

"Smart" implants and parallel transmission MRI

Lukas Winter¹, Frank Seifert¹, Berk Silemek, Johannes Petzold¹, Bernd Ittermann¹

¹Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany

MRI and Implants

• RF safety risk for patients

Nordbeck P, et al., MRM, 61:570-578, 2009

Device protection needed

Lunden L, et al., Eur Radiol, 30:2571-2582, 2020

Ferhanoglu O, et al., ISMRM, 2005

Age of the cyborg

HEALTH

Why You're Probably Getting a Microchip Implant Someday Microchip implants are going from tech-geek novelty to genuine

health tool-and you might be running out of good reasons to say no.

HALEY WEISS SEP 21, 2018

Single channel transmission

Birdcage RF coil (bodycoil type excitation)

Surface current

E-Field

*courtesy H. Waiczies

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

ELECTRIC FIELD IN

TRANSAXIAL PLANE

A.U.

A.U.

COIL SENSITIVITY

QUADRATURE COIL

LINEAR COIL

а

d

A.U.

1.5

0.5

A.U.

2.5

2

Eryaman Y, et al., MRM, 65:1305-1313, 2011

b

PIB Multichannel transmission or pTx and implant heating

Background E-field

RF induced implant currents

Winter L, et al., PlosOne, 8(4):e61661, 2013

PTB pTx benefits implant safety and imaging

McElcheran CE, et al., MRM, 78(6):2406-2415, 2017 McElcheran CE, et al., Sci Rep, 9(1):2124, 2019

Guerin et al. MRM, 83(1):299-311, 2020

PTB Sensor based pTx mitigation – time-domain probes

Etezadi-Amoli et al., MRM, 74(6):1790-1802, 2015

Godinez F, et al., MRM, 83(6):2343-2355, 2020

Winter L, et al., MRM, 84(6):3468-3484, 2020

MIMAS Implant Safety Workshop 2021

coaxial cable

unisolated tip

with thermistor

PB Root mean square (RMS) sensors

Pro:

- small (<2mm)
- cheap (<1€)
- fast readout (µs/ms)

Con:

• No phase information

Medtronic – DiamondTemp Ablation Catheter https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiacrhythm/ablation-atrial-fibrillation/diamondtemp-ablation-catheters.html

PB Sensor Q-matrix (Q_S) using RMS sensors

Experimental Setup

- 8-channel 7T head RF coil²
- Positioning system COSI Measure³
- 154 implant locations
- Q_S^E and Q_S^T acquisition and pTx mitigation

¹Winter et al. MRM, 2020; ²Seifert et al., ISMRM, 2016; ³Han et al. Sci.Rep, 2017

- 3T Verio (Siemens Healthineers)
- 8-Ch 3T head RF coil (Rapid Biomed.)
- Q_S^E acquisition and pTx mitigation
- GRE (TE=4ms, TR=11ms, spatial

resolution=0.6 x 0.6 mm²)

\bigcirc PTB Q_S based pTx mitigation of RF induced heating

PB Q_S based pTx mitigation of RF induced heating

Silemek B, et al., MRM, doi:10.1002/mrm.28968, 2021

Field and temperature based pTx mitigation

Silemek B, et al., MRM, doi:10.1002/mrm.28968, 2021

PB More than implant safety: Retained B_1^+

Orthogonal projection method:

- 1. Imaging transmission vector
- 2. "Worst case" transmission vector based on measured Q_s matrix
- 3. Orthogonal projection using 1) and 2)

→ Substantially lower tip heating without sacrificing B_1^+ using <u>only</u> the RMS sensor information

Winter L, et al., MRM, 84(6):3468-3484, 2020

MR Experiments at 3T

RF induced signals 17.5 Modes --- B₁-shim Orthogonal Projection 15.0 Induced Voltage (mV) 10.0 7.5 2.0 2.5 0.0 -3.15 3.20 3.05 3.10 3.00 3.25 Time (ms)

Silemek B, et al., MRM, doi:10.1002/mrm.28968, 2021

Towards more realistic implant scenarios

Flexible RMS sensor location

Wireless transmission of the sensor Q-matrix

Silemek B, et al., MRM, doi:10.1002/mrm.28968, 2021

Safety concept of smart implants

Petzold J, et al., MRM, [under review]

- pTx is capable to mitigate RF induced currents in implants
- Sensor Q-matrix approach enables RMS sensors to be used for pTx mitigation
- Methods exist that retain B_1^+ information based on the sensor signals alone
- Proof of concept demonstrated of applying the sensor Q-matrix approach using RMS sensors under MRI conditions
- Such novel safety concept of "smart" implants could extend current approaches to implant safety with several advantages for implant manufacturers, MR vendors and patients

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Smart" Implants and parallel transmission MRI

"Smart" sensor embedded medical implants communicating with a pTx capable MRI

RF Safety

 No assumptions/approximations, but in-situ monitoring

Discussion

- Severely reduced RF induced heating
- Less conservative due to smaller uncertainties
- Potential extension to multiple implants (also from different vendors)
- Independent of transmission frequency (0.55, 1.5, 3.0, 7.0T)

Imaging

- Improved diagnostics with implants present
- pTx available at 7T

19

2-channel RF coils at 3T

Implant design

- Relaxed measures for device protection
- Less testing
- Improves innovation potential

This project (17IND01 MIMAS) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

Thank You!

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Abbestr. 2-12 10587 Berlin, Germany Dr. Lukas Winter E-Mail: lukas.winter@ptb.de www.ptb.de www.opensourceimaging.org