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Survey on Online Log Parsers 
Tejaswini S, Azra Nasreen

Abstract Technological dependence is growing in leaps and 
bounds as days progress. As a result, software applications are 
required to be up and running at all times without fail. The 
health and safety of these applications need to be monitored 
regularly by the use of constant logging of any faults that occur 
at their runtime executions. Log analysis techniques are 
applied to recorded logs to obtain a better overview of how to 
handle failures and health deterioration. Before these 
algorithms can be utilized in practice, the raw unstructured logs 
need to be converted into structured log events. This process is 
performed by log parsers, which are accessible in two different 
modes – offline and online. While offline log parsers have a pre-
defined knowledge base containing templates and conversion 
rules, online log parsers learn new templates on the job. This 
paper focuses on surveying and creating a comparative study on 
online log parses by analysing the type of technique used, 
efficiency and accuracy of the parser on a given dataset, time 
complexity, and their effectiveness in motivating applications. 

Keywords: Log analysis techniques are applied to recorded 
logs to obtain a better overview of how to handle failures and 
health deterioration. 

I. INTRODUCTION 

In a computing context, logs can be defined as 
pieces of information that provide insight into various 
events that occur throughout the run-time of a computer 
application. Real-time systems generate log files that are 
massive in size that find use in many fields such as 
security[37],[24], health monitoring[15],[13], failure 
handling[31],[25] and anomaly detection[22],[30]. There 
are many open source and freely available frameworks that 
ease the process of logging in applications. For example, 
java  applications  use  a  logging  fac¸ade  like  SLF4J,  
which  bind  with  frameworks  like  Logback,  Log4j  and  
so  on.  Figure  1 shows an example how logging works 
using SLF4J. Figure 2 shows the entries logged in the file 
corresponding to the logging statements. 
 

 
Fig. 1. Log statements using slf4j facade 
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While logging of warnings, errors, debugs, information 
and traces may seem like a trivial task, there are many sur- 
veys[17],[18], that stress the importance of following 
logging practices. Three major aspects – how-to-log, 
where-to-log, and what-to-log are addressed to ensure that 
logging is not dependent purely on human or developer 
expertise[26]. How-to- log outlines “anti-patterns” that are 
undesirable designs to follow while adding logging 
statements in the source code[43]. Some papers [27],[26] 
also emphasize on the characterization and prioritization of 
the maintenance of logging statements. The position of 
logging statements in the feature code determines the 
where-to-log aspect[17]. Logging unnecessary information 
 

 
Fig. 2. Log file entries 

 
can degrade performance and add on as avoidable 

overhead costs. Once the decision to log is made, the 
contents of the log 

– message, parameter, thread information, level, and so 
on – need to be chosen, which constitutes what-to-log[39]. 
Both too much and too little information as well as the 
structure of the log have impact on how it is perceived 
by the user or other mining applications in later stages. 

The generated log files are raw and unformatted that 
need to be converted to a suitable form for any kind of 
analysis to be performed. The process of reshaping 
unstructured entries into structured logs as shown in Figure 
3 is called log parsing. Figure 3 uses an Apache log entry 
taken from the Loghub dataset[44]. 

 
Fig. 3. Example of a parsed Apache Log 

 
A common brute-force way of performing log parsing 

is to use regular expressions[11] to match the template of 
the log. The drawback of using regular expressions is that 
it needs prior knowledge of all possible structures and 
cannot learn new templates without explicit developer 
intervention.  
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Another approach is to use static analysis[6],[5], which 
extracts the structure directly from the source code. More 
recent studies have shown promise in using automated 
log parsers. Some techniques employed are frequent 
pattern mining[1],[7], heuristics[29],[33], iterative 
partitioning[4],[30], clustering[3],[10],[20] and longest 
common subsequence[19],[32]. The obvious advantage of 
using automated log parsers like Drain[29],[33], 
Spell[19],[32], LenMa[23], IPLoM[4] and LogSig[10], is 
that they have the ability to learn templates for logs 
without any intervention. Automated log parsers are 
currently available to operate in two modes, namely online 
and offline. Offline log parsers like LogSig[10], IPLoM[4], 
LogCluster[16] and MoLFI[35], require all logs beforehand 
and process log entries in batches, whereas online log 
parsers like Spell[19],[32], Drain[29],[33], SHISO[12] and 
LenMa[23], can process logs in a streaming manner one 
after the other. This paper surveys existing implementations 
of online log parsers, by taking a deep dive into features 
like technique employed, efficiency and accuracy over a 
given open source dataset, effect of volume on efficiency, 
effect of the output of log parsers on log mining and 
further steps in log analysis pipeline. 

II. IMPLEMENTED METHODOLOGY 

A. Fixed Depth Parsing Tree/ Directed Acyclic Graph 
Approach 

Drain[29] is a type of online log parser that first showed 
a parsing tree with fixed depth approach and improved on 
the same idea in a future paper with a DAG approach, by 
providing a new log parsing method and automating the 
parameter tuning mechanism. 

In the first approach, it constructs a parse tree of fixed 
depth which prevents the tree from being unbalanced and 
lessens the traversals that can occur in very deep trees. It 
proposes a 5-step approach – Pre-processing by Domain 
Knowledge, Search by Log Message Length, Search by 
Preceding Tokens, Search by Token Similarity and Update 
the Parse Tree. In the Pre-processing stage, Drain uses 
regular expressions that are user-provided based on prior 
understanding of the logs domain like Apache, Hadoop, etc. 
These simple regexes are used to filter out frequently used 
variables like IP Addresses and other identification 
variables, and replace them with a generic constant. In the 
second stage, the message length ‘X’ which is equal to the 
number of tokens is calculated, and the tree is traversed 
from the root node to the appropriate 1st layer length node, 
such that all messages of the same length reach the same 
1st layer node. In the third stage, (depth -2) number of 
traversals within the internal nodes occurs, where depth is 
the fixed depth of the parse tree. This stage also ensures 
avoidance of branch explosions by checking if any token 
has digits, which by experience[21] is found to be a 
variable, also called a wildcard. Any token containing digits 
is replaced by a generic “*” and the parsing in further 

stages is based on the “*”. A limit on the number of 
children that a node can have is also placed. By the end of 
this stage, the traversal arrives at the leaf node of the tree. 
In the fourth stage, the leaf nodes contain many log groups 
corresponding to the given length and token. Every log 
group has a log event that could be a possible template for a 
log entry and log IDs of all the previous instances that 
matched it. The similarity between each log event and 

message is calculated by checking if the tokens at the 
same positions match each other. 

Once the biggest similarity value simSeq is found, it is 
compared with a threshold value st, such that simSeq is 
greater than or equal to st. At the end of the fourth stage, 
the algorithm would have either found the closest 
matching log group or find that no match occurs. In the 
fifth stage, if a log group has been matched, the log event 
is updated by comparing the log event and message, token 
by token, and replacing the unmatching token with “*” or 
a wildcard. If no log group has been matched, a new path 
of fixed depth is formed from the root node to a new leaf 
node containing a log group in which the log event is the 
inputted unmatched log message and its ID. Through 
these 5 stages, Drain[29] is able to parse a log in a 
streaming manner. In the updated paper on Drain[33], the 
basic premise of dynamic creation of a directed acyclic 
graph at runtime remains the same from its previous 
version[29]. The methodology followed in the first and 
second stages also remain the same. However, in the third 
stage, now called Token Layer, the token for traversal or 
the split token can be taken as the first token, last token or 
it can remain empty. The deciding factor for choosing 
the token is that it must contain digits. If neither has 
digits, the one that does not have punctuation marks is 
chosen as the split token. If both the first and last token 
cannot satisfy the two previous conditions, the split token 
remains empty. Traversal to the next similarity layer node 
is based on the chosen token or “*” in case it is empty. In 
the fourth stage, now called Similarity Layer, the 
similarity equation is modified to not take into account 
wildcards. 

The updated paper[33] also provides a cache mechanism 
implemented by maintaining a pointer to the most recent 
path followed and comparing the new incoming message 
to that path first and foremost. The major improvements 
proposed occur in the similarity threshold initialization and 
updating. Unlike other online log parsers, namely Spell[19] 
and SHISO[12] which require 1 and 4 parameters 
respectively for fine-tuning the threshold, Drain uses a 
dynamic self-updating threshold. Each log group has its 
own threshold which depends on the message length of 
the log event and the number of tokens in the log event 
that contain digits. Whenever the log event in a log group is 
updated, so is the threshold by taking into account the 
current threshold and the number of tokens in the incoming 
log event that contain digits, while keeping the threshold at 
a minimum value of 1. The significance of this process is 
that the threshold gets bigger every time the number of 
variables increases, thus making it more difficult to match 
to that log group. In case of over-parsing of logs, this 
paper[33] also proposes a way to merge log groups that 
are very similar by comparing their log events. 

B. Longest Common Subsequence 

Spell[19],[32], utilizes Longest Common Subsequence 
algorithm (or LCS) to perform parsing of logs. The 
simple idea behind LCS is that given two strings, the 
substring longest in length that is present in both of the 
given strings is found.  
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Unlike Drain[29],[33], Spell[19],[32], does not require 
any kind of pre-processing or prior domain knowledge to 
begin parsing logs, adhering to the true meaning of being 
an online stream parser. The implementation is also 
relatively simple compared to the tree approach previously 
discussed. 

Every incoming log entry is converted into a sequence of 
tokens, in a manner where each word is considered as a 
token. Each log entry is also assigned a unique identifier, 
which is a simple integer beginning from 0 and incremented 
for every new entry. The parser keeps in its memory an 
LCSMap which contains LCSObjects. LCSObjects contain 
an LCSseq, which is a sequence of tokens corresponding to 
the log message template, and the unique identifier of the 
log entry that matches with the sequence. After 
tokenization, the token sequence is compared with the 
LCSseq of every LCSObject to obtain the length of the 
longest common subsequence of each comparison. The 
largest length l of all comparisons, is then compared to a 
threshold t=—s—/2 where s is the length of the tokenized 
log message. If l ¿= t, it is considered to be matched to that 
template. Compared to the threshold value in 
Drain[29],[33], threshold in Spell[19],[32], is extremely 
intuitive and straightforward. Once the threshold criterion 
is satisfied, the algorithm backtracks to create a new 
template that agrees with both the new accepted sequence 
and the LCSseq. If the threshold criterion is not satisfied, 
then a new LCSObject is initialized with the LCSseq as the 
new log message and its unique identifier. Logan[36] is a 
distributed online log parser, which is also based on the 
Longest Common Subsequence algorithm. While it does 
perform some pre-processing on the data and its most 
salient feature is that it leverages the fact that searching for 
LCS can be performed parallelly. It distributes the sharded 
inputs among multiple independent tasks and collates the 
results of each. 

C. Clustering 

LenMa(Length Matters)[23] is an older online parser 
that is based on clustering algorithm. The basic premise of 
clustering is to create groups of similar log messages and 
compare new log messages with each cluster to see where 
it belongs. 

A rudimentary way to cluster is by using the number of 
words in a log as the parameter. LenMa[23] improvises on 
the same, by parametrizing the length of words in the 
message to decide its cluster belongingness. The 
incoming log is first processed into a vector containing 
lengths of each word and a vector containing individual 
separated words of the log. Similarly, each cluster has its 
own length vector and word vector. Cosine similarity 
between the message vector and every cluster of the same 
vector length is calculated by taking the cosine of the two 
vectors. A positional similarity is also calculated which 
compares the word vectors and returns the number of 
common words. If both the similarities are greater than the 
developer-defined threshold values, the new log is 
accepted into the cluster and the length vector is updated 
with that of the new message, while the word vector is 
updated with “*” wherever a mismatch occurs. Otherwise, a 

new cluster with the length and word vector of the new log 
is created. Like Spell[19],[32], LenMa[23] also does not 
require any kind of pre-processing of the data. However, 
the threshold used in LenMa[23] is of static nature and 

developer-defined, unlike other discussed parsers. 
One of the earliest implementations of online parsers, 

SHISO[12] creates a tree-like structure that can be parsed 
to identify the log format, where the child nodes of each 
parent node can be considered as a cluster. This is done in 
two phases- the search phase and the adjustment phase. 
Starting with the root node as the parent node, the search 
phase looks for a format node in the tree which is similar 
to the tokenized log message using Euclidean distance 
measurement. If none of the measured distance crosses the 
threshold which is a user-chosen value between 0 and 1, 
each child node is considered as the parent node and the 
rest of the tree is parsed. All child nodes of the parent node 
must have the same message length and also have a 
maximum limit on the number of child nodes. Once a node 
passes the set threshold, the adjustment phase begins. This 
phase updates the format of the chosen node by creating 
generic templates by replacing variables with wildcards and 
holding static words in place. To perform the adjustment 
phase, SHISO[12] uses n-grams to find the static and 
variable parts of the message. Compared to other parsers, 
SHISO[12] does not require any explicit pre-processing. 
The threshold is static and requires developer knowledge to 
choose the right value. The parser also suffers from the 
drawback that it can create imbalances in the tree, 
allowing certain parts to grow much deeper than others. 

D. N-gram Dictionaries 

Logram[42] was initially developed as an n-gram 
offline batch parser, but it is shown how it can easily be 
modified into an online parser. N-gram, where ‘N’ is an 
integer greater than 0, is a substring of ‘N’ words derived 
from the log message. For example, consider the sentence 
“It is raining dogs and cats”, which forms five 2-grams – ”It 

is”, “is raining”, ” raining dogs”,” dogs and” and,” and 
cats”. 

Like Drain[29],[33], Logram[42] has a pre-processing 
step where it extracts only the message content by 
removing all additional information like thread name, 
level, time and date. It also tokenizes the extracted 
message. Logram[42] uses a 2-gram and a 3-gram 
dictionary to aid the parsing procedure. On the arrival 
of the first message, the dictionary is empty and thus the 
message is divided into its n-grams that are directly used as 
the dictionary entries along with their number of 
occurrences. As newer messages come in, the n-grams 
are compared with the dictionary, and if the number of 
occurrences for an n-gram is below a threshold, the n-1 
gram is taken into consideration. If this comparison is 
also below the threshold, the n-gram is considered to be a 
dynamic n-gram, which means it contains a variable. The n-
gram entries and the number of occurrences is updated 
with every new message. The threshold is calculated by 
using a smoothing function called loess[50], and a one-
dimensional clustering method called Ckmeans[49], which 
finds a breaking point between groups of static n-grams and 
dynamic n-grams. 
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III. EXPERIMENTAL DATASET AND ANALYSIS 

The availability of log datasets is scarce since they 
contain sensitive information that most companies would 
not like to make public due to issues of security. Zhu et 
al[41] conducted a tools and benchmark study on 13 parsers 
– SLCT[1], AEL[2], IPLoM[4], LKE[3], LFA[7], 
LogSig[10], SHISO[12], LogCluster[16], LenMa[23], 
LogMine[20], Spell[19], Drain[29] and MoLFI[35]. The 
parsers were tested on logs from 16 different sources – 
HDFS, Hadoop, Spark, ZooKeeper, OpenStack, BGL, 
HPC, Thunderbird, Windows, Linux, Mac, Android, 
HealthApp, Apache, OpenSSH, and Proxifier. These range 
from distributed systems, supercomputers, operating 
systems, mobile systems, server applications, and 
standalone software. The study made the whole repository 
of logs data public for open usage in future research, which 
is now called Loghub[44]. It amounts to about 77GB of 
data, with 440 million log entries[41]. The logs have been 
collected from both industrial applications and academic 
implementations. The metrics – efficiency, accuracy, and 
time complexity discussed further in this paper will be 
based on the Loghub[44] dataset unless otherwise 
specified. 

A. Efficiency 

EEfficiency is defined as the time taken by a parser to 
parse a given set of logs in a dataset[41]. 

Drain[33] applies its parsing algorithm on 11 datasets – 
BGL(4m le), HPC(375k le), Thunderbird(2k le), 
HDFS(10m le), Zookeeper(64 le), Hadoop(2k le), Spark(2k 
le), Windows(2k le), Linux(2k le), Apache(2k le) and 

Proxifier(9600 le)[45]. It compares its performance with 3 
offline parsers – LogSig[10], LKE[3], IPLoM[4] and 2 
online parsers- SHISO[12] and Spell[19]. It outperforms 
all the other parsers on every dataset by taking the least 
amount of time, followed by Spell and SHISO in that 
order. The highest improvement of 97.14% is noticed on 
the Thunderbird dataset, while the least improvement of 
37.15% is noticed on the HDFS dataset. The average 
efficiency improvement is 65.54%. Notably, the running 
time of Drain is only 2 min for 4m BGL log messages 
and 7 min for 11m HDFS log messages. 

Spell[32] uses 4 non-loghub datasets – Los Alamos 
HPC(433k le), Blue Gene(4m le), HDFS log(100k le) and 
OpenStack Cloud Log(106k le), and compares its 
performance with IPLoM[4] and Drain[29]. It also tests the 
efficiency on 4 implemen- tations of Spell – na¨ıve, with 

pre-filtering, with split, and with split and merge. On the 
HPC dataset, Spell( with pre-filtering) shows the best 
results with a runtime of 5seconds compared to the 75s by 
that of Spell(na¨ıve). Overall, IPLoM and Drain perform 
slightly better than Spell(with pre-filtering).On the Blue 
Gene dataset, Spell(with pre-filtering) outperforms 
IPLoM. On the HDFS and OpenStack logs, Spell(with pre-
filtering) performs just as efficiently as the other two. 
Implementing Spell parallelly can reduce the run time 
considerably, enabling it to scale with large volumes. 

Logan[36] measures its efficiency on 8 non-loghub 
datasets- Zookeeper(74k le), HPC(433k le), BGL(4.7m le), 
Presto-5.2M (5.2m le), HDFS(11m le), Spark-13M(13m 
le), Presto(16.2m le) and Spark(96.5m le), and compares 
its performance with 

 

Table I Summary of Online Log Parsers 

Parser Technique Scalable 
Time 

Complexity 
Anomaly 
Detectors 

Log Compression 
Parallel 

Implementation 

Drain 
Directed Acyclic 

Graph 
Yes O(n) LogRobust LogReducer,LogZip Possible 

Spell 
Longest Common 

Subsequence 
Yes O(n) Deeplog None Possible 

Logan 
Longest Common 

Subsequence 
Yes O(n) None None Yes 

    Xu et al   

LenMa Clustering No O(c) 
Kimura et al 
Kimura et al 

Tongqing et al 
None N/A 

SHISO Clustering No O(n) None None N/A 

Logram 
N-gram 

Dictionary 
Yes O(n) None None Possible 

 
Drain[33], Spell[19], SHISO[12] and IPLoM[4]. It 

performs the best for all datasets – with or without 
distributing the process. Its performance on the HDFS 
dataset is significantly better as it takes 28.767s 
(distributed) and 53.390(single node), while Drain and 
IPLoM take 559.679s and 379.038s respectively. 

LenMa[23] tests its implementations in comparison with 
SHISO[12] on the Chuvakin[47] dataset, WIDE project 
dataset and academically collected logs dataset. No real 
data on the efficiency is mentioned in the paper. However, 
Zhu et al.[41] performs a comparison of efficiency of 
LenMa on the HDFS, BGL and Android Loghub datasets 
with MoLFI[35], Spell[19], Drain[29], IPLoM[4] and 
AEL[2]. It is observed that LenMa performs only slightly 
worse than Spell and Drain on the HDFS dataset, but as 
the volume and number of templates increases in BGL and 
Android, it performs significantly worse than other online 

parsers. Thus proving it is not the most suitable for 
scaling purposes. 

SHISO[12] collected data from the Chuvakin Public 
Security Log Sharing Site[48] and split the data into two 
datasets. It compares its processing time with IPLoM[4] 
and SLCT[1], where it outperforms both with an average 
of 19.660s compared to 49.733 s and 22.735s respectively. 

Logram[42] compares it efficiency with some of the 
best performing parsers- IPLoM[4], Drain[29], Spell[19], 
AEL[2] and LenMa[23] on 5 datasets of the Loghub[44] 
repository, namely Android, BGL, HDFS, Windows and 
Spark. 
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 It is observed that Logram outperforms all 5 parsers in 
all 5 datasets by a decent margin. Its efficiency was 
observed to be 1.8 to 5.1 times better than others. It also is 
scalable as the efficiency remains steady with increase in 
the volume of logs and templates. 

B. Accuracy 

Accuracy is defined as the number of logs parsed 
correctly to the log template[41]. Drain[33] showed an 
accuracy of 92% on the 11 datasets it parses. Compared to 
SHISO[12] and Spell[19], its accuracy ranked highest in 
every dataset. It attributes such high accuracy to the 
presence of its token and length layer, merging log groups 
in case of over-parsing, and dynamic updates to the 
threshold parameters. Zhu et al.[41] studied the accuracy of 
Drain compared to 12 other online and offline parsers by 
considering the same volume (2000 samples) for each of 
the 16 datasets. Its average accuracy ranked the highest of 
all at 86.5%. It was the best performing parser on the 
Zookeeper, BGL, Thunderbird, Windows, and Apache 
dataset. Its worst performance was on the Proxifier dataset 
at 52.7%. 

Spell[32], the version with slit and merge, showed the 
highest accuracy of 99.94% on the HDFS dataset, greater 
than its comparatives IPLoM and Drain. Its basic version 
showed an accuracy of 98.86% on the OpenStack dataset, 
which was significantly higher than the rest. Zhu et al.[41] 
accuracy comparison ranked Spell at 4th position with an 
average value of 75.1%. It was the best performing parser 
on HDFS and Apache datasets. Its worst performance was 
on the Proxifier dataset at 52.7%. 

Logan[36] does not provide the accuracy metric on the 
dataset it has used. However, it does provide information on 
the number of templates correctly identified by the parser. 
It is observed that Spell[19] and Drain[32] identify more 
templates than Logan in its single or distributed mode. 
LenMa[23] ranked a close 5th position in the Zhu et al.[41] 
study with accuracy 72.1%, only 3% behind Spell. It was 
the best performing parser on the Apache and OpenSSH 
datasets. Its worst performance was on the HealthApp 
dataset at 17.4%. SHISO[12], with an average accuracy of 
66.9%, ranked at 7th position with performing its best on 
the Apache Dataset. Its worst performance was on the HPC 
dataset at 32.5%. 

Logram[42] used a more refined definition of accuracy 
where the message is considered to be correctly parsed if 
the static and variable parts were correctly identified. By 
that definition, Logram showed an average accuracy of 
82.5% on the Loghub[44] dataset, compared to the 74.8% 
of Drain[29] and 66.9% of Spell[19]. It was the best 
performing parser on 6 datasets – Apache, Hadoop, 
HealthApp, Linux, Mac, and OpenSSH. Its worst accuracy 
of 46% was observed on the Linux dataset. 

C. Time Complexity 

The time complexity of Drain[33] was O(n) where n is 
the number of log messages to be parsed. Its linear 
complexity supported it in being one of the fastest parsers. 
Drain also exploited the cache mechanism which allows it 
to further reduce its parsing time. The time complexity of 
the na¨ıve version of Spell[32] was O(m.n2) where m is the 
number of templates currently in the LCSMap and n is the 
length of the new log message. However, other 
implementations like Spell(with pre-filtering) had a time 

complexity of O(n). 
While Logan[36] was implemented as a distributed 

parser, the time complexity of its underlying principle of 
LCS search in the existing templates was O(n) where n is 
the number of templates. The time complexity of 
LenMa[23] was O(c) where c is the number of clusters as 
the algorithm compares with each cluster centroid. The time 
complexity of SHISO[12] was O(n)[45] where n is the 
number of log messages. Logram[42] had a time 
complexity that depended on the construction of the n-gram 
dictionary and the cost of querying the dictionary, which 
were O(n) and O(1) respectively. 

D. Effectiveness in Motivating Applications 

All the discussed online parsers have proved that they 
can parse logs in a streaming fashion, with the ability to 
parse multiple types of log entries. The true test of log 
parsers is how effective they are when used in the log 
analysis and management pipeline[33]. Even if log parsers 
achieve high accuracy and efficiency, the usefulness of 
their outputs may vary highly in applications of anomaly 
detection, usage analysis, failure diagnosis, and 
performance modelling[41]. He et al.[33]analyzed the 
performance of Principal Component Analysis (PCA) based 
anomaly detection algorithm[6] on the parsed outputs of 
Drain, Spell and SHISO were compared on HDFS dataset 
of 575,061 blocks with a total of 29 log event types. The 
parsing accuracies of Drain, Spell, and SHISO were 
99%,87% and 93% respectively. Out of the 16,838 marked 
anomalies, the PCA algorithm correctly detected 63% of 
the cases while using Drain and Spell, and 66% while using 
SHISO. However, 14.6% of the reported anomalies while 
using SHISO were false, which is much higher than 2.5% 
and 2.6% reported while using Spell and Drain 
respectively. Both Drain and Spell proved that their usage 
in log analysis is very effective. 

Anomaly detector LogRobust[40] proposed by Xu et al. 
employed Drain[29] as their log parser. LenMa proposes 
that its parsing method can be used in the anomaly 
detection techniques proposed in [6],[34],[14] and [8]. 
Deeplog[28], a deep learning-based anomaly detector, 
suggests the use of Spell[19] for its log parsing step. Any 
real-time application produces TBs and PBs[9] worth of 
logs, causing companies to invest in the resources for the 
strenuous memory requirements[43]. Thus, the logs are 
compressed to reduce their sizes which gives rise to the 
field of log compression techniques. Popular log 
compressors like LogZip[38] and LogReducer[46] both use 
Drain[29] in their implementation. 

IV. CONCLUSION 

Extensive research is being carried out in the field of log 
parsing tools and their implementations. Parsers are needed 
in many applications to enable and aid the process of log 
analysis and management. With the discussed online 
parsers as seen summarized in Table 1, support for real-
time log analysis has increased manifold.  
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Based on the metrics inspected in this paper, Drain and 
Logram are the front-runners in comparison to others. Drain 
has also been used in log analysis, management, and 
compression techniques. As the field evolves, more 
applications can find direct usage of these parsers instead of 
implementing their own. 
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