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Abstract: Non-Gaussian noise often causes in significant 

performance abatement for systems which are designed using 
Gaussian assumption. This report challenges the question of 
General Linear Model with White Gaussian Noise assumption in 
order to define the sensitivity of the performance of an optimal 
estimator. Gaussian noise models provide an important role in 
many signal processing applications. The Laplacian and Uniform 
signal are two worthy examples of noise that can be compared to 
the White Gaussian Noise, though the sensitivity which can be 
compared with any non-Gaussian. White Gaussian Noise has 
been considered for General Linear Models and deviation from 
whiteness would affect on our estimates under different 
circumstances. Moreover, new assumptions have been considered 
to generate different type of signals in order to evaluate the 
sensitivity of the General Linear Model. 

Keywords: Non-Gaussian noise, optimal estimator, Laplacian 
signal, Uniform Signal, Gaussian liner model. 

I. INTRODUCTION 

The General Linear Model (GLM) is a common 
conditional probability model where it can be utilized for a 
variety of statistics models and contains an absorbing 
computational property. It is also a key tool for the optimal 
estimators due to the distinguished properties that the model 
contains. The majority of the estimator always covers an 
assumption of Gaussian signals due to Central Limit 
Theorem (CLT).      

The GLM sensitivity is assumed under two conditions 
where the first condition takes on a diverse probability 
models and the second condition investigates the model 
assuming the known and unknown correlation between 
samples. Moreover, a statistical property of WGN is 
compared with these assumptions.  

Primarily, a probability model in the GLM has been 
derived. An approach to determine the sensitivity of a GLM 
assumes Gaussian Model and Non-Gaussian Model. The 
signals processed are: Gaussian-Gaussian Mixture (GMM), 
Guassian-Uniform Mixture (GUM), Laplacian, Weibull, and 
Uniform. Non-Gaussian noise is used to address and compare 
the observation of the noises based on an estimation  
experiment in [1].  

The optimal estimator for the GLM recognizes a known 
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covariance and theoretically we assume that the signal is 
occasionally white. Our goal is to understand the sensitivity 
of optimal estimator performance to the deviation from the 
white noise.  

The goal of the project is evaluating the sensitivity of GLM 
under the circumstances. In this paper we will discuss our 
simulation results based on GLM with its assumptions. 
Section II will be a review of literature about optimal 
estimators and Section III will propose a methodology to 
construct the models. The next two sections (Section IV and 
V) will provide the insights of GLM assumptions. Finally, the 
report will conclude our research in Section VI. 

II. REVIEW OF LITERATURE 

Minimum Variance Unbiased (MVU) and Maximum 
Likelihood (ML) estimators are usually difficult to determine 
without being represented by a general linear model[1]-[3]. 
[4] emphasizes the optimal estimators in linear model allows 
everyone to analyze the problem within the model due to its 
unique properties. The idea of having optimal estimators is 
due to the small variance values within their estimator. ML 
estimators for instances, are considered than other types of 
estimates because of its small variance being distributed 
closer to the value.  
As referenced from the works of [1], the bulk of the research 
in Non-Gaussian noise is limited to independent and identical 
distributed observation sequences due to the difficulty in 
characterizing correlated multidimensional Non-Gaussian 
PDFs. The probability density function (PDF) of the 
Gaussian states: 

(1) 
Where  states our sample, the covariance matrix is , and 
mean is . As it can be seen throughout the literature in 
[11]-[18], white Gaussian noise assumption is a widely used 
assumption. So, it is important to investigate the effects of 
different noises. 

III. METHODOLOGY 

The GLM assumptions permit a certain estimator in the 
investigation of the signal. 
 General Linear Model assumes White Gaussian Noise which 
plays significant role on the estimation. There are suitable 
optimal estimators for deriving the sensitivity of the GLM. 
Consider our model with the Gaussian assumption: 

                                                           (2) 
where 
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and 

 
The matrix  is the observation matrix with data  being 

observed after the estimator  is operated by the 
matrix.  is the parameter vector. The noise vector 

 is usually assumed Gaussian according to [4]. The GLM 
can be also represented as an observation data: 

 where       (3) 
 is commonly considered as the WGN and  &  are 

our unknown parameters which will be selected to assess the 
estimator’s sensitivity.  

Our noise  is modeled zero mean with different 
probability density functions. Optimal estimator would be 
used to assess the sensitivity of model to assumptions. Based 
on the Table I, that is the optimal estimator for the model due 
to the fact that if the noise is WGN we would have MVU 
estimator and in worst case scenario where the probability 
model is unknown, it would be a Least-Square Estimator 
[11]. We derived our own noise model as shown in eq. (4). 

           (4) 
Eq. 4 is used as the building block in creating the mixture 

models of the GMM and GUM.  Laplacian, Weibull and 
Uniform noise separately applied to the model and compared 
with the case where noise is White Gaussian.  

Another assumption is considered White Gaussian Noise 
when the Colored Gaussian Noise is constructed to 
investigate the sensitivity of the model to deviation from 
whiteness. Moreover, a suitable approach is to create various 
Color Gaussian Noises and compare to the White Gaussian 
Noise. 

                       (5) 
The covariance matrix listed in eq. (5) constructed to 

assess the sensitivity of the performance of estimator to 
deviation from whiteness, thus  authorizes us to manage the 
power of correlation between the samples in order to see its 
effects on estimator variance. The value is set from 0 to 1 
where zero means White Gaussian Noise and a value of one 
means high correlation between samples. Furthermore, the 
knowledge of probability model would be explored on 
estimator performance.  

 
Table I: Comparison of Estimators 

Model Parameters Estimate 

 No Probability 
Model Needed 

  

 PDF Unknown, 
White Noise 

   

 PDF Gaussian, 
White Noise 

   

 PDF Gaussian, 
White Noise 

   

A list of models with their parameter conditions stating the 
appropriate estimator to be used [10] 

IV. GENERAL LINEAR MODEL 

A. Assumption 

Our general linear model is based on equations (2) & (3) 
based on [4]’s definition of a standard linear model and 
equations. He reiterates optimal estimators are a difficult task 
to resolve, but dealing with a GLM representation makes any 
estimation processing easy to determine. The Gaussian signal 
is assumed in the GLM, thus the additions of other 
non-Gaussian model will provide significant data and results.  

B. Mixture Models 

As we assumed Gaussian in the GLM, we developed two 
mixture noise models. The Mean Square Error of estimates 
illustrated in Fig.1 interprets two unknown variables  and  
which is our parameter of interest. Two Gaussian noises are 
mixed to form a Gaussian-Gaussian Mixture noise, in 
addition Gaussian-Uniform noise is the second mixture. The 
Uniform noise isn’t a common signal encountered in the 

world of signal processing but it provides a useful 
comparison with Gaussian noise because the linear average is 
comparatively poor estimator for the mean of a uniform 
distribution [8].  

The relation between the Mean Square Error (MSE) and 
Mixture Weight (  is dependent of each other. The red line 
in Fig.1. represents the Gaussian-Gaussian 
(double-Gaussian) mixture noise. The weight of the mixture 
when  and  demonstrates that the mixture is 
single White Gaussian. The MSE decreases when  is going 
toward 5 from both sides. A double-Gaussian noise mixture 
model shows a characteristic curve similar to a parabola ‘U’ 

curve.  
Uniform noise is mixed with the Gaussian noise forming 

the blue curved in Fig.1 which is known as the 
Gaussian-Uniform Mixture model. Unlike the 
double-Gaussian mixture, the MSE decreases as the weight 
of the mixture rises. The uniform-Gaussian Mixture Model 
deviates its path after , where the MSE value continues 
to decrease as the weight of the mixture increases. 

 A possible perceptive about its small decrease of the MSE 
happens when any other non-Gaussian noise is combined 
with Gaussian.  

The MSE of the mixture models is focusing on each of the 
unknown parameters being estimated. In the MSE of 
parameter A the value is less than the MSE of parameter B. 

As illustrated in Fig.1, probability model of noise has 
significant effect on MSE thus adding noise with similar 
characteristics to data could be considered a way of 
improving estimator accuracy though it needs more 
investigation.  
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Fig.1. The Mean-Square Error (MSE) displaying the two 
mixture model ran with 10000 samples and observations 

for the estimation of parameters A and B. 

C. Gaussian vs Non-Gaussian Noise Models 

Based on the observation data of the mixture models, the 
Gaussian-uniform noise deviates from the double-Gaussian 
mixture model after the first two weight of mixture. We can 
determine that our uniform noise would generate a result after 
using our optimal estimator on all our noises. Based on Fig.2 
our Gaussian and non-Gaussian noise model is going through 
the optimal estimator. Laplacian and Weibull produced a 
similar result to the Gaussian noise, however uniform noise 
displays a significant effect on parameter estimation which 
means the MSE considerably decreased compared to 
Gaussian noise.  

D. Cramer-Rao Lower Bound (CRLB) Analysis 

Based on our GLM from equation (2) and (3), we 
considered the line fitting of the model using the observation 
from equation (3).   is our WGN or white Gaussian noise 
and determining the CRLB for slope  and intercept  based 
on [5]’s definition of the GLM’s CRLB. For every 

distribution there is different CRLB, thus derived CRLB just 
applies to WGN in our model.  

Our CRLB is: 

                                                     . (6) 

                                                       . (7) 

Our observation of the CRLB where  has increased over 
that obtained when  is known. The DC level in WGN 
contains: 

                                 . (8) 

 
Fig.2. The Gaussian Noise’s variance is estimated among 

with three other non-Gaussian noise: Laplacian, 
Uniform, and Weibull. 

The general result that asserts the CRLB always increases 
as we estimate more parameters. There is also this point: 

                                         . (9) 

For ,  is easier to estimate and its CRLB decreases 
as 1/N3 as opposed to the 1/N dependence for the CRLB of . 
These differing dependences indicate that  is more 
sensitive to changes in  than to changes in  as indicated in 
[5-6].  

As seen in Fig.3, the estimator for the Gaussian noise lays 
on the CRLB as the number of samples increases and the 
same result when shown in Fig.4 where the green line is seen 
clearly is the CRLB for WGN. So the estimator for the WGN 
reaches its lower bound which is the CRLB. 

 

 
Fig.3. The DC Level in the WGN and where it stands with 

the Gaussian CRLB and the Gaussian and Laplacian 
Noise. 
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Fig.4. The relation of the Gaussian and Laplacian noise and 

its CRLB 

V. GENERAL LINEAR MODEL WITH KNOWN 

COVARIANCE  

A. Assumptions 

Based on the first GLM with the assumption of a Gaussian 
noise, the second GLM has two assumptions that have been 
considered. The first case considers the whiteness of the 
noise to the performance of the optimal estimator on the 
deviation of the noise correlation. The second case reflects on 
the covariance matrix where there isn’t any known 

probability model. The model noise has been constructed 
through the covariance matrix based on equation (4). We are 
going to estimate the unknown parameters  and  from the 
model equation (3) when the probability model of noise is 
known and unknown based on Table I.  Eq. (10) shows the 
effects of the knowledge of probability model [21]. 

                                    (10) 

B. Deviation from Whiteness 

As Fig.5 illustrates, the White Gaussian Noise (WGN) lays 
on its CRLB which is designated for the WGN. On the other 
hand when the noise of our signal model is a Non-White 
Gaussian Noise (NWGN), the variance of the estimator 
dramatically increases whether the covariance is known or 
unknown. In addition, the variance of our estimator would 
rise even more when there isn’t any knowledge in terms of 

the correlation between the samples. Since the covariance 
plays a crucial role in the probability model, the correlation 
between samples seen in Fig.5 would decrease the accuracy 
of the estimator.  

 
Fig.5. The relationship of the Gaussian Noise when the 
covariance is known and unknown comparing to the 

Gaussian laying on its CRLB. 

As seen in Fig.6 and Fig.7, we change the variance of  
which is used to generate the covariance matrix back in 
equation (5). The effects of  which forms the covariance 
matrix will be discussed. Fig.6 shows when , there is 
no correlation between the samples and the estimator 
operates to the case when the NWGN effected our model by 
increasing the . Therefore, the variance of our estimator 
would increase extremely. In Fig.6 the relation between the 
two NWGN displays the NWGN with an unknown 
covariance matrix having a greater variance of estimates than 
the NWGN with a pre-assigned covariance and even it would 
be more when the coefficient of the covariance matrix 
increases. The same rule applies in Fig.7 when the parameter 
B is being estimated. 

 
Fig.6. Estimating parameter, A with the relation of the 

WGN and NGWM 
 

Fig.7. Estimating parameter B with the relation of the 
WGN and NGWM 

VI. CONCLUSION 

Applying different approaches to generate noise, we have 
explored the sensitivity of the GLM under assumptions. As 
our simulation indicated in the first GLM assumption, the 
Laplacian and Weibull signals have a similar behavior with 
WGN in case of optimal estimators.  
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Moreover, the correlation between the samples increases 
the variance of the estimator. In future works, the color noises 
with different power spectrum can be applied where the 
model assumes WGN in order to deeply investigate the 
sensitivity of the optimal estimator.  
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