Published September 17, 2021 | Version v0.1
Lesson Open

Predictive mapping using spatiotemporal Ensemble ML (R tutorial)

  • 1. OpenGeoHub foundation

Description

This is a Rmarkdown tutorial that discusses some aspects of spatial and spatiotemporal data and demonstrated how to use ML, specifically Ensemble ML, to train spatiotemporal models and produce time-series of predictions using 3 published data sets: (1) Daily temperatures for Croatia based on meteorological station data, (2) predictions of soil water content in 3D+T (Cookfarm dataset), (3) spatiotemporal distribution of Fagus sylvatica for continental Europe (see complete lecture). Processing is run using R-spatial packages rgdal and terra, while machine learning is implemented using the mlr framework for Ensemble Machine Learning through stacking. The tutorial is available via: https://gitlab.com/geoharmonizer_inea/odse-workshop-2021/. This document contains snapshots of the Rmarkdown tutorial with a backup of R image and all input files, for an up-to-date version of tutorial please refer to GitLab repository.

Notes

Acknowledgement: CEF Telecom project 2018-EU-IA-0095. This project is co-financed by the by the European Union.

Files

001_R-training_ODSE_Workshop_2021_spacetime_EML.pdf

Files (175.9 MB)

Name Size Download all
md5:eef7f5a8458593e6c177461b2f94d0bd
4.5 MB Preview Download
md5:4f291da95a9a57414055d34a5e62623d
138.3 kB Download
md5:2217f128d2c33c4d8aa27e642a7a7f22
538.8 kB Download
md5:194d294a812ac97016530e28d09cd9e6
80.5 MB Download
md5:117d03c572443130fdb6509d550a735e
4.1 MB Download
md5:a791deae0867ceaa5e94d5c4ce9fd876
11.0 MB Download
md5:eebf28a43c216412a1f2aa240df88a5f
3.9 MB Download
md5:43dffc2b1f957501abf26e4072ba188a
101.1 kB Download
md5:2503573ccb83871190e7fad77c1fc044
371 Bytes Download
md5:7fe401934f2b3fe2cc74baa14ae4ad2a
172.2 kB Preview Download
md5:3c986a6467279d9eb3dc57101ff9558f
171.3 kB Preview Download
md5:c18610eb83e7cb5d5535a35e0337e756
169.7 kB Preview Download
md5:e0965bcbd7e3b67ff065d77c267209dd
168.8 kB Preview Download
md5:e2b5dc95b915485bb4bc5d2b7bc0ca14
168.8 kB Preview Download
md5:90d4d2e12188a8a856aa7191f7b77aa8
169.9 kB Preview Download
md5:c48e7c2339a98b2ebb60b52616ca2afd
171.2 kB Preview Download
md5:89d0bab46bb5a4cd10ffacd64442466f
172.5 kB Preview Download
md5:844beade44bed52e3f63c53c2ce6d134
5.2 kB Download
md5:e8707bf3f03d909024cfaf0c3ec00fc1
8.4 kB Download
md5:a455558c0596a51c9e9e0b3eddf81f2a
274 Bytes Download
md5:0282555c12aa6f2480f7f41fa059b634
82.5 kB Preview Download
md5:c5b905922bda0d55d22c13ba6941eb54
55.5 kB Download
md5:dc445d7e415b5c9e8c240db99aff8a55
124.8 kB Download
md5:99c2b76bc7e57b0e29c9b81a3c4103af
17.8 MB Download
md5:146b3070b96e733aa334e1dc883b97f5
17.4 MB Download
md5:413a86634b031d349b930662dd2dea18
17.8 MB Download
md5:aaee91f8d181ef362972960698719121
16.4 MB Download
md5:853cd8cc94c9f602a61dd6a30edb5a7c
18.0 kB Download