage, and dispatchable generators; more VRES surplus; and
less utilization of cross-border transmission.

5.2. Stability

Figs. 6 and 7 illustrate the stability test results in box plots. Fig. 6
shows the results from 10 scenarios where the in-sample results are
significantly more stable than the out-of-sample results. Fig. 7 shows
the results from 50 and 100 scenarios where the out-of-sample results
have generally more outliers and more expensive instances than the
in-sample results.

Table 3 presents mean and the standard deviation (SD) of the
objective function values from the in-sample stability test. The expected
objective function value increases and the SD decreases with an increas-
ing size of the scenario tree for all methods. The in-sample stability
improvement is larger going from 10 to 50 scenarios than going from
50 to 100 scenarios.

All three methods are relatively in-sample stable with < 2% relative
SD, and the in-sample stability performance is similar for all three
methods for each tree size (see Table 3). The strata SGR has a signifi-
cantly larger expected objective function value compared to the basic
and the moment SGR, which indicates that the strata SGR represents
more expensive situations. Note that we assume that all scenarios have
equal probability in all three SGRs. Especially for the strata SGR, the
scenario probability could in addition be tuned for each strata as certain
electricity load situations are more or less likely to realize compared to
others.

Table 4 presents results from the out-of-sample stability test. Sim-
ilar to the in-sample test, we observe a decrease in the SD with an
increasing size of the scenario tree for all methods. Contrary to the
8

in-sample test, the expected objective function value decreases with
Table 4
Results from out-of-sample stability test solving 30 instances for each routine and
scenario tree size. The reference tree contains 600 scenarios.

Tree size Routine Mean (𝜇) SD (𝜎) Relative SD (𝜎/𝜇)

10 Basic 1.91E+12 4.99E+11 26.16%
Strata 1.58E+12 3.79E+11 23.93%
Moment 1.87E+12 5.56E+11 29.77%

50 Basic 1.41E+12 2.56E+10 1.82%
Strata 1.39E+12 1.88E+10 1.35%
Moment 1.42E+12 5.64E+10 3.98%

100 Basic 1.40E+12 2.59E+10 1.86%
Strata 1.38E+12 2.52E+09 0.18%
Moment 1.39E+12 1.24E+10 0.89%

larger scenario trees, which is because the first stage decisions are
generally performing better in random scenarios when more scenarios
are considered in the optimization. There is a large decrease in the SD
going from 10 to 50 scenarios, and a smaller decrease going from 50 to
100 scenarios.

The out-of-sample test shows a larger difference between the three
methods than the in-sample test. With 10 scenarios, the strata SGR has
a significantly lower expected objective function value compared to the
basic and the moment SGR. The strata SGR also has the lowest expected
objective function value for all tree sizes comparing to the other SGRs,
but the difference is less significant for 50 and 100 scenarios.

The largest difference between the three methods is the out-of-
sample stability with 10 scenarios, where the strata SGR is most stable
(Fig. 6). To study which investment decisions that result in more out-of-
sample stability, Fig. 8 shows a box plot for the installed VRES capacity
with 10 scenarios in 30 instances for each SGR. For investments in
hydro run-of-river, there are small differences between the three SGRs.

Investments in solar and wind capacity are significantly different
between the strata SGR and the other two methods (Fig. 8). For onshore
wind, the basic SGR results in 2%–6% more investments on average
than the strata SGR, while the moment SGR results in 1%–3% more
investments on average. For offshore wind, the contrary is the case after
2030: The basic SGR results in 14%–15% less investments on average
than the strata SGR, while the moment SGR results in 9%–13% less
investments on average. For solar capacity after 2030, the basic and
moment SGR results in 6%–27% and 8%–18% more investments on
average than the strata SGR, respectively. In short, investments in solar
and wind is correlated with stability: less investments in onshore wind
and solar, and more investments in offshore wind, results in more out-
of-sample stability, which means an improved ability for the power
system to adapt to different stochastic scenarios than the ones that are
considered in the optimization.

Fig. 9 shows a box plot for the installed dispatchable thermal
capacity with fossil fuels and biomass. For both dispatchable generator
types, there is less than 1% difference before 2040. After 2040, the
basic and moment SGR result in 8% and 6% more fossil capacity on
average than the strata SGR, respectively. The contrary is true for
bio capacity: the basic and moment SGR result in 17% and 20% less
bio capacity on average than the strata SGR, respectively. The total
installed dispatchable capacity for both bio and fossil after 2040 is
2% and 1% more on average for the basic and moment SGR than for
the strata SGR. Slightly less dispatchable capacity in the strata SGR
compared to the other two methods is linked to thermal bio capacity
and the emission constraints: when a higher share of the dispatchable
capacity does not produce accountable carbon emissions, namely bio
capacity, the installed capacity can be better utilized such that less total
dispatchable capacity is needed in the strata SGR compared to the other

two routines.
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Fig. 6. Box plot of objective function values for 30 instances with 10 scenarios per tree by method and test.

Fig. 7. Box plot of objective function values for 30 instances with 50 and 100 scenarios per tree by method and test.

Fig. 8. Box plot of installed VRES capacity for 30 instances with 10 scenarios per tree by method and investment period.
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Table 5
Computation times to generate scenario trees with the three SGRs with 10, 50, and
100 scenarios.

Routine Pre-processing 10 scenarios 50 scenarios 100 scenarios

Basic – 9 s 81 s 253 s
Strata 347 s 9 s 83 s 255 s
Moment – 161 s 1485 s 4690 s

Table 6
Summary of the problem size, RAM requirement, and solution times for instances with
1, 10, 50, and 100 scenarios.

# of scenarios 1 10 50 100

Constraints (rows) 366,994 3, 663, 559 18, 314, 959 36, 629, 209
Variables (columns) 225,193 2, 246, 953 11, 232, 553 22, 464, 553
Max RAM use 10 Gb 25 Gb 111 Gb 210 Gb
Solution time 9–16 s 228–555 s 1734–3204 s 5007–11, 840 s

5.3. Computational effort

All instances are solved using interior point method (barrier al-
gorithm) [61] without crossover with the Gurobi Solver v9.0.2 [62]
running on a computer cluster with CPU 2× 3.5 GHz Intel Xeon Gold
6144 CPU (8 core) and 384 Gb RAM.

Table 5 presents the computation times to generate scenario trees of
different sizes for the three SGRs. The basic SGR produces one scenario
tree (Fig. 1) in 9 s for 10 scenarios, 81 s for 50 scenarios, and 253 s for
00 scenarios. Recall that 10, 50, or 100 scenarios are generated for
hree investment periods in one scenario tree. The strata SGR produces
cenario trees in the same time as the basic SGR, however, it requires
he stratified filter as an input (Appendix A), which takes 347 s to

produce. Because the sampling frame does not change throughout this
study, the stratified filter only needs to be generated once. The moment
SGR is the most expensive routine in terms of time because it produces
20 candidate trees before selecting the one with the smallest relative
four-moment distance to the whole sampling frame (Appendix B). Thus,
the moment SGR uses 18 times longer to produce one scenario tree
compared to the basic SGR.

Table 6 summarizes the problem size, random access memory
(RAM) requirement, and solution times for instances with 1, 10, 50,
and 100 scenarios. Note that the solution time indicates how long
it takes to find the optimal solution after the operational scenario(s)
have been generated and the linear program is ready to solve. Because
instances differ in terms of their stochastic scenarios, computational
time also differs. On average, instances with scenario trees containing
1 scenario solve in 12 s, 10 scenarios solve in 326 s, 50 scenarios
n 2394 s, and 100 scenarios in 7470 s. These results indicate that
he solution time grows polynomially with the increased number of
onstraints and variables with more stochastic scenarios in line with
he famous findings of Karmarkar [61].
10
The reason for the high RAM requirement presented in Table 6 is
ainly because of large instance sizes with several million constraints

nd variables. Because available computational power is sufficient
or this case study, we have not investigated potential reductions of
aximum RAM requirement for this study.

.4. Discussion

Our results indicate that 10 scenarios are too few to reach out-of-
ample stability with any of the three SGRs. The stability improvement
hen increasing the scenario tree size from 10 to 50 scenarios is signifi-

antly larger than from 50 to 100 scenarios, which indicates diminishing
tability improvement when growing the tree beyond 50 scenarios. This
esult is especially important for larger instances as large scenario trees
ncrease the computational challenge (Table 6).

The strata SGR seems to provide solutions of higher quality and
tability compared to the basic and moment SGR, which indicates
hat ensuring the representation of certain electricity load situations is
referable over the moment matching approach. The strata SGR is also
omputationally cheaper when generating stochastic scenarios than the
oment SGR (Section 5.3). Although the strata SGR performs best in

ur case study, this is not a general conclusion because performance
epends both on the mathematical program and the design of the
GR [23]. Future development of the moment SGR could be to gen-
rate trees that minimize the relative four-moment distance among all
ossible trees rather than within a random subset of trees. Performing
cenario reduction on a large tree produced by such a moment SGR can
e explored.

Ensuring the representation of critical stochastic realizations is
orth exploring further in energy system modelling. For example,

urther work could integrate risk measures from finance in energy
ystem modelling, like conditional value-at-risk [63,64], e.g., Yu and
heng [65]. As the strata SGR performs best in our case study, it is
orth expanding on this method towards other stochastic input data

han electricity load, namely ensuring the representation of certain
RES situations. More specifically, stability could be further improved
y guaranteeing that samples represent a spectrum of high to low
vailability of VRES. This could be done for solar, wind, and hydro
ources separately, or for all VRES combined. Excess or deficient
RES situations could also be added to the basic SGR as additional
eak seasons, since the two current peak seasons only represent peak
lectricity load. Note that because capacity expansion decisions for
RES are endogenous in EMPIRE, ensuring VRES situations must be
one with caution to avoid the model becoming biased towards high
r low availability of VRES. Further development of the SGRs in
MPIRE therefore includes improving scenario probability weights in
he objective function.

Even though an SGR for EMPIRE is tested to produce good stability,
he resulting long-term power system developments are necessarily
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biased towards the input data to the SGRs, to EMPIRE, and to how
the input data is processed to represent the future. We assume that
our historical data input to the SGRs contains all possible realizations
of all the stochastic processes, which is probably wrong. Additionally,
with the long-term horizon, we are not just dealing with uncertainty
related to the stochastic processes themselves, but deeper uncertainty
related to the stationarity of the stochastic processes. Future work in-
clude exploring stationarity change as wide electrification affect future
electricity load profiles and changing weather patterns due to climate
change affect both VRES availability and energy demand, especially
heating buildings in colder climates. Solaun and Cerdá [66] show that
an increasing amount of research is exploring how climate change is
impacting renewable energy potentials, especially focusing on Europe.
Hamududu and Killingtveit [67] find that European hydro power po-
tential could increase by 1.46% in the north and decrease by 1.82%
in the south by 2050. Devis et al. [68] find that wind power output
in Europe could change from −12% to +8% by 2050 with the largest
decrease in the south, while Jerez et al. [69] find that solar power
output in Europe could change from −14% to +2% by 2100 with the
largest decrease in the north. It is unclear how such changes will
impact EMPIRE results, and we leave it up for future work to explore
evolving stationarity for the stochastic processes of electricity loads and
short-term VRES availability.

6. Conclusion

This paper presents the impact of different scenario generation rou-
tines on results of the multi-horizon power system capacity expansion
model EMPIRE. Firstly, we evaluate the value of the multi-horizon
structure compared to a deterministic model with high shares of vari-
able renewable energy sources. Secondly, we present three probabilistic
scenario generation routines based on randomly sampling historical
realizations of cross-correlated stochastic processes, and we evaluate
the stability of the scenario generation routines in a case study.

We conclude that the multi-horizon structure outperforms deter-
ministic modelling when modelling power system capacity expansion
with high shares of variable renewable energy sources. Our results are
in line with results from similar research, namely that deterministic
modelling leads to overestimation of variable renewable energy sources
and underestimation of flexible generators and storage compared to
stochastic modelling. Further, we contrast findings by similar research
when the share of variable renewable energy sources is greater than
80%, where we find that the need for both variable renewable en-
ergy sources and flexible generators and storage are underestimated
with deterministic modelling compared to stochastic modelling. This
has important implications for energy planning, as very high shares
of variable renewable energy sources will potentially require more
capacity than assumed by deterministic models, which will lead to
more renewable energy surplus. Although more computational effort is
needed, stochastic modelling is therefore recommended for long-term
power system capacity expansion planning with high shares of variable
renewable energy sources.

Regarding stability, we conclude that more than 10 scenarios are
needed for out-of-sample stability for all scenario generation routines
in our case study, but that having more than 50 scenarios provides
limited improvement on stability. The most stable scenario genera-
tion routine in our case study is based on stratified sampling and
guarantees the representation of different electricity load situations.
Stratified sampling has high potential for further development and
requires limited computational effort. Note that conclusions regarding
stability are specific to the EMPIRE model and our case study, and
similar stability tests ought to be done for other scenario generation
routines, models, and/or case studies to ensure stable results.
11
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Appendix A. The strata SGR

In the following, we elaborate on the algorithmic details of the
strata SGR that is introduced in Section 3.2.2.

Consider all possible starting hours from the basic SGR presented
in Fig. 2 for every season. For every possible scenario 𝑗 in season
𝑠, we take the 𝑙reg consecutive hours starting on hour ℎreg, and let
the realizations of the aggregated load over all nodes represent the
univariate and uniform distribution 𝑟𝑗,𝑠. Note that the distribution
𝑟𝑗,𝑠 spans 𝑙reg aggregated load realizations within a single scenario,
independent of time of day.

For the distribution 𝑟𝑗,𝑠, we calculate the mean load, 𝜇load
𝑗,𝑠 , over the

𝑙reg hours:

𝜇load
𝑗,𝑠 = 1

𝑙reg

𝑙reg
∑

𝑡=1

∑

𝑛∈
𝑥load
𝑡,𝑛,𝑗,𝑠, 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽 , (1)

where 𝑥load
𝑡,𝑛,𝑗,𝑠 represents the historical electricity load in the 𝑡th hour

f scenario 𝑗, node 𝑛, and season 𝑠. We use 𝜇load
𝑗,𝑠 to identify whether

cenario 𝑗 generally represents a high or low load situation in season
.

Further, for each season 𝑠, we now define the distribution 𝑅𝑠, which
s spanning all historical hourly aggregated electricity loads in the
hole sampling frame. We then calculate the Wasserstein distance [70],
1(𝑟𝑗,𝑠, 𝑅𝑠), between 𝑟𝑗,𝑠 and 𝑅𝑠 defined as:

1(𝑟𝑗,𝑠, 𝑅𝑠) = inf
𝜋∈𝛤 (𝑟𝑗,𝑠 ,𝑅𝑠)∫R×R

|𝑎 − 𝑏|𝑑𝜋(𝑎, 𝑏), 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽 , (2)

here 𝑎 and 𝑏 are load measurements within 𝑟𝑗,𝑠 and 𝑅𝑠, respectively,
nd 𝛤 (𝑟𝑗,𝑠, 𝑅𝑠) is the set of all possible joint probability distributions on
× R whose marginals are 𝑟𝑗,𝑠 and 𝑅𝑠 on the first and second factors,

espectively. Pflug [71] also applies the Wasserstein distance in the
ontext of scenario generation. If 𝑊1(𝑟𝑗,𝑠, 𝑅𝑠) is small, it means that
here is some similarity between the loads in the scenario and the sub-
opulation of the sampling frame representing season 𝑠. If 𝑊1(𝑟𝑗,𝑠, 𝑅𝑠)
s large, the scenario represents a load situation that does not occur
ery often.

With the two measures, 𝜇load
𝑗,𝑠 and 𝑊1(𝑟𝑗,𝑠, 𝑅𝑠), for every possible

cenario 𝑗 in season 𝑠, we apply two-dimensional 𝑘-means clustering

o each seasonal sub-population of the sampling frame. An example of
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Fig. 10. Illustration of 𝑘-means clustering with 10 clusters by aggregated electricity load of all possible scenarios from a season.
he 𝑘-means clustering is illustrated in Fig. 10. The 𝑘-means clustering
roduces 𝑘 clusters for every season 𝑠, where the scenarios within
ne cluster have similar seasonal load mean and similar Wasserstein
istance to 𝑅𝑠. Note that data within a cluster are from different years,
s we assume no correlations between scenarios.

ppendix B. The moment SGR

In the following, we elaborate on the algorithmic details of the
oment SGR that is introduced in Section 3.2.3.

We denote the uniform and univariate distribution 𝜌𝑛,𝑠,𝜏 where the
upport consists of all realizations of electricity loads in node 𝑛, season
, and scenario tree 𝜏. For every node 𝑛, season 𝑠, and candidate

scenario tree 𝜏, we calculate the first four moments of 𝜌𝑛,𝑠,𝜏 : the mean
(𝑚1

𝜏,𝑛,𝑠), the variance (𝑚2
𝜏,𝑛,𝑠), the skewness (𝑚3

𝜏,𝑛,𝑠), and the kurtosis
(𝑚4

𝜏,𝑛,𝑠). Further, we denote the uniform and univariate distribution 𝑃𝑛,𝑠
where the support consists of all realizations of electricity loads in node
𝑛 and season 𝑠 in the whole sampling frame, and let the 𝑖th moment of
𝑃𝑛,𝑠 be defined as 𝑀 𝑖

𝑛,𝑠.
We denote the relative four-moment distance 𝛥𝑀(𝜏) of a candidate

scenario tree 𝜏 as the following:

𝛥𝑀(𝜏) =
∑

𝑛∈

∑

𝑠∈𝑆
𝑤𝑛,𝑠

4
∑

𝑖=1

|𝑚𝑖
𝜏,𝑛,𝑠 −𝑀 𝑖

𝑛,𝑠|

𝑀 𝑖
𝑛,𝑠

, (3)

where the scenario tree independent weight, 𝑤𝑛,𝑠, indicate node 𝑛’s
share of aggregated load for all nodes in season 𝑠, and it is defined
as the following:

𝑤𝑛,𝑠 =
𝑀1

𝑛,𝑠
∑

𝑛′∈ 𝑀1
𝑛′ ,𝑠

,

here 𝑀1
𝑛,𝑠 is the mean of 𝑃𝑛,𝑠 for node 𝑛 and season 𝑠.

We calculate 𝛥𝑀(𝜏) for all 𝑇 candidate scenario trees. The moment
GR selects the scenario tree, 𝜏∗, that has the smallest 𝛥𝑀(𝜏) of all the

𝑇 candidate trees.
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