

GO!DIGITAL NEXT GENERATION

A review of the ChIA Project

Accessing and Analysing Cultural Images with New Technologies

Amelie Dorn¹, Yalemisew Abgaz², Gerda Koch³ Renato Rocha Souza¹ & Japesh Methuku²

¹ACDH-CH ÖAW, ²Dublin City University, ³Europeana Local - Österreich

AUSTRIAN ACADEMY C

GO!DIGITAL NEXT GENERATION

Project details

Funded in 2018 by the go!digital Next Generation call of the Austrian Academy of Sciences Project duration: 24 months

Involved expertise

Digital Humanities, AI & NLP (ACDH-CH OeAW, AT) Semantic technologies (Dublin City University, IE) Cultural Image aggregation (Europeana Local - Österreich, AT)

GO!DIGITAL NEXT GENERATION

Project team

PI: Amelie Dorn (ÖAW)

Advisory board

PI: Yalemisew Abgaz (IE)

Gerda Koch F (Europeana) (

Renato Rocha Souza (ÖAW)

za Japesh Methuku (IE)

with Ramiro Ortiz

(UAVV)

- Artificial Intelligence: Ulla Kruhse-Lehtonen (Dain Studios) -FI
- Infrastructures and GLAM: Luca Pezzatti (E-RIHS) IT
- Knowledge Design / DH: Jeffrey Schnapp US
- Semantic Technologies: Anna Fensel (STI) AT

Former Project members:

José Luis Preza Díaz (ÖAW)

GO!DIGITAL NEXT GENERATION

Expertise

PI: Amelie Dorn (ÖAW) DH, Cultural analysis PI: Yalemisew Abgaz (IE) Semantic technologies

Renato Rocha Souza Japesh Methuku (ÖAW) (IE)

Image aggregation Cultural Heritage

Gerda Koch

(Europeana)

AI, NLP, Machine learning

Advisory board

- Artificial Intelligence: Ulla Kruhse-Lehtonen (Dain Studios) -FI
- Infrastructures and GLAM: Luca Pezzatti (E-RIHS) IT
- Knowledge Design / DH: Jeffrey Schnapp US
- Semantic Technologies: Anna Fensel (STI) AT

- engage and test new technologies (Semantic/ AI) against a background of a selected dataset of food images
- enhance access and analysis possibilities for cultural data \bullet

Image: Abraham van Beyeren, 1655, Mauritshuis. (CC-BY-PD)

Image: Abraham van Beyeren, 1655, Mauritshuis. (CC-BY-PD)

Title: Banquet Still Life

ACDH-CH - AUSTRIAN CENTRE FOR DIGITAL HUMANITIES AND CULTURAL HER

7

Image: Balthasar van der Ast, 1620, Mauritshuis. (CC-BY-PD) ACDH-CH - AUSTRIAN CENTRE FOR DIGITAL HUMANITIES AND CULTURAL HE

Image: Balthasar van der Ast, 1620, Mauritshuis. (CC-BY-PD)

Title: Fruit Still Life with Shells and Tulip

Research Context

The major research questions

- How can we explicitly and semantically represent and interlink the rich information contained in historical food images?
- How can we support efficient search, analysis and exploit historical images by both humans and machines?
- What AI tools are available and how can we build AI tools for the exploitation of historical images?

Image: Banquet Still Life (Adriaen Van Utrecht); CC-By-PD

GO!DIGITAL NEXT GENERATION

Europeana data set

Total: 58.6 Mio digital objects *Includes:* 34.2 Mio digital images

from: 3.500 institutions in 42 countries

Netherlands	 United Kingdom 	Sweden	Germany	France
Italy	 Norway 	 Belgium 	Spain	Den mark
 Austria 	Czech Republic	 Hungary 	Finland	Poland
Europe	Greece	Estonia	Lithuania	Slovenia
Portugal	Switzerland	Ireland	Croatia	Latvia
Romania	= Malta	Bulgaria	 Slovakia 	Cyprus
Israel	Serbia	Iceland	 Ukraine 	Turkey
Russia	 Macedonia 	Moldova	Montenegro	Georgia
Bosnia and Herzegov	ia 🛚 Luxembourg	Albania		

AUSTRIAN ACADEMY OF SCIENCES GO!DIGITAL NEXT GENERATION The ChIA dataset

- Selection based on food context of images
- 42.969 images (available with Free Access licenses); ~20.000 images dealing with "food" selected in form of various sets (baskets) for later download & analysis of metadata and images

THOAMA STRANGE GO!DIGITAL GO!DIGITAL MEXT GENERATION Methods & Tools

- Semantic Technologies
- Chatbot Technology
- Knowledge Maps/Graphs
- Visual Search

13

GO!DIGITAL NEXT GENERATION

The case of building an experimental dataset

- Bridging the gap between the information packed in the images and the explicit annotation of the content of the images using ontologies.
- Interactions between the team members to understand the problem and to work towards the solution

Image: CC-BY-4.0 Yalemisew Abgaz in Abgaz, Dorn, Koch & Preza Diaz. (2020).

- the ChIA system
- A search and exploration system for Europeana datasets
 - \rightarrow experimentation with alternative modes of navigation \rightarrow approach to objects within networks of relations
- Reports on advantages/challenges of the application of current and next technologies on the example of Europeana data

ÖA

AUSTRIAN

Results: the ChIA platform

The ChIA intermediate infrastructure...

- ...was set up as one-stop shop for access&download of Europeana images and supports download of digital images&metadata in one process including a <u>checking routine</u> on data availability and data access rights
- ...provides for researchers the possibility to easily generate out of the wealth of (open access)
 Europeana digital content customized test data sets for further analysis with CV/CNN/AI tools.

Results: Computer Vision

Pilot-test on selected images (n=15) of different commercial (Google Vision, Clarifai, IBM Watson, Microsoft Services) and open-source (YOLO) Computer Vision (CV) tools for cultural food image analysis. 3 image categories: photographs, drawings, sketches

- Not only quantity, but also quality of generated CV concepts seems important for successfully enriching cultural food images.
- Some types of images (e.g. sketches) particularly challenging to process for CV solutions.

Source: Preza Diaz et al. 2020

Image classification

Assessing the (human) <u>inter-annotator</u> <u>agreement</u>

	++				+
Task_1	Amelie	Gerda	Marcos	Renato	Yalemisew
Amelie Gerda Marcos Renato Yalemisew	1.000/(392) 0.928/(392) 0.892/(392) 0.907/(392) 0.886/(391)	0.928/(392) 1.000/(392) 0.892/(392) 0.938/(392) 0.896/(391)	0.892/(392) 0.892/(392) 1.000/(392) 0.923/(392) 0.923/(391)	0.907/(392) 0.938/(392) 0.923/(392) 1.000/(392) 0.918/(391)	0.886/(391) 0.896/(391) 0.923/(391) 0.918/(391) 1.000/(391)
Task_2	Amelie	+ Gerda	Marcos	Renato	Yalemisew
Amelie Gerda Marcos Renato Yalemisew	1.000/(392) 0.330/(392) 0.252/(392) 0.316/(392) -0.091/(392)	0.330/(392) 1.000/(392) 0.210/(392) 0.306/(392) 0.153/(392)	0.252/(392) 0.210/(392) 1.000/(392) 0.051/(392) -0.031/(392)	0.316/(392) 0.306/(392) 0.051/(392) 1.000/(392)) -0.028/(392)	-0.091/(392) 0.153/(392) -0.031/(392) -0.028/(392) 1.000/(392)
Task_3	++ Amelie	Gerda	Marcos	 Renato	Yalemisew
Amelie Gerda Marcos Renato Yalemisew	1.000/(392) 0.659/(392) 0.296/(392) 0.534/(392) 0.317/(392)	0.659/(392) 1.000/(392) 0.325/(392) 0.453/(392) 0.268/(392)	0.296/(392) 0.325/(392) 1.000/(392) 0.424/(392) 0.370/(392)	0.534/(392) 0.453/(392) 0.424/(392) 1.000/(392) 0.454/(392)	0.317/(392) 0.268/(392) 0.370/(392) 0.454/(392) 1.000/(392)

Study of <u>available CNN architecture</u> candidates for transfer learning

Table and analysis @ Renato Rocha Souza

Image Classification

- Europeana aggregates millions of cultural objects including cultural images on its platform.
- Among the cultural images, we focus on food related images We love culture and we also love food!
- The collection contains varieties of food images
- We wanted to answer the following questions
 - Can I find food images that contain fruit?
 - Can I find food images that are appealing?
 - Can I find food images that are formal?

The problem

- The answer to the previous questions is "May be"
- The main reasons are:
 - Cultural concepts such as "appealing" and "formal" are often difficult to understand and define
 - Not sufficient metadata/description is available
 - Existing computer vision is not yet effective in classifying cultural images

× WAĊ

Methods

Our proposed method focuses on

- Formalisation: we use domain specific ontology terms from Existing vocabularies such as Getty Arts and Architecture Thesaurus, Iconclass and FoodOn Ontology
- Annotation: we annotate the images with three vocabulary terms
 - fruit/non-fruit Relatively less complex
 - appealing/non-appealing abstract and dependent on cultural background
 - formal/informal abstract and dependent on cultural background
- Model: we will train and build a CNN model using manually collected annotation
- Automatic annotation: Using the model, we will apply our solution to the bigger Europeana collection

Image Classification Task

- Definition of a training dataset: Still life images
- 1) Definition of classification protocol
- 2) Definition of food tags & cultural tags
- 1) Deployment of tool (MakeSense.AI)

Image Classification Task

Lesson learned

- Identifying cultural aspects from the images is very challenging task
- A clear definition of the cultural concepts is crucial for inter rater agreement
- Cultural background of the annotators, gender and personal preference contributed to the low/random agreement

AUSTRIAN ACADEMY OF SCIENCES GO!DIGITAL NEXT GENERATION ChIA cultural food image game

ChIA Cultural Food Image Memory Game - find the historical and corresponding current food images that match!

GO!DIGITAL NEXT GENERATION

Thank you

#chia4dh

@adooorn @yalemisew @rrsouza @Europeanaeu

Yalemisew.Abgaz@adaptcentre.ie Amelie.Dorn I Renato.Souza@oeaw.ac.at kochg@europeana-local.at

https://chia.acdh.oeaw.ac.at