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Abstract
Researchers have recently started to study how the emo-

tional speech heard by young infants can affect their devel-
opmental outcomes. As a part of this research, hundreds of
hours of daylong recordings from preterm infants’ audio en-
vironments were collected from two hospitals in Finland and
Estonia in the context of so-called APPLE study. In order to an-
alyze the emotional content of speech in such a massive dataset,
an automatic speech emotion recognition (SER) system is re-
quired. However, there are no emotion labels or existing in-
domain SER systems to be used for this purpose. In this paper,
we introduce this initially unannotated large-scale real-world
audio dataset and describe the development of a functional SER
system for the Finnish subset of the data. We explore the ef-
fectiveness of alternative state-of-the-art techniques to deploy a
SER system to a new domain, comparing cross-corpus gener-
alization, WGAN-based domain adaptation, and active learning
in the task. As a result, we show that the best-performing mod-
els are able to achieve a classification performance of 73.4%
unweighted average recall (UAR) and 73.2% UAR for a binary
classification for valence and arousal, respectively. The results
also show that active learning achieves the most consistent per-
formance compared to the two alternatives.
Index Terms: speech emotion recognition, speech analysis,
real-world audio, daylong audio, LENA recorder

1. Introduction
In speech emotion recognition (SER), the task is to recognize
emotional states of speakers from speech signals [1, 2]. One
potential application of SER is the study of babies’ auditory en-
vironments, where the early emotional experiences of babies,
including affective speech, can impact their later cognitive de-
velopment. In order to study this relationship, Auditory environ-
ment by Parents of Preterm infant; Language development and
Eye-movements (APPLE) study has collected a large audio cor-
pus of child-centered daylong audio recordings from neonatal
intensive care units (NICUs), recorded in Turku University Hos-
pital, Finland, and Tallinn Children’s Hospital, Estonia [3]. In
order to analyze the emotional contents of speech in the record-
ings, a functional SER system for this new domain is required.

The purpose of the present study is to develop such a system
to analyze these (initially unannotated) hospital-environment
audio recordings for their emotional speech content. The ab-
sence of in-domain annotations and massive scale of the data
raises the question of how to most effectively deploy a SER
system for this real-world large-scale dataset.

In principle, cross-corpus generalization (CCG) is the most
straightforward strategy to deploy SER for an unlabeled dataset,

but can suffer from domain mismatch. In fact, [4] have shown
through extensive multi-corpus and multilingual experiments
that reliable CCG-based SER was only feasible with certain
corpora and emotional classes, highlighting many issues with
cross-domain SER model generalization to out-of-domain data
(but see also, e.g., [5] for a potential remedy). In order to tackle
the issue of domain mismatch, different domain adaptation
(DA) methods have been utilized in SER. For instance, Deng
et al. [6] extended an unsupervised deep denoising autoen-
coder (AE) by combining it with a supervised learning objective
to create a semi-supervised DA method for SER. Another ap-
proach in [7] used an unsupervised deep neural network (DNN)-
based adversarial DA approach for SER. The method learns a
domain-invariant feature representation between labeled source
data and unlabeled target-domain data while maintaining a good
performance on the primary SER task. A number of other DA
methods for SER have been proposed as well (e.g., [8–10]).

Active learning (AL) is another strategy and has been suc-
cessfully applied to SER as well. Zhao and Ma [11] presented
an iterative AL algorithm, which utilizes conditional random
fields, to determine the level of uncertainty for each unlabeled
sample. The most uncertain samples were then selected for
human annotation. Another study [12] examined different AL
methods based on uncertainty and diversity maximization in a
simulation setup with DNN classifiers. The work showed that
the tested AL methods outperformed random sampling-based
methods with a constrained labeling budget.

Only a few SER studies have been conducted on large-scale
datasets. Jia et al. [13] studied DNN-based SER with a massive
7-million-utterance internet voice corpus. They pretrained their
novel DNN-based models with 90,000 unlabeled utterances,
and fine-tuned and evaluated them on 3,000 randomly selected
manually annotated utterances from the same dataset. Fan et al.
[14] presented a SER dataset with a total duration of over 200
hours. They proposed a novel SER model containing pyramid
convolutions which outperformed other models that were tested
on the dataset. Additionally, they showed that existing mod-
els are prone to overfit to small-scale datasets, which limits the
ability of these models to generalize for real-life data.

However, CCG, AL, and DA have rarely been compared
to each other directly. Moreover, most of the existing work has
been conducted using studio, telephone, or internet speech data.
Therefore, our present daylong audio dataset from a hospital
context, together with its practical significance, provides an ex-
cellent test bench to compare strategies for SER system devel-
opment in a novel domain with challenging real-world speech
data. More specifically, by using the Finnish subset of the data,
we compare CCG and state-of-the-art DA and AL in the task to
study their feasibility and SER performance in practice.



2. Methods
2.1. Medoid-based active learning

Zhao et al. [15] presented an AL method called medoid-based
active learning (MAL) to effectively utilize a small number of
annotations, which serves as the foundation of the AL method
used in our experiments. The algorithm can be divided into
three subsequent parts: 1) obtaining a distance matrix that con-
tains the pairwise distances between all samples in the dataset,
2) performing k-medoids clustering using the distance matrix,
and 3) starting from the largest cluster, querying human anno-
tations for the medoids in a descending cluster size order.

The distance metric used in the present experiments was
selected based on pilot experiments with MAL using existing
SER datasets. A 600-dimensional utterance-level log-mel fea-
ture representation (see Section 4.1) was first used as the initial
feature representation of each sample in a dataset. These fea-
tures were then compressed into a 32-dimensional latent repre-
sentation using a DNN-based AE with six layers. Pearson dis-
tances dP [16] between the bottleneck features were then used
to define the affinity matrix A across all the samples. Next,
k-medoids clustering was applied to the data. First, one sample
was randomly selected as the member of a set S, followed by an
addition of k − 1 more samples as centroids using the farthest-
first traversal algorithm. Here, the distance from a sample, a,
to the set S was defined as

dP (a, S) = min
b∈S

dP (a, b) . (1)

The samples in S were then used as the initial medoids for a
k-medoids clustering algorithm (see e.g. [17] for an overview)
to assign each sample in the dataset into one of the clusters.

In the final stage, the clusters were sorted in a descending
order based on the number of samples in each cluster, and their
medoids were presented to human annotators for labeling. In
the experiments, we studied the use of these labels in two dif-
ferent ways: i) assigning each sample in a cluster with the an-
notated medoid label (as in [15]; here referred to as “cluster la-
bels”), or ii) only using the medoid samples as labeled data for
classifier training, which was not studied in the original MAL
paper [15]. Based on pilot experiments on other datasets, k was
set to N

3
, where N is the number of samples in a corpus.

2.2. Wasserstein distance-based domain adaptation

The present DA approach was based on the Wasserstein
distance-based domain adaptation (WDA) method proposed in
[18]. In WDA, a neural network (NN) classifier, aka the source
model M , is adapted to a target corpus, DT , by using la-
beled data from source domain corpus/corpora, DS . The source
model M consists of two parts, a feature extractor, FS , and a la-
bel classifier, CL. The adaptation process of WDA involves two
stages, which are demonstrated in Fig. 1.

The first stage (Fig. 1, top) consists of training M using
samples XS and their labels YS from DS to obtain a trained
FS . This is done using binary cross-entropy [18] as the loss:

LM (x,y) = −
∑

(x,y)∈(XS ,YS)

yT log10(CL(F (x))). (2)

In the second stage (Fig. 1, bottom), FS is adapted to DT

to obtain an adapted feature extractor, FT , by minimizing the
Wasserstein-1 distance Wd between the distributions of DS and
DT using an adversarial training process. Following a WGAN
framework [19], FS is adapted into FT by finding a common

Step 1CL
FS

YS
XS

Predicted
label

Step 2
CDFT

XT

XS
Predicted
domain

Figure 1: The two-step the adaptation process of WDA. First,
FS and CL are trained to classify source corpus samples into
emotion categories. In the second step, FS is adapted into FT

using a domain discriminator CD with an adversarial loss.

feature representation for DS and DT by iteratively minimizing
the two losses:

LCD (x,z) =
∑

x∈XS

CD(FS(x))−
∑

z∈XT

CD(FT (z)) (3)

LFT (x,y,z) =
∑

z∈XT

CD(FT (z)) + LM (x,y) , (4)

where CD is the domain discriminator and XT are the target
corpus samples. The parameters for CD and FT are updated in
turns, where Eqs. 3 and 4 are the loss functions for updating the
parameters of CD and FT , respectively. The output features of
FT are the input features for CD . Additionally, the parameters
of FS serve as the initial parameters of FT . As pointed out in
[18], the minimization of Eqs. 3 and 4 is shown to minimize
Wd between the distributions of DS and DT . For a detailed
formulation of the WDA algorithm, see Algorithm 1 in [18].

2.3. Cross-corpus generalization

As our baseline approach, we use CCG with different source
corpora and their combinations. Labels of each corpus are first
mapped to a common emotion category space, followed by a
standard supervised classifier training (see Section 4.2).

3. Data
3.1. NICU-A

The FinEst NICU Audioset (NICU-A) was collected in the AP-
PLE study, and is the primary audio material for which our SER
system was aimed to be deployed on. We use the Finnish subset
of the dataset, which was recorded at the NICU of Turku Uni-
versity Hospital using LENA-recorders (https://www.lena.org/)
placed at the bedside of preterm babies (average age approx. 33
gestational weeks) in intensive care. The data consists of 43 x
16-hour recordings from different participating families (a total
of 688 h of audio). The recordings were carried out in relatively
calm single family rooms of the NICU, where only the baby,
visiting parents (primary talkers), and, occasionally, nurses and
doctors carrying out healthcare routines were present.

Broad-class diarization of LENA software [20] was used
to split each 16-h recording into utterance-sized segments, and
to assign a speaker tag (male, female, key child, other child)
to the utterances. Based on the validity study reported for the
same data in [21], adult speech from “male/female adult” “near”
and “far” -categories were included in the analyses to capture
caregiver speech (but see [22] for general guidelines with LENA
“far” data). Utterances shorter than 600 ms were discarded from
further analysis. This resulted in a total of 129,007 utterances
with an average length of 1.57 s (approx. 56 h of speech).

Eight families were carefully selected as the test data and
35 as the training data based on the representativeness of both
data sets in terms of covariates such as child health, parental
presence etc. After pre-processing the data of NICU-A, both
the training and test sets were partially annotated.



For the training data, samples were selected for annotation
using MAL, as described in Section 4.2.1. Two annotators per-
formed labeling for distinct subsets of the data, except for the
first 200 samples that were annotated by both to measure inter-
rater agreement rates. Each sample was annotated in two di-
mensions: in terms of binary arousal (high/low) and in terms
of ternary valence (negative, neutral, positive). The two dimen-
sions were annotated in a random order for each sample. A
sample could also be labeled as erroneous, if the samples were
corrupted by noise, had overlapping speakers, had very short
speech fragments, or did not contain speech at all.

For the test data, gold standard (GS) annotations were ob-
tained from three speech/clinical experts for a randomly se-
lected subset of samples from the test set. All GS samples
were independently annotated for their arousal and valence by
all three annotators, followed by majority voting of labels. Sam-
ples without majority labels were removed from the test set. GS
annotators had access to 10 s of the preceding audio context of
each sample to better understand the communicative context.

After removing the erroneous files, the training and test sets
had 5198 and 345 labeled samples, respectively. Training data
inter-annotator agreement rates in terms of kappa scores were
0.78 for valence and 0.64 for arousal. For the GS data, the
kappa scores were 0.48 for valence and 0.28 for arousal. The
difference between the training and testing agreement rates is
explained due to the use of MAL in the selection of the training
samples, where the first 200 samples annotated by both anno-
tators were also the most acoustically distinct samples in the
training data. The finding also demonstrates the inherent diffi-
culty in annotating a random sample of real-world speech for
emotional content.

The ‘neutral’ and ‘negative’ classes for valence were
merged for NICU-A, bearing in mind that the APPLE study was
primarily interested in the proportion of positive valence over
other speech. As a result, training sample counts were 1509 for
positive and 3689 for neutral valence, and 3165 and 2033 for
high and low arousal, respectively. The corresponding test set
counts were 120 (positive) and 225 (neutral) for valence, and 89
(high) and 256 (low) for arousal.

3.2. Other corpora for CCG and DA experiments

In addition to NICU-A, four existing SER corpora (referred to
as source corpora) were used in the CCG and DA experiments:

The Berlin Emotional Speech Database (EMO-DB) [23] is
a widely used corpus and consists of 535 spoken utterances in
German from 10 professional actors with seven emotional la-
bels: anger, boredom, disgust, fear, joy, neutral, and sadness.

eNTERFACE [24] is an audiovisual database consisting of
1287 video samples in English from 42 test subjects from 14
nationalities in six categories: anger, disgust, fear, joy, sadness,
and surprise. Only the audio tracks were used in this study.

The Finnish Emotional Speech Corpus (FESC) [25] con-
sists of nine professional actors portraying emotions of five dif-
ferent categories: neutral, sadness, joy, anger, and tenderness.
These portrayals were split into 4254 utterances based on long
silences as defined by an energy threshold [26].

The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [27] is a multimodal database including
a total of 7356 recordings from 24 professional actors, out of
which 1440 speech-only recordings were used in the present
study. Eight different emotional labels were included: neutral,
calm, happy, sad, angry, fearful, surprise, and disgust.

4. Experimental setup
4.1. Features

Log-mel, GeMAPS, and eGeMAPS [28] features were used in
the CCG and AL experiments. For the DA experiments, only
log-mel features were used due to their superior performance in
pilot experiments. For the log-mel features, 40 mel filters were
used with a Hann window using a 30-ms window size and 10-
ms shifts. To get constant-dimensional utterance feature repre-
sentations, seven functionals (the first four moments, min, max,
and range) were taken from the time series of the log-mel fea-
tures. In addition, four functionals (the first four moments) were
applied to first and second order delta features. This resulted in
a 600-dimensional feature vector for the log-mel features. The
62- and 88-dimensional GeMAPS and eGeMAPS features were
extracted using the openSMILE toolkit [29]. The features for
each corpus were z-score normalized at the corpus level.

4.2. Conducted experiments

For the source corpora, the emotional labels were mapped into
the quarters of the valence-arousal plane following [4], with the
exception of merging ‘neutral’ and ’negative’ valence to ‘neu-
tral’ in order to better correspond to the labels of NICU-A. The
emotional mapping of [4] has been used in multiple SER stud-
ies (e.g. [8, 10, 30, 31]). All classification tests were conducted
on the NICU-A GS data. We use the unweighted average recall
(UAR %) as the primary evaluation measure.

4.2.1. Active Learning Experiments

In the AL experiments, MAL was performed for the full unla-
beled training set of NICU-A (101,813 samples). To compress
the log-mel features of the training set into a latent representa-
tion, an AE network was used. The training and validation data
for the AE were based on a random split of the training set using
a ratio of 80:20 utterances. The encoder of the AE consisted of
three fully-connected (FC) ELU [32] layers of 512, 512, and 32
units, and the decoder of two 512-unit ELU layers and a linear
reconstruction layer. The first two AE layers had a dropout of
0.1. The model was trained using MSE loss, Adam [33] opti-
mizer (lr = 10−4), batch size of 1024, and early stopping with
a patience of 300. The best model according to the validation
loss was then used to compress the data to 32 dimensions. Then,
MAL was performed for each of the 35 training set families sep-
arately and the data were sent for annotation (Section 3.1).

The annotated samples were then used for training a sup-
port vector machine (SVM) with an RBF kernel. Each sample
was weighted inversely proportional to its class frequency to
counter class distribution imbalances. Optimal SVM hyperpa-
rameters were selected for each feature type and both classifica-
tion tasks individually based on a grid search using 5-fold cross-
validation over the training data. Then, the SVM was trained on
the full training data using these hyperparameters and tested on
the GS data. The process was performed separately for the la-
beled training set of 5,198 samples and for the extended training
set of 33,979 samples using the cluster labels from MAL.

4.2.2. Cross-corpus Generalization Experiments

For the CCG experiments, two settings were explored: 1-to-1
and 4-to-1 CCG. In the 1-to-1 setting, each of the source corpora
was used individually as the training set. In the 4-to-1 setting,
all four source corpora were used for SVM training with similar
specifications as with the AL experiments.



Table 1: UAR (%) performance scores for alternative ap-
proaches on the target data. For AL and CCG, log-mel (log-
m), GeMAPS (Ge), and eGeMAPS (eGe) features are compared.
For DA, the unsupervised (US) and semi-supervised (S-S) vari-
ant of WDA is compared. The highest accuracies are bolded.

 

 

 

 

 

 

 

 

 
 
 

CCG 

Training corpus log-m Ge eGe log-m Ge eGe 

EMO-DB 48.5 53.8 53.4 64.1 63.7 62.7 

eNTERFACE 56.8 52.7 50.2 63.1 64.3 64.1 

FESC 45.3 57.3 54.9 56.3 68.3 70.8 

RAVDESS 50.4 53.8 53.3 64.3 62.0 58.7 

All source corpora 42.9 54.9 56.8 61.3 64.4 65.5 

 
 
 

DA 

Source corpus US S-S US S-S 

EMO-DB 49.7 51.3 71.0 73.2 

eNTERFACE 57.0 58.0 67.2 68.6 

FESC 46.9 47.4 61.5 63.1 

RAVDESS 57.1 57.7 66.5 68.4 

All source corpora 53.2 53.5 71.0 71.3 

Experiment UAR (%) 

 
 

AL 

 Valence Arousal 

Cluster labels log-m Ge eGe log-m Ge eGe 

No 70.9 71.0 71.9 68.5 69.3 65.8 

Yes 68.2 73.4 72.9 67.0 68.9 67.6 

4.2.3. Domain Adaptation Experiments

For the DA-based experiments, 1-to-1 and 4-to-1 adaptation
conditions were examined with the same source corpora as in
CCG. All DA experiments were conducted separately for va-
lence and arousal. In the 1-to-1 settings, each source corpus was
randomly split into a training and test set in a ratio of 85:15. For
the 4-to-1 setting, the training and test sets were the combina-
tion of the respective corpus-specific splits. For the first stage
of the adaptation process, the training set of each source corpus
was used to train M by using the Adam optimizer (lr = 10−4),
early stopping with a patience of 100 based on test set accu-
racy, and batch size of 256. The log-mel features were used as
the input features for F , consisting of three FC layers of 512,
512, and 256 units, each followed by batch normalization. The
first two layers had LReLU [34] nonlinearities and a dropout
of 0.4. CL was an NN consisting of three FC layers of 256,
256, and 2 units. The first two layers had LReLU nonlinearities
and a dropout of 0.3. The last layer was followed by a softmax
function. For each variant of the source data, a separate M was
trained for both valence and arousal.

For the second stage of the adaptation process, the full un-
labeled data from the source corpus/corpora and the unlabeled
training samples of NICU-A were used for training. Following
[18], the unsupervised variant of WDA was trained until the first
term in Eq. 4 was saturated. For the semi-supervised variant,
the labeled training set of NICU-A was used to determine the
model accuracy after each epoch, and the model with the high-
est accuracy was selected for testing. This set was also used to
find optimal hyperparameters. CD consisted of four FC layers
of 512, 512, 256, and 1 units. The first three layers were fol-
lowed by ReLU nonlinearities. The parameters of CD and FT

were updated with the RMSProp [35] and Adam optimizers, re-
spectively. In the 1-to-1 settings, lr = 5 · 10−5 was used, except
with FESC for valence and with RAVDESS for arousal, where
lr = 7 · 10−5. For the 4-to-1 settings, lr = 7 · 10−5 was used for
valence and lr = 6 · 10−5 for arousal. The performance of the
adapted model was then tested on the GS data.

All the DA and AL parameters were based on extensive pi-
loting with leave-one-corpus-out simulations using the source
corpora, and before any NICU-A data had been labeled.
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Figure 2: Normalized confusion matrices for valence (left)
and arousal (right) using the best models. Valence = SVM +
GeMAPS + cluster labels from MAL (73.4% UAR). Arousal =
NN + WDA using EMO-DB as the source corpus (73.2% UAR).

5. Results
The main results are presented in Table 1. They show that AL
(top rows) is the most consistent performer across the studied
conditions, even though somewhat better arousal results are ob-
tained by particular configurations of CCG and DA. The best
DA-based model adaptation achieves 73.2% UAR on arousal,
outperforming all other methods by a clear margin. However,
adaptation from other corpora does not always work that well.
In addition, CCG and DA have problems with valence classi-
fication on data from the new domain. The DA results (Table
1, bottom) are on average higher than the results of CCG, even
though the WDA method does not provide a major improvement
over CCG on valence. The semi-supervised variant of WDA is
also consistently better than the unsupervised variant. The com-
parison of using either cluster or medoid labels for AL provides
somewhat mixed results, depending on the exact condition.

In terms of features, the GeMAPS and eGeMAPS fea-
ture sets outperformed the log-mel features on valence with
CCG. For CCG and arousal, the best-performing features var-
ied largely between different training corpora, and the match-
ing Finnish language FESC is a substantially better source for
NICU-A than the others, reaching 70.8% UAR with eGeMAPS
features. In the AL experiments (Table 1, top), the eGeMAPS
and GeMAPS features achieved the best mean classification ac-
curacy for valence and arousal, respectively.

The confusion matrices for the best-performing models
(Fig. 2) indicate that these models do not systematically favor
one label over the other when performing predictions.

6. Conclusions
In the present paper, we developed a SER system for large-
scale analysis of emotional content of speech in initially unan-
notated real-life child-centered audio recordings from a NICU.
CCG, AL, and DA were compared as alternatives for deploy-
ing a SER system for this novel dataset from scratch. Our re-
sults show that WGAN-based DA outperformed the baseline
CCG approach, verifying its usefulness in the absence of any
data labels. However, with a very moderate human labeling re-
source available, k-medoids based AL was superior compared
to CCG and DA in valence classification and relatively competi-
tive for arousal as well. However, when classifying arousal, DA
resulted in slightly better results than AL. Overall, the results
demonstrate that the earlier proposed MAL [15] and WDA [18]
methods are also applicable to practical SER scenarios. The
results also show that emotion analysis for LENA-based day-
long audio recordings is possible with an accuracy comparable
to those reported in earlier literature (e.g., 58.1% for valence
and 66.8% for arousal across the multi-corpus tests in [31]).
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[31] Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsuper-
vised learning in cross-corpus acoustic emotion recognition,” in
2011 IEEE Workshop on Automatic Speech Recognition Under-
standing, 2011, pp. 523–528.

[32] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Ac-
curate Deep Network Learning by Exponential Linear Units
(ELUs),” in 4th International Conference on Learning Represen-
tations, 2016.

[33] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Op-
timization,” in 3rd International Conference on Learning Repre-
sentations, 2015.

[34] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” in Proc. ICML, 2013.

[35] T. Tieleman and G. Hinton, “Lecture 6.5—RMSProp: Divide the
gradient by a running average of its recent magnitude,” COURS-
ERA: Neural Networks for Machine Learning, 2012.


