
International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

324

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28160610521
DOI:10.35940/ijeat.E2816.0610521
Journal Website: www.ijeat.org

Survey on Online Log Parsers
Tejaswini S, Azra Nasreen

Abstract Technological dependence is growing in leaps and
bounds as days progress. As a result, software applications are
required to be up and running at all times without fail. The
health and safety of these applications need to be monitored
regularly by the use of constant logging of any faults that occur
at their runtime executions. Log analysis techniques are
applied to recorded logs to obtain a better overview of how to
handle failures and health deterioration. Before these
algorithms can be utilized in practice, the raw unstructured logs
need to be converted into structured log events. This process is
performed by log parsers, which are accessible in two different
modes – offline and online. While offline log parsers have a pre-
defined knowledge base containing templates and conversion
rules, online log parsers learn new templates on the job. This
paper focuses on surveying and creating a comparative study on
online log parses by analysing the type of technique used,
efficiency and accuracy of the parser on a given dataset, time
complexity, and their effectiveness in motivating applications.

Keywords: Log analysis techniques are applied to recorded
logs to obtain a better overview of how to handle failures and
health deterioration.

I. INTRODUCTION

In a computing context, logs can be defined as
pieces of information that provide insight into various
events that occur throughout the run-time of a computer
application. Real-time systems generate log files that are
massive in size that find use in many fields such as
security[37],[24], health monitoring[15],[13], failure
handling[31],[25] and anomaly detection[22],[30]. There
are many open source and freely available frameworks that
ease the process of logging in applications. For example,
java applications use a logging fac¸ade like SLF4J,
which bind with frameworks like Logback, Log4j and
so on. Figure 1 shows an example how logging works
using SLF4J. Figure 2 shows the entries logged in the file
corresponding to the logging statements.

Fig. 1. Log statements using slf4j facade

Manuscript received on June 12, 2021.
Revised Manuscript received on June 16, 2021.
Manuscript published on June 30, 2021.
* Correspondence Author

Tejaswini S*, Department of Computer Science and Engineering,
Rashtreeya Vidyalaya College of Engineering, Bangalore (Karnataka),
India.

Azra Nasreen, Assistant Professor, Department of Computer Science
and Engineering, Rashtreeya Vidyalaya College of Engineering, Bangalore
(Karnataka), India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

While logging of warnings, errors, debugs, information
and traces may seem like a trivial task, there are many sur-
veys[17],[18], that stress the importance of following
logging practices. Three major aspects – how-to-log,
where-to-log, and what-to-log are addressed to ensure that
logging is not dependent purely on human or developer
expertise[26]. How-to- log outlines “anti-patterns” that are
undesirable designs to follow while adding logging
statements in the source code[43]. Some papers [27],[26]
also emphasize on the characterization and prioritization of
the maintenance of logging statements. The position of
logging statements in the feature code determines the
where-to-log aspect[17]. Logging unnecessary information

Fig. 2. Log file entries

can degrade performance and add on as avoidable

overhead costs. Once the decision to log is made, the
contents of the log

– message, parameter, thread information, level, and so
on – need to be chosen, which constitutes what-to-log[39].
Both too much and too little information as well as the
structure of the log have impact on how it is perceived
by the user or other mining applications in later stages.

The generated log files are raw and unformatted that
need to be converted to a suitable form for any kind of
analysis to be performed. The process of reshaping
unstructured entries into structured logs as shown in Figure
3 is called log parsing. Figure 3 uses an Apache log entry
taken from the Loghub dataset[44].

Fig. 3. Example of a parsed Apache Log

A common brute-force way of performing log parsing

is to use regular expressions[11] to match the template of
the log. The drawback of using regular expressions is that
it needs prior knowledge of all possible structures and
cannot learn new templates without explicit developer
intervention.

openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E2816.0610521&domain=www.ijeat.org

Survey on Online Log Parsers

325

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28160610521
DOI:10.35940/ijeat.E2816.0610521
Journal Website: www.ijeat.org

Another approach is to use static analysis[6],[5], which
extracts the structure directly from the source code. More
recent studies have shown promise in using automated
log parsers. Some techniques employed are frequent
pattern mining[1],[7], heuristics[29],[33], iterative
partitioning[4],[30], clustering[3],[10],[20] and longest
common subsequence[19],[32]. The obvious advantage of
using automated log parsers like Drain[29],[33],
Spell[19],[32], LenMa[23], IPLoM[4] and LogSig[10], is
that they have the ability to learn templates for logs
without any intervention. Automated log parsers are
currently available to operate in two modes, namely online
and offline. Offline log parsers like LogSig[10], IPLoM[4],
LogCluster[16] and MoLFI[35], require all logs beforehand
and process log entries in batches, whereas online log
parsers like Spell[19],[32], Drain[29],[33], SHISO[12] and
LenMa[23], can process logs in a streaming manner one
after the other. This paper surveys existing implementations
of online log parsers, by taking a deep dive into features
like technique employed, efficiency and accuracy over a
given open source dataset, effect of volume on efficiency,
effect of the output of log parsers on log mining and
further steps in log analysis pipeline.

II. IMPLEMENTED METHODOLOGY

A. Fixed Depth Parsing Tree/ Directed Acyclic Graph
Approach

Drain[29] is a type of online log parser that first showed
a parsing tree with fixed depth approach and improved on
the same idea in a future paper with a DAG approach, by
providing a new log parsing method and automating the
parameter tuning mechanism.

In the first approach, it constructs a parse tree of fixed
depth which prevents the tree from being unbalanced and
lessens the traversals that can occur in very deep trees. It
proposes a 5-step approach – Pre-processing by Domain
Knowledge, Search by Log Message Length, Search by
Preceding Tokens, Search by Token Similarity and Update
the Parse Tree. In the Pre-processing stage, Drain uses
regular expressions that are user-provided based on prior
understanding of the logs domain like Apache, Hadoop, etc.
These simple regexes are used to filter out frequently used
variables like IP Addresses and other identification
variables, and replace them with a generic constant. In the
second stage, the message length ‘X’ which is equal to the
number of tokens is calculated, and the tree is traversed
from the root node to the appropriate 1st layer length node,
such that all messages of the same length reach the same
1st layer node. In the third stage, (depth -2) number of
traversals within the internal nodes occurs, where depth is
the fixed depth of the parse tree. This stage also ensures
avoidance of branch explosions by checking if any token
has digits, which by experience[21] is found to be a
variable, also called a wildcard. Any token containing digits
is replaced by a generic “*” and the parsing in further

stages is based on the “*”. A limit on the number of
children that a node can have is also placed. By the end of
this stage, the traversal arrives at the leaf node of the tree.
In the fourth stage, the leaf nodes contain many log groups
corresponding to the given length and token. Every log
group has a log event that could be a possible template for a
log entry and log IDs of all the previous instances that
matched it. The similarity between each log event and

message is calculated by checking if the tokens at the
same positions match each other.

Once the biggest similarity value simSeq is found, it is
compared with a threshold value st, such that simSeq is
greater than or equal to st. At the end of the fourth stage,
the algorithm would have either found the closest
matching log group or find that no match occurs. In the
fifth stage, if a log group has been matched, the log event
is updated by comparing the log event and message, token
by token, and replacing the unmatching token with “*” or
a wildcard. If no log group has been matched, a new path
of fixed depth is formed from the root node to a new leaf
node containing a log group in which the log event is the
inputted unmatched log message and its ID. Through
these 5 stages, Drain[29] is able to parse a log in a
streaming manner. In the updated paper on Drain[33], the
basic premise of dynamic creation of a directed acyclic
graph at runtime remains the same from its previous
version[29]. The methodology followed in the first and
second stages also remain the same. However, in the third
stage, now called Token Layer, the token for traversal or
the split token can be taken as the first token, last token or
it can remain empty. The deciding factor for choosing
the token is that it must contain digits. If neither has
digits, the one that does not have punctuation marks is
chosen as the split token. If both the first and last token
cannot satisfy the two previous conditions, the split token
remains empty. Traversal to the next similarity layer node
is based on the chosen token or “*” in case it is empty. In
the fourth stage, now called Similarity Layer, the
similarity equation is modified to not take into account
wildcards.

The updated paper[33] also provides a cache mechanism
implemented by maintaining a pointer to the most recent
path followed and comparing the new incoming message
to that path first and foremost. The major improvements
proposed occur in the similarity threshold initialization and
updating. Unlike other online log parsers, namely Spell[19]
and SHISO[12] which require 1 and 4 parameters
respectively for fine-tuning the threshold, Drain uses a
dynamic self-updating threshold. Each log group has its
own threshold which depends on the message length of
the log event and the number of tokens in the log event
that contain digits. Whenever the log event in a log group is
updated, so is the threshold by taking into account the
current threshold and the number of tokens in the incoming
log event that contain digits, while keeping the threshold at
a minimum value of 1. The significance of this process is
that the threshold gets bigger every time the number of
variables increases, thus making it more difficult to match
to that log group. In case of over-parsing of logs, this
paper[33] also proposes a way to merge log groups that
are very similar by comparing their log events.

B. Longest Common Subsequence

Spell[19],[32], utilizes Longest Common Subsequence
algorithm (or LCS) to perform parsing of logs. The
simple idea behind LCS is that given two strings, the
substring longest in length that is present in both of the
given strings is found.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

326

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28160610521
DOI:10.35940/ijeat.E2816.0610521
Journal Website: www.ijeat.org

Unlike Drain[29],[33], Spell[19],[32], does not require
any kind of pre-processing or prior domain knowledge to
begin parsing logs, adhering to the true meaning of being
an online stream parser. The implementation is also
relatively simple compared to the tree approach previously
discussed.

Every incoming log entry is converted into a sequence of
tokens, in a manner where each word is considered as a
token. Each log entry is also assigned a unique identifier,
which is a simple integer beginning from 0 and incremented
for every new entry. The parser keeps in its memory an
LCSMap which contains LCSObjects. LCSObjects contain
an LCSseq, which is a sequence of tokens corresponding to
the log message template, and the unique identifier of the
log entry that matches with the sequence. After
tokenization, the token sequence is compared with the
LCSseq of every LCSObject to obtain the length of the
longest common subsequence of each comparison. The
largest length l of all comparisons, is then compared to a
threshold t=—s—/2 where s is the length of the tokenized
log message. If l ¿= t, it is considered to be matched to that
template. Compared to the threshold value in
Drain[29],[33], threshold in Spell[19],[32], is extremely
intuitive and straightforward. Once the threshold criterion
is satisfied, the algorithm backtracks to create a new
template that agrees with both the new accepted sequence
and the LCSseq. If the threshold criterion is not satisfied,
then a new LCSObject is initialized with the LCSseq as the
new log message and its unique identifier. Logan[36] is a
distributed online log parser, which is also based on the
Longest Common Subsequence algorithm. While it does
perform some pre-processing on the data and its most
salient feature is that it leverages the fact that searching for
LCS can be performed parallelly. It distributes the sharded
inputs among multiple independent tasks and collates the
results of each.

C. Clustering

LenMa(Length Matters)[23] is an older online parser
that is based on clustering algorithm. The basic premise of
clustering is to create groups of similar log messages and
compare new log messages with each cluster to see where
it belongs.

A rudimentary way to cluster is by using the number of
words in a log as the parameter. LenMa[23] improvises on
the same, by parametrizing the length of words in the
message to decide its cluster belongingness. The
incoming log is first processed into a vector containing
lengths of each word and a vector containing individual
separated words of the log. Similarly, each cluster has its
own length vector and word vector. Cosine similarity
between the message vector and every cluster of the same
vector length is calculated by taking the cosine of the two
vectors. A positional similarity is also calculated which
compares the word vectors and returns the number of
common words. If both the similarities are greater than the
developer-defined threshold values, the new log is
accepted into the cluster and the length vector is updated
with that of the new message, while the word vector is
updated with “*” wherever a mismatch occurs. Otherwise, a

new cluster with the length and word vector of the new log
is created. Like Spell[19],[32], LenMa[23] also does not
require any kind of pre-processing of the data. However,
the threshold used in LenMa[23] is of static nature and

developer-defined, unlike other discussed parsers.
One of the earliest implementations of online parsers,

SHISO[12] creates a tree-like structure that can be parsed
to identify the log format, where the child nodes of each
parent node can be considered as a cluster. This is done in
two phases- the search phase and the adjustment phase.
Starting with the root node as the parent node, the search
phase looks for a format node in the tree which is similar
to the tokenized log message using Euclidean distance
measurement. If none of the measured distance crosses the
threshold which is a user-chosen value between 0 and 1,
each child node is considered as the parent node and the
rest of the tree is parsed. All child nodes of the parent node
must have the same message length and also have a
maximum limit on the number of child nodes. Once a node
passes the set threshold, the adjustment phase begins. This
phase updates the format of the chosen node by creating
generic templates by replacing variables with wildcards and
holding static words in place. To perform the adjustment
phase, SHISO[12] uses n-grams to find the static and
variable parts of the message. Compared to other parsers,
SHISO[12] does not require any explicit pre-processing.
The threshold is static and requires developer knowledge to
choose the right value. The parser also suffers from the
drawback that it can create imbalances in the tree,
allowing certain parts to grow much deeper than others.

D. N-gram Dictionaries

Logram[42] was initially developed as an n-gram
offline batch parser, but it is shown how it can easily be
modified into an online parser. N-gram, where ‘N’ is an
integer greater than 0, is a substring of ‘N’ words derived
from the log message. For example, consider the sentence
“It is raining dogs and cats”, which forms five 2-grams – ”It

is”, “is raining”, ” raining dogs”,” dogs and” and,” and
cats”.

Like Drain[29],[33], Logram[42] has a pre-processing
step where it extracts only the message content by
removing all additional information like thread name,
level, time and date. It also tokenizes the extracted
message. Logram[42] uses a 2-gram and a 3-gram
dictionary to aid the parsing procedure. On the arrival
of the first message, the dictionary is empty and thus the
message is divided into its n-grams that are directly used as
the dictionary entries along with their number of
occurrences. As newer messages come in, the n-grams
are compared with the dictionary, and if the number of
occurrences for an n-gram is below a threshold, the n-1
gram is taken into consideration. If this comparison is
also below the threshold, the n-gram is considered to be a
dynamic n-gram, which means it contains a variable. The n-
gram entries and the number of occurrences is updated
with every new message. The threshold is calculated by
using a smoothing function called loess[50], and a one-
dimensional clustering method called Ckmeans[49], which
finds a breaking point between groups of static n-grams and
dynamic n-grams.

openaccess.nl/en/open-publications
http://www.ijeat.org/

Survey on Online Log Parsers

327

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28160610521
DOI:10.35940/ijeat.E2816.0610521
Journal Website: www.ijeat.org

III. EXPERIMENTAL DATASET AND ANALYSIS

The availability of log datasets is scarce since they
contain sensitive information that most companies would
not like to make public due to issues of security. Zhu et
al[41] conducted a tools and benchmark study on 13 parsers
– SLCT[1], AEL[2], IPLoM[4], LKE[3], LFA[7],
LogSig[10], SHISO[12], LogCluster[16], LenMa[23],
LogMine[20], Spell[19], Drain[29] and MoLFI[35]. The
parsers were tested on logs from 16 different sources –
HDFS, Hadoop, Spark, ZooKeeper, OpenStack, BGL,
HPC, Thunderbird, Windows, Linux, Mac, Android,
HealthApp, Apache, OpenSSH, and Proxifier. These range
from distributed systems, supercomputers, operating
systems, mobile systems, server applications, and
standalone software. The study made the whole repository
of logs data public for open usage in future research, which
is now called Loghub[44]. It amounts to about 77GB of
data, with 440 million log entries[41]. The logs have been
collected from both industrial applications and academic
implementations. The metrics – efficiency, accuracy, and
time complexity discussed further in this paper will be
based on the Loghub[44] dataset unless otherwise
specified.

A. Efficiency

EEfficiency is defined as the time taken by a parser to
parse a given set of logs in a dataset[41].

Drain[33] applies its parsing algorithm on 11 datasets –
BGL(4m le), HPC(375k le), Thunderbird(2k le),
HDFS(10m le), Zookeeper(64 le), Hadoop(2k le), Spark(2k
le), Windows(2k le), Linux(2k le), Apache(2k le) and

Proxifier(9600 le)[45]. It compares its performance with 3
offline parsers – LogSig[10], LKE[3], IPLoM[4] and 2
online parsers- SHISO[12] and Spell[19]. It outperforms
all the other parsers on every dataset by taking the least
amount of time, followed by Spell and SHISO in that
order. The highest improvement of 97.14% is noticed on
the Thunderbird dataset, while the least improvement of
37.15% is noticed on the HDFS dataset. The average
efficiency improvement is 65.54%. Notably, the running
time of Drain is only 2 min for 4m BGL log messages
and 7 min for 11m HDFS log messages.

Spell[32] uses 4 non-loghub datasets – Los Alamos
HPC(433k le), Blue Gene(4m le), HDFS log(100k le) and
OpenStack Cloud Log(106k le), and compares its
performance with IPLoM[4] and Drain[29]. It also tests the
efficiency on 4 implemen- tations of Spell – na¨ıve, with

pre-filtering, with split, and with split and merge. On the
HPC dataset, Spell(with pre-filtering) shows the best
results with a runtime of 5seconds compared to the 75s by
that of Spell(na¨ıve). Overall, IPLoM and Drain perform
slightly better than Spell(with pre-filtering).On the Blue
Gene dataset, Spell(with pre-filtering) outperforms
IPLoM. On the HDFS and OpenStack logs, Spell(with pre-
filtering) performs just as efficiently as the other two.
Implementing Spell parallelly can reduce the run time
considerably, enabling it to scale with large volumes.

Logan[36] measures its efficiency on 8 non-loghub
datasets- Zookeeper(74k le), HPC(433k le), BGL(4.7m le),
Presto-5.2M (5.2m le), HDFS(11m le), Spark-13M(13m
le), Presto(16.2m le) and Spark(96.5m le), and compares
its performance with

Table I Summary of Online Log Parsers

Parser Technique Scalable
Time

Complexity
Anomaly
Detectors

Log Compression
Parallel

Implementation

Drain
Directed Acyclic

Graph
Yes O(n) LogRobust LogReducer,LogZip Possible

Spell
Longest Common

Subsequence
Yes O(n) Deeplog None Possible

Logan
Longest Common

Subsequence
Yes O(n) None None Yes

 Xu et al

LenMa Clustering No O(c)
Kimura et al
Kimura et al

Tongqing et al
None N/A

SHISO Clustering No O(n) None None N/A

Logram
N-gram

Dictionary
Yes O(n) None None Possible

Drain[33], Spell[19], SHISO[12] and IPLoM[4]. It

performs the best for all datasets – with or without
distributing the process. Its performance on the HDFS
dataset is significantly better as it takes 28.767s
(distributed) and 53.390(single node), while Drain and
IPLoM take 559.679s and 379.038s respectively.

LenMa[23] tests its implementations in comparison with
SHISO[12] on the Chuvakin[47] dataset, WIDE project
dataset and academically collected logs dataset. No real
data on the efficiency is mentioned in the paper. However,
Zhu et al.[41] performs a comparison of efficiency of
LenMa on the HDFS, BGL and Android Loghub datasets
with MoLFI[35], Spell[19], Drain[29], IPLoM[4] and
AEL[2]. It is observed that LenMa performs only slightly
worse than Spell and Drain on the HDFS dataset, but as
the volume and number of templates increases in BGL and
Android, it performs significantly worse than other online

parsers. Thus proving it is not the most suitable for
scaling purposes.

SHISO[12] collected data from the Chuvakin Public
Security Log Sharing Site[48] and split the data into two
datasets. It compares its processing time with IPLoM[4]
and SLCT[1], where it outperforms both with an average
of 19.660s compared to 49.733 s and 22.735s respectively.

Logram[42] compares it efficiency with some of the
best performing parsers- IPLoM[4], Drain[29], Spell[19],
AEL[2] and LenMa[23] on 5 datasets of the Loghub[44]
repository, namely Android, BGL, HDFS, Windows and
Spark.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

328

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28160610521
DOI:10.35940/ijeat.E2816.0610521
Journal Website: www.ijeat.org

 It is observed that Logram outperforms all 5 parsers in
all 5 datasets by a decent margin. Its efficiency was
observed to be 1.8 to 5.1 times better than others. It also is
scalable as the efficiency remains steady with increase in
the volume of logs and templates.

B. Accuracy

Accuracy is defined as the number of logs parsed
correctly to the log template[41]. Drain[33] showed an
accuracy of 92% on the 11 datasets it parses. Compared to
SHISO[12] and Spell[19], its accuracy ranked highest in
every dataset. It attributes such high accuracy to the
presence of its token and length layer, merging log groups
in case of over-parsing, and dynamic updates to the
threshold parameters. Zhu et al.[41] studied the accuracy of
Drain compared to 12 other online and offline parsers by
considering the same volume (2000 samples) for each of
the 16 datasets. Its average accuracy ranked the highest of
all at 86.5%. It was the best performing parser on the
Zookeeper, BGL, Thunderbird, Windows, and Apache
dataset. Its worst performance was on the Proxifier dataset
at 52.7%.

Spell[32], the version with slit and merge, showed the
highest accuracy of 99.94% on the HDFS dataset, greater
than its comparatives IPLoM and Drain. Its basic version
showed an accuracy of 98.86% on the OpenStack dataset,
which was significantly higher than the rest. Zhu et al.[41]
accuracy comparison ranked Spell at 4th position with an
average value of 75.1%. It was the best performing parser
on HDFS and Apache datasets. Its worst performance was
on the Proxifier dataset at 52.7%.

Logan[36] does not provide the accuracy metric on the
dataset it has used. However, it does provide information on
the number of templates correctly identified by the parser.
It is observed that Spell[19] and Drain[32] identify more
templates than Logan in its single or distributed mode.
LenMa[23] ranked a close 5th position in the Zhu et al.[41]
study with accuracy 72.1%, only 3% behind Spell. It was
the best performing parser on the Apache and OpenSSH
datasets. Its worst performance was on the HealthApp
dataset at 17.4%. SHISO[12], with an average accuracy of
66.9%, ranked at 7th position with performing its best on
the Apache Dataset. Its worst performance was on the HPC
dataset at 32.5%.

Logram[42] used a more refined definition of accuracy
where the message is considered to be correctly parsed if
the static and variable parts were correctly identified. By
that definition, Logram showed an average accuracy of
82.5% on the Loghub[44] dataset, compared to the 74.8%
of Drain[29] and 66.9% of Spell[19]. It was the best
performing parser on 6 datasets – Apache, Hadoop,
HealthApp, Linux, Mac, and OpenSSH. Its worst accuracy
of 46% was observed on the Linux dataset.

C. Time Complexity

The time complexity of Drain[33] was O(n) where n is
the number of log messages to be parsed. Its linear
complexity supported it in being one of the fastest parsers.
Drain also exploited the cache mechanism which allows it
to further reduce its parsing time. The time complexity of
the na¨ıve version of Spell[32] was O(m.n2) where m is the
number of templates currently in the LCSMap and n is the
length of the new log message. However, other
implementations like Spell(with pre-filtering) had a time

complexity of O(n).
While Logan[36] was implemented as a distributed

parser, the time complexity of its underlying principle of
LCS search in the existing templates was O(n) where n is
the number of templates. The time complexity of
LenMa[23] was O(c) where c is the number of clusters as
the algorithm compares with each cluster centroid. The time
complexity of SHISO[12] was O(n)[45] where n is the
number of log messages. Logram[42] had a time
complexity that depended on the construction of the n-gram
dictionary and the cost of querying the dictionary, which
were O(n) and O(1) respectively.

D. Effectiveness in Motivating Applications

All the discussed online parsers have proved that they
can parse logs in a streaming fashion, with the ability to
parse multiple types of log entries. The true test of log
parsers is how effective they are when used in the log
analysis and management pipeline[33]. Even if log parsers
achieve high accuracy and efficiency, the usefulness of
their outputs may vary highly in applications of anomaly
detection, usage analysis, failure diagnosis, and
performance modelling[41]. He et al.[33]analyzed the
performance of Principal Component Analysis (PCA) based
anomaly detection algorithm[6] on the parsed outputs of
Drain, Spell and SHISO were compared on HDFS dataset
of 575,061 blocks with a total of 29 log event types. The
parsing accuracies of Drain, Spell, and SHISO were
99%,87% and 93% respectively. Out of the 16,838 marked
anomalies, the PCA algorithm correctly detected 63% of
the cases while using Drain and Spell, and 66% while using
SHISO. However, 14.6% of the reported anomalies while
using SHISO were false, which is much higher than 2.5%
and 2.6% reported while using Spell and Drain
respectively. Both Drain and Spell proved that their usage
in log analysis is very effective.

Anomaly detector LogRobust[40] proposed by Xu et al.
employed Drain[29] as their log parser. LenMa proposes
that its parsing method can be used in the anomaly
detection techniques proposed in [6],[34],[14] and [8].
Deeplog[28], a deep learning-based anomaly detector,
suggests the use of Spell[19] for its log parsing step. Any
real-time application produces TBs and PBs[9] worth of
logs, causing companies to invest in the resources for the
strenuous memory requirements[43]. Thus, the logs are
compressed to reduce their sizes which gives rise to the
field of log compression techniques. Popular log
compressors like LogZip[38] and LogReducer[46] both use
Drain[29] in their implementation.

IV. CONCLUSION

Extensive research is being carried out in the field of log
parsing tools and their implementations. Parsers are needed
in many applications to enable and aid the process of log
analysis and management. With the discussed online
parsers as seen summarized in Table 1, support for real-
time log analysis has increased manifold.

openaccess.nl/en/open-publications
http://www.ijeat.org/

Survey on Online Log Parsers

329

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28160610521
DOI:10.35940/ijeat.E2816.0610521
Journal Website: www.ijeat.org

{ }{ }
{ }

Based on the metrics inspected in this paper, Drain and
Logram are the front-runners in comparison to others. Drain
has also been used in log analysis, management, and
compression techniques. As the field evolves, more
applications can find direct usage of these parsers instead of
implementing their own.

REFERENCES

1. Risto Vaarandi. “A data clustering algorithm for mining patterns from

event logs”. In: Proceedings of the 3rd IEEE Workshop on IP
Operations & Management (IPOM 2003)(IEEE Cat. No. 03EX764).
Ieee. 2003, pp. 119–126.

2. Zhen Ming Jiang et al. “Abstracting execution logs to execution
events for enterprise applications (short paper)”. In: 2008 The
Eighth International Conference on Quality Software. IEEE. 2008,
pp. 181–186.

3. Qiang Fu et al. “Execution anomaly detection in distributed systems

through unstructured log analysis”. In: 2009 ninth IEEE international
conference on data mining. IEEE. 2009, pp. 149–158.

4. Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E
Milios. “Clustering event logs using iterative partitioning”. In:

Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. 2009, pp. 1255–1264.

5. Meiyappan Nagappan, Kesheng Wu, and Mladen A Vouk. “Efficiently
extracting operational profiles from execution logs using suffix arrays”.

In: 2009 20th International Symposium on Software Reliability
Engineering. IEEE. 2009, pp. 41–50.

6. Wei Xu et al. “Detecting large-scale system problems by mining
console logs”. In: Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. 2009, pp. 117–132.

7. Meiyappan Nagappan and Mladen A Vouk. “Abstracting log lines to

log event types for mining software system logs”. In: 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR 2010).
IEEE. 2010, pp. 114–117.

8. Tongqing Qiu et al. “What happened in my network: mining
network events from router syslogs”. In: Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement. 2010, pp.
472–484.

9. Dionysios Logothetis et al. “In-situ MapReduce for log processing”.
In: USENIX ATC. Vol. 11. 2011, p. 115.

10. Liang Tang, Tao Li, and Chang-Shing Perng. “LogSig: Generating
system events from raw textual logs”. In: Proceedings of the 20th
ACM international conference on Information and knowledge
management. 2011, pp. 785–794.

11. David Lang. “Using sec”. In: ; login:: the magazine of USENIX &
SAGE 38.6 (2013), pp. 38–43.

12. Masayoshi Mizutani. “Incremental mining of system log format”.
In: 2013 IEEE International Conference on Services Computing.
IEEE. 2013, pp. 595–602.

13. Michael Chow et al. “The mystery machine: End-to-end
performance analysis of large-scale internet services”. In: 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). 2014, pp. 217–231.

14. Tatsuaki Kimura et al. “Spatio-temporal factorization of log data for
understanding network events”. In: IEEE INFOCOM 2014-IEEE
Conference on Computer Communications. IEEE. 2014, pp. 610–

618.
15. Rui Ding et al. “Log2: A cost-aware logging mechanism for

performance diagnosis”. In: 2015 USENIX Annual Technical
Conference (USENIX ATC 15). 2015, pp. 139–150.

16. Risto Vaarandi and Mauno Pihelgas. “Logcluster-a data clustering and
pattern mining algorithm for event logs”. In: 2015 11th International
conference on network and service management (CNSM). IEEE.
2015, pp. 1–7.

17. Jieming Zhu et al. “Learning to log: Helping developers make
informed logging decisions”. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. Vol. 1. IEEE.
2015, pp. 415–425.

18. Monika Dávideková and Michal Gregu Ml. “Software Application
Logging: Aspects to Consider by Implementing Knowledge
Management”. In: 2016 2nd International Conference on Open and
Big Data (OBD). IEEE. 2016, pp. 102– 107.

19. Min Du and Feifei Li. “Spell: Streaming parsing of system event
logs”. In: 2016 IEEE 16th International Conference on Data Mining
(ICDM). IEEE. 2016, pp. 859–864.

20. Hossein Hamooni et al. “Logmine: Fast pattern recognition for log
analytics”. In: Proceedings of the 25th ACM International on

Conference on Information and Knowledge Management. 2016, pp.
1573–1582.

21. Pinjia He et al. “An evaluation study on log parsing and its use
in log mining”. In: 2016 46th annual IEEE/IFIP international
conference on dependable systems and networks (DSN). IEEE.
2016, pp. 654–661.

22. Shilin He et al. “Experience report: System log analysis for
anomaly detection”. In: 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE). IEEE. 2016, pp. 207–

218.
23. Keiichi Shima. “Length matters: Clustering system log messages using

length of words”. In: arXiv preprint arXiv:1611.03213 (2016).
24. Lei Zeng et al. “Computer operating system logging and security

issues: a survey”. In: Security and Communication Networks 9.17
(2016), pp. 4804–4821.

25. De-Qing Zou, Hao Qin, and Hai Jin. “Uilog: Improving log-
based fault diagnosis by log analysis”. In: Journal of computer
science and technology 31.5 (2016), pp. 1038–1052.

26. Boyuan Chen and Zhen Ming Jiang. “Characterizing and detecting
anti-patterns in the logging code”. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE.
2017, pp. 71–81.

27. Boyuan Chen and Zhen Ming Jack Jiang. “Characterizing logging
practices in Java-based open source software projects–a replication
study in Apache Software Foundation”. In: Empirical Software
Engineering 22.1 (2017), pp. 330–374.

28. Min Du et al. “Deeplog: Anomaly detection and diagnosis from
system logs through deep learning”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security. 2017, pp. 1285–1298.

29. Pinjia He et al. “Drain: An online log parsing approach with fixed
depth tree”. In: 2017 IEEE International Conference on Web Services
(ICWS). IEEE. 2017, pp. 33–40.

30. Pinjia He et al. “Towards automated log parsing for large-scale log
data analysis”. In: IEEE Transactions on Dependable and Secure
Computing 15.6 (2017), pp. 931–944.

31. Anwesha Das et al. “Desh: deep learning for system health
prediction of lead times to failure in hpc”. In: Proceedings of the
27th International Symposium on High-Performance Parallel and
Distributed Computing. 2018, pp. 40–51.

32. Min Du and Feifei Li. “Spell: Online streaming parsing of large
unstructured system logs”. In: IEEE Transactions on Knowledge and
Data Engineering 31.11 (2018), pp. 2213–2227.

33. Pinjia He et al. “A directed acyclic graph approach to online log
parsing”. In: arXiv preprint arXiv:1806.04356 (2018).

34. Tatsuaki Kimura et al. “Proactive failure detection learning
generation patterns of large-scale network logs”. In: IEICE
Transactions on Communications (2018).

35. Salma Messaoudi et al. “A search-based approach for accurate
identification of log message formats”. In: 2018 IEEE/ACM 26th
International Conference on Program Comprehension (ICPC).
IEEE. 2018, pp. 167–16710.

36. Amey Agrawal, Rohit Karlupia, and Rajat Gupta. “Logan: A
distributed online log parser”. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE. 2019, pp. 1946–

1951.
37. Lingfeng Bao et al. “Statistical log differencing”. In: 2019 34th

IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE. 2019, pp. 851–862.

38. Jinyang Liu et al. “Logzip: Extracting hidden structures via
iterative clustering for log compression”. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering
(ASE). IEEE. 2019, pp. 863–873.

39. Zhongxin Liu et al. “Which variables should i log?” In: IEEE
Transactions on Software Engineering (2019).

40. Xu Zhang et al. “Robust log-based anomaly detection on unstable log
data”. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2019, pp. 807–817.

41. Jieming Zhu et al. “Tools and benchmarks for automated log parsing”.
In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE.
2019, pp. 121–130.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

330

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28160610521
DOI:10.35940/ijeat.E2816.0610521
Journal Website: www.ijeat.org

42. Hetong Dai et al. “Logram: Efficient log parsing using n-gram
dictionaries”. In: IEEE Transactions on Software Engineering (2020).

43. Shilin He et al. “A Survey on Automated Log Analysis for Reliability
Engineering”. In: arXiv preprint arXiv:2009.0723 (2020).

44. Shilin He et al. “Loghub: a large collection of system log datasets
towards automated log analytics”. In: arXiv preprint
arXiv:2008.06448 (2020).

45. Diana El-Masri et al. “A systematic literature review on
automated log abstraction techniques”. In: Information and
Software Technology 122 (2020), p. 106276.

46. Junyu Wei et al. “On the Feasibility of Parser-based Log Compression
in Large-Scale Cloud Systems”. In: 19th USENIX Conference on File
and Storage Technologies (FAST 21). 2021, pp. 249–262.

47. A. Chuvakin. Public Security Log Sharing Site. URL: http://log-
sharing.dreamhosters.com/ (visited on 06/2016).

48. A. Chuvakin. Public Security Log Sharing Site. URL: http://log-
sharing.dreamhosters.com/ (visited on 2009).

49. Ckmeans.1d.dp function — r documentation. URL: https:%20
//www. rdocumentation. org/ packages/ Ckmeans. 1d. dp/
%20versions/3.4.0-1/topics/Ckmeans.1d.dp (visited on 01/02/2020).

50. loess function — r documentation. URL:
https://www.%20rdocumentation.org/ packages/ stats/ versions/ 3.6.
1/topics/ %20loess (visited on 01/02/2020).

AUTHORS PROFILE

Tejaswini S, is currently a final year undergraduate
student in the Computer Science and Engineering
department at Rashtreeya Vidyalaya College of
Engineering, Bangalore, Karnataka, India. Her
research interests include vision and speech
perception, multi-agent systems, and knowledge
mining. She has actively taken part in many
consultancy and R&D funded projects. Notably,

her recent works have focused on projects related to autonomous vehicles
and emotion recognition through speech.

Dr. Azra Nasreen, is currently an Assistant
Professor in the Computer Science and
Engineering department at Rashtreeya Vidyalaya
College of Engineering, Bangalore, Karnataka,
India. She has 15+ years of teaching experience.
Her research areas include video analytics, and
high-performance computing. She has co-authored
multiple papers published in various international
journals. She has also presented papers in

international conferences. She has also guided many consultancy and R&D
funded projects.

openaccess.nl/en/open-publications
http://www.ijeat.org/
http://log-sharing.dreamhosters.com/
http://log-sharing.dreamhosters.com/
http://log-sharing.dreamhosters.com/
http://log-sharing.dreamhosters.com/
http://www/

