

Epidemiological implications of network structures

Animal movements modelling (SNA and ERGM) Compartmental epidemiological model (SimInf)

P. Hammami^{1*}, S. Widgren², V. Grosbois³, A. Apolloni³, N. Rose¹ and M. Andraud¹

This work was supported by funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 773830: One Health European Joint Programme. BIOPIGEE

Hepatitis E Virus transmission

Khuroo, Mohammad, Khuroo, Mehnaaz, Khuroo, N., 2016. Transmission of Hepatitis E Virus in Developing Countries. Viruses 8, 253. https://doi.org/10.3390/v8090253

Hepatitis E Virus in swine

Asymptomatic

Detection: viro/sero

Faecal-oral transmission

Estimate HEV prevalence in pigs sent to slaughterhouses Assess the impact of control and surveillance activities at national scale

Objectives

- 1: Simulate animals movements within and between farms
- 2: Simulate disease spread
- 3: Test prevention, surveillance and control measures

Production cycle of swine

112 days +/- 94 days 3. Finishing sector 1. Gestation sector 140 pens in 7 rooms, 18 pigs/pen 7 pens in 1 room, 60 sows/per 2. Farrowing sector 65 davs 120 pens in 2 rooms, 1 sow/pen and 12 piglets/pen 4. Post-weaning sector 50 pens in 5 rooms 36 pigs/pen

7 days sow + 21 or 28 days with piglets

Deterministic schedule

Salines, M., Andraud, M., Rose, N., Widgren, S., 2020. A between-herd data-driven stochastic model to explore the spatio-temporal spread of hepatitis E virus in the French pig production network. PLoS ONE 15, e0230257. https://doi.org/10.1371/journal.pone.0230257

Unit structure

Unit Room Pen

Within farm transmission

Farms structure - husbandry activity

Between farm movements/spread

Salines, M., Andraud, M., Rose, N., Widgren, S., 2020. A between-herd data-driven stochastic model to explore the spatio-temporal spread of hepatitis E virus in the French pig production network. PLoS ONE 15, e0230257. https://doi.org/10.1371/journal.pone.0230257

Data were provided by the French national pig identification database (Bdporc)

Within farm movements

Farm variables:

- Farm type
- Number of rooms per unit
- Number of pens per room
- Number of animals per pen
- Duration of stay in each unit
- Duration of sanitary void in each unit

New features:

- 8 types of farms
- 5 batch rearing systems (dynamics deterministic duration)
- Higher size variability
- Room scale

Between farms movements

Exponential Random Graph Models

Variables:

Network structure

Edges

Movements characteristics

Distance

Farms characteristics

- Type
- Compagny
- Size
- Outdoor rearing system
- Batch rearing systems (duration of stay in each sector/number of simultaneous batchs)

Observed network

Corsica

Random simulated movements (ERGM)

Package statnet/ergm

Model selection using Bidirectional stepwise procedure

Probabilities of contact

Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M., Morris, M., 2008. ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. J Stat Softw 24, nihpa54860.

Salines, M., Andraud, M., Rose, N., 2017. Pig movements in France: Designing network models fitting the transmission route of pathogens. PLoS ONE 12, e0185858.

https://doi.org/10.1371/journal .pone.0185858

Data were provided by the French national pig identification database (Bdporc)

Network statistics – structural stability

type

FA

FF

FPW

MU

NU

PWF

PWF

French Swine network - 2nd semester 2019 - growing pigs

Observed movements (SNA)
Package igraph

Visual validation

Growing pigs

Piglets

Breeding Sows

Simulated networks

Goodness of fit

Piglets

Growing pigs

Breeding Sows

Demographic model

Parameters estimation incomplete sampling plan

Farm structure

- *n* Units
- Rooms / unit
- Pens / room
- Animal / pen

Farms batch rearing systems

- Duration of stay in each sector
- Number of simultaneous batchs

Deterministic schedule

Farm contacts per type of animals

- Contact IDs
- Associated probabilities

Stochastic destinations

Visual validation

2019 – training data

Cross-validation

Simulated networks

Goodness of fit

Epidemiological model

MSEIR-En model -SimInf

Direct transmission within pen between susceptible and infectious pigs Indirect fecal-oral transmission through environment – within pen and with neighboring pens

Salines, M., Andraud, M., Rose, N., Widgren, S., 2020. A between-herd data-driven stochastic model to explore the spatio-temporal spread of hepatitis E virus in the French pig production network. PLoS ONE 15, e0230257. https://doi.org/10.1371/journal.pone.0230257

Epidemiological model

Farm-Unit level

- Direct
- Within-pen environmental transmission rate
- Between-pens environmental transmission rates
- External biosecurity level
- HEV Latency duration (days)
- HEV Infectious period (days)
- Cleaning rate

General variables

- Quantity of faeces/pig/day
- Quantity of faeces/sow/day
- Duration of maternal antibodies
- ..

Random networks

Number of animal and send to slaughterhouses and associated epidemiological states

Exemple of outputs

Prevalences in slaughterhouses over five years

Take home messages

Flexible tool to simulate population dynamics and disease spread

Simulation of pig movements between pens

Deterministic: based on duration of stay in each unit

Stochastic between farms movements based on contact probabilities (ERGM)

Simulation of disease spread using SimInf

Continuous-time Markov chains using the Gillespie stochastic simulation algorithm

Direct contact within pens

Environmental viral charge neighboring pens

