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Abstract. Thermal stresses and displacement functions are 
obtained for a rectangular plate occupying the space R: -a < x < 
a, 0 < y < b, -h < z < h, with the known boundary and initial 
conditions. In this inverse problem the unknown surface 
temperature is determined on the boundary along the y-axis 
when the temperature at some internal point is known. The 
governing heat conduction equation has been solved by applying 
Marchi – Fasulo transform and Laplace transform techniques. 
The solutions are obtained in form of infinite series. The results 
for displacement and thermal stresses have been computed 
numerically and illustrated graphically for Aluminium plate.  
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I. INTRODUCTION 

Thermal stresses in  material are one of the important 
factors which affect the life of the material bodies. Thermal 
stresses occurring in the body due to heat distribution, may 
often lead to breakdown and failures in engineering 
structures. This necessitates a deep thermal and mechanical 
analysis of a material structure before it is put to engineering 
application. Different mathematical models and 
methodologies are employed for thermoelastic studies, and 
few are enlisted here.Temperature distribution and resultant 
stress were derived for a rectangular slab on the basis of the 
general theory of thermoelasticity (Grysa & Kozłowski, 

1983; Xue et al., 2019; Youssef et al., 2019).The Lanczos-
Chebyshev method was applied to study the fluctuating 
temperatures and thermal stresses in a thin rectangular plate 
subjected to heat losses, and results obtained were in power 
series (Chen, 1988). Thermal response in a solid structure 
made up of composite material and subjected to thermal 
shock   was discussed by using heat conduction equations 
for orthotropic material (Robert J. Adams, 1999). Exact 
solutions for a functionally graded cylindrical structures, 
with general boundary conditions, were obtained to analyze 
the steady state as well unsteady state heat conduction in 
them (Amiri Delouei, Emamian, Karimnejad, & Sajjadi, 
2019; Amiri Delouei, Emamian, Karimnejad, Sajjadi, et al., 
2019; Delouei et al., 2020).  
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Time varying thermal stresses and temperature 
distribution in a three-dimensional FGM rectangular plate 
were determined by using the theory of laminated 
composites  (M. Marin & Craciun, 2017; Marin Marin & 
Öchsner, 2017; Noda et al., 1989; Tanigawa, Yoshihiro 
Ootao, 1999). in these solids (Arslantürk, 2018; Güngör & 
Arslantürk, 2019). Lata and Kaur used the Laplace and 
Fourier transform techniques as well as the potential 
function method to determine the temperature, 
displacement, and stresses in isotropic circular solids (I. 
Kaur & Lata, 2019; Lata. P. and Kaur, 2019). The finite 
Fourier sine transform technique was used to deal with 
inverse steady state problem and obtain the strain-stress at 
the boundary of a thin rectangular plate (Manthena, V., 
Lamba, N., Kedar, 2018). Thermal response was studied by 
use of integral transform technique and Kirchhoff’s variable 

transformation in solid bodies subjected to heat source 
having hyperbolic variation (Ahire et al., 2020). The heat 
conduction theory which makes use of differential 
transforms was employed in derivation of thermal stress in 
rectangular plate (Chaudhari & Sutar, 2019). Roy et al. 
computed thermal stresses in a semi-infinite rectangular 
beam by application of sine transform methods (Roy H., 
2013). Thus, literature survey points towards use of different 
models and methods for studying the thermoelastic profile 
of different solid structures. 

In the present article, an inverse problem is studied to 
determine the displacement and thermal stresses in 
rectangular plate occupying the region R: -a < x < a, 0 < y < 
b, -h < z < h with the known boundary and initial conditions. 
The unknown surface temperature is determined on the 
boundary along the y-axis, when the temperature at some 
internal point is known and both the boundaries along x and 
z–axis are maintained at zero temperature. The governing 
heat conduction equation have been solved by applying 
Marchi – Fasulo transform and Laplace transform 
techniques. The solutions are obtained in form of infinite 
series. The results for displacement and thermal stresses 
have been computed numerically and illustrated graphically 
for a thick rectangular plate of aluminium metal.  

II. MATHEMATICAL FORMULATIONS  

A rectangular plate occupying the region R: -a < x < a, 0 
< y < b, -h < z < h is considered. The displacement 
components 𝑢𝑥,   𝑢𝑦 and 𝑢𝑧 along the 𝑋,  𝑌,  𝑍 direction 
respectively are given in the integral form as in (Noda et al., 
2003)   

 

𝑢𝑥 = ∫
1

𝐸
(

𝜕2∪

𝜕𝑦2 +
𝜕2∪

𝜕𝑧2 − 𝜈
𝜕2∪

𝜕𝑥2   +  𝛼𝑇)   𝑑𝑥
𝑎

−𝑎
                  (1) 
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𝑢𝑦 = ∫
1

𝐸
(

𝜕2∪

𝜕𝑧2 +
𝜕2∪

𝜕𝑥2 − 𝜈
𝜕2∪

𝜕𝑦2   +  𝛼𝑇)   𝑑𝑦
𝑏

0
              (2) 

𝑢𝑧 = ∫
1

𝐸
(

𝜕2∪

𝜕𝑥2 +
𝜕2∪

𝜕𝑦2 − 𝜈
𝜕2∪

𝜕𝑧2   +  𝛼𝑇)   𝑑𝑧
ℎ

−ℎ
            (3)  

 
Where 𝐸,  𝜈 and 𝛼 are the Young’s modulus, poisons 

ratio and the linear coefficient of thermal expansion of the 
material of the plate respectively and ∪ (𝑥,  𝑦,  𝑧,  𝑡) is the 
Airy’s stress function which satisfy the differential equation  

 

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2)
2

  ∪ (𝑥,  𝑦,  𝑧,  𝑡) = −𝛼𝐸 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +

𝜕2

𝜕𝑧2)   𝑇(𝑥,  𝑦, 𝑧, 𝑡)       (4) 

Where 𝑇(𝑥,  𝑦,  𝑧,  𝑡) denotes the temperature of thin 
rectangular plate satisfying the following differential 
equation [21] 
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2   =  
1

𝑘

𝜕𝑇

𝜕𝑡
                                                                                           

(5) 

here k  is thermal diffusivity of the material. The initial 
condition is  
𝑇(𝑥,  𝑦,  𝑧,  0) = 0                                                       (6) 
and the boundary conditions are  

[𝑇(𝑥,  𝑦, 𝑧, 𝑡)   +  𝑘1
𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥
]

𝑥=𝑎
= 0                        (7) 

[𝑇(𝑥,  𝑦, 𝑧, 𝑡)   +  𝑘2
𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥
]

𝑥=−𝑎
= 0                      (8) 

[𝑇(𝑥,  𝑦, 𝑧, 𝑡) ]𝑦=𝑏 = 𝐺(𝑥, 𝑧, 𝑡) (Unknown)                                                         

(9) 

[𝑇(𝑥,  𝑦, 𝑧, 𝑡)   +  𝐶
𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑦
]

𝑦=0
= 𝑔(𝑥, 𝑧, 𝑡)              (10) 

[𝑇(𝑥,  𝑦, 𝑧, 𝑡)   + 𝑘3
𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧
]

𝑧=ℎ
= 0                           (11) 

[𝑇(𝑥,  𝑦, 𝑧, 𝑡)   + 𝑘4
𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧
]

𝑧=−ℎ
= 0                         (12) 

The interior condition is 

[𝑇(𝑥,  𝑦, 𝑧, 𝑡)   + 𝑐
𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧
]

𝑦=𝜉
= 𝑓(𝑥, 𝑧, 𝑡) (Known)                                         

(13) 

The stresses components in terms of ∪ (𝑥, 𝑦, 𝑧, 𝑡) are given 

by  

𝜎𝑥𝑥 = (
𝜕2∪

𝜕𝑦2 +
𝜕2∪

𝜕𝑧2)                                                (14) 

𝜎𝑦𝑦 = (
𝜕2∪

𝜕𝑧2 +
𝜕2∪

𝜕𝑥2)                                                (15) 

𝜎𝑧𝑧 = (
𝜕2∪

𝜕𝑥2 +
𝜕2∪

𝜕𝑦2)                                                                                                  

(16) 

The equations (1) to (16) constitute the mathematical 
formulation of the problem under consideration. 

III. MATHEMATICAL SOLUTIONS 

By applying finite Marchi – Fasulo transform and 
Laplace transform to the equations (5) to (13), and then 
taking their inversion, we obtain 

𝑇(𝑥, 𝑦, 𝑧, 𝑡) =
𝑘

𝑐2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1 [
𝑃𝑛(𝑧)

𝜆𝑛
] [𝜑1(𝑦) 𝜏1(𝑡)   −

 𝜑2(𝑦) 𝜏2(𝑡)]         

                

+ 
2𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
] [

𝑃𝑛(𝑧)

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠 𝜍𝜋
] [

𝜓1(𝑦) 𝜏3(𝑡) − 𝜓2(𝑦) 𝜏4(𝑡)

[1+(𝑐𝜍𝜋 𝜉⁄ )2]
]∞

𝑚,𝑛,𝜍=1  

      − ∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1 [
𝑃𝑛(𝑧)

𝜆𝑛
] 𝐴3(𝑚, 𝑛, 𝑦, 𝑡)        (17) 

𝐺(𝑥, 𝑧, 𝑡) =
𝑘

𝑐2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1 [
𝑃𝑛(𝑧)

𝜆𝑛
] [𝜑1(𝑏) 𝜏1(𝑡)   −

 𝜑2(𝑏) 𝜏2(𝑡)]                     

+ 
2𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
] [

𝑃𝑛(𝑧)

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠 𝜍𝜋
] [

𝜓1(𝑏) 𝜏3(𝑡) − 𝜓2(𝑏) 𝜏4(𝑡)

[1+(𝑐𝜍𝜋 𝜉⁄ )2]
]∞

𝑚,𝑛,𝜍=1  

      − ∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1 [
𝑃𝑛(𝑧)

𝜆𝑛
] 𝐴3(𝑚, 𝑛, 𝑏, 𝑡)       (18) 

Where,       𝜑1(𝑦)   =  
𝑠𝑖𝑛ℎ  (

𝑦

𝑐
)−𝑐𝑜𝑠ℎ  (

𝑦

𝑐
)

𝑠𝑖𝑛ℎ(𝜉/𝑐)
,   𝜑2(𝑦) =

𝑠𝑖𝑛ℎ(
𝑦−𝜉

𝑐
)−𝑐𝑜𝑠ℎ(

𝑦−𝜉

𝑐
)

𝑠𝑖𝑛ℎ(𝜉/𝑐)
 

𝜓1(𝑦)   =   𝑠𝑖𝑛 (
𝜍𝜋

𝜉
) 𝑦 − (

𝑐𝜍𝜋

𝜉
) 𝑐𝑜𝑠 (

𝜍𝜋

𝜉
) 𝑦, 

𝜓2(𝑦) = 𝑠𝑖𝑛   (
𝜍𝜋

𝜉
) (𝑦 − 𝜉)

−   (
𝑐𝜍𝜋

𝜉
) 𝑐𝑜𝑠   (

𝜍𝜋

𝜉
) (𝑦

− 𝜉)  

𝜏1(𝑡)   =   ∫ [𝑓̄̄
𝑡

0

(𝑚, 𝑛, 𝑡 − 𝑢)  

−   𝐴1(𝑚, 𝑛, 𝑡

− 𝑢)] 𝑒
𝑘𝑢[

1−𝑐2𝑞2

𝑐2 ]
𝑑𝑢 

𝜏2(𝑡) = ∫ 𝑔̄̄
𝑡

0

(𝑚, 𝑛, 𝑡 − 𝑢)   −   𝐴2(𝑚, 𝑛, 𝑡

− 𝑢)𝑒
𝑘𝑢[

1−𝑐2𝑞2

𝑐2 ]
𝑑𝑢 

𝜏3(𝑡)   =   ∫ [𝑓̄̄(𝑚, 𝑛, 𝑡 − 𝑢)   −  𝐴1

𝑡

0

(𝑚, 𝑛, 𝑡

− 𝑢)] 𝑒
−𝑘𝑢[𝑞2+(

𝜍𝜋
𝜉

)
2

]
𝑑𝑢 

𝜏4(𝑡) = ∫ [𝑔̄̄
𝑡

0

(𝑚, 𝑛, 𝑡 − 𝑢)   −   𝐴2(𝑚, 𝑛, 𝑡

− 𝑢)𝑒
−𝑘𝑢[𝑞2+(

𝜍𝜋2

𝜉
)

2

]

 𝑑𝑢 

 

 

𝐴1(𝑚, 𝑛, 𝑡) = [(𝜒 + 𝑐
𝑑𝜒

𝑑𝑧
)

𝑧=𝜉
],      𝐴2(𝑚, 𝑛, 𝑡) =

[(𝜒 + 𝑐
𝑑𝜒

𝑑𝑧
)

𝑧=0
], 
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 𝐴3(𝑚, 𝑛, 𝑧, 𝑡) = 𝐿−1[𝜒] 

Here 𝑓̄̄(𝑚,  𝑛,  𝑡) and 𝑔̄̄(𝑚,  𝑛, 𝑡) denote the Marchi – 
Fasulo transforms of 𝑓̄(𝑚, 𝑧, 𝑡)  and 𝑔̄(𝑚, 𝑧, 𝑡) respectively. 
𝑓̄(𝑚, 𝑧, 𝑡) and 𝑔̄(𝑚, 𝑧, 𝑡) denote the finite Marchi – Fasulo 
transform of 𝑓(𝑥,  𝑧, 𝑡) and 𝑔(𝑥,  𝑧, 𝑡) respectively.  

𝑓(𝑚, 𝑛, 𝑡)   =   ∫ 𝑓̄(𝑚, 𝑧, 𝑡) 𝑃𝑛(𝑧) 𝑑𝑧
ℎ

−ℎ
, 𝑔(𝑚, 𝑛, 𝑡)   =

 ∫ 𝑔(𝑚, 𝑧, 𝑡) 𝑃𝑛(𝑧) 𝑑𝑧
ℎ

−ℎ
,                   𝜆𝑛 = ∫ 𝑃𝑛

2ℎ

−ℎ
(𝑧) 𝑑𝑧 

𝑃𝑛(𝑧)   =   𝑄𝑛 𝑐𝑜𝑠   (𝑎𝑛𝑧)   −   𝑊𝑛 𝑠𝑖𝑛( 𝑎𝑛𝑧) 

𝑄𝑛 = 𝑎𝑛(𝛼3 + 𝛼4) 𝑐𝑜𝑠( 𝑎𝑛ℎ)   +   (𝛽3 − 𝛽4) 𝑠𝑖𝑛( 𝑎𝑛ℎ) 

𝑊𝑛 = (𝛽3 + 𝛽4) 𝑐𝑜𝑠   (𝑎𝑛ℎ)   +  (𝛼4 − 𝛼3) 𝑎𝑛 𝑠𝑖𝑛( 𝑎𝑛ℎ) 

Equation (17) is the desired solution of the given problem 
with 𝛽3 = 𝛽4 = 1,   
𝛼3 = 𝑘3,   𝛼4 = 𝑘4.  

3.1 Determination Of Airys Stress Function: 

Substituting the values of 𝑇(𝑥,  𝑦,  𝑧, 𝑡) from equation (17) 

in equation (4) one obtains 𝑈(𝑥, 𝑦, 𝑧, 𝑡) =

 
𝛼𝐸𝑘

𝑐2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

[𝜑1(𝑧) 𝜏1(𝑡) − 𝜑2(𝑧) 𝜏2(𝑡)]

𝑎𝑚
2 +𝑎𝑛

2 −1/𝑐2 ] 

     

+ 
2𝛼𝐸𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛,𝜍=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠 𝜍𝜋
] [

1

1+(𝑐𝜍𝜋 𝜉⁄ )2]   

× [
𝜓1(𝑧) 𝜏3(𝑡) − 𝜓2(𝑧) 𝜏4(𝑡)

𝑎𝑚
2 +𝑎𝑛

2  +(𝜍𝜋 𝜉⁄ )2 ]















−+
















− 



= 0
22

3

1,

),,,()()(

laa

tznmAzPxP
E

nmn

n

nm m

m



    (19)  

3.2 Determination of Displacement Components 

Substituting the values of (19) in the equation (1) to (3) one 

obtains  

𝑢𝑥 =
𝛼𝑘

𝑐2 ∑ [
(𝑘1 + 𝑘2) 𝑠𝑖𝑛 2 𝑎𝑚𝑎

𝜆𝑚
]

∞

𝑚,𝑛=1

 [
𝑃𝑛(𝑧)

𝜆𝑛
] [

(1 + 𝜈)𝑎𝑚
2

𝑎𝑚
2 + 𝑎𝑛

2 − 1/𝑐2
] 

          × [𝜑1(𝑦) 𝜏1(𝑡)   −  𝜑2(𝑦) 𝜏2(𝑡)] 

          

+ 
2𝛼𝑘𝜋

𝜉2  ∑ [
(𝑘1+𝑘2) 𝑠𝑖𝑛  2𝑎𝑚𝑎

𝜆𝑚
] [

𝜍

𝑐𝑜𝑠 𝜍𝜋
] [

𝑃𝑛(𝑧)

𝜆𝑛
] [

(1+𝜈)𝑎𝑚
2

𝑎𝑚
2 +𝑎𝑛

2 +(𝜍𝜋 𝜉⁄ )2]∞
𝑚,𝑛,𝜍=1   

          × [
𝜓1(𝑦)𝜏3(𝑡)−𝜓2(𝑦) 𝜏4(𝑡)

1+(𝑐𝜍𝜋 𝜉⁄ )2 ] 

         

− 𝛼  ∑ [
(𝑘1+𝑘2) 𝑠𝑖𝑛  2𝑎𝑚𝑎

𝜆𝑚
]∞

𝑚,𝑛=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

(1+𝑣) 𝑎𝑚
2

𝑎𝑚
2 +𝑎𝑛

2 −𝑙0
] 𝐴3(𝑚,  𝑛, 𝑦, 𝑡)          

(20) 

𝑢𝑦 =

𝛼𝑘

𝑐2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

−(1+𝑣)/𝑐2

𝑎𝑚
2 +𝑎𝑛

2 −1/𝑐2] [𝜑′1(𝑏) 𝜏1(𝑡)   −

 𝜑2′(𝑏) 𝜏2(𝑡)]                    

      +
2𝛼𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛,𝜍=1   [
𝑃𝑛(𝑧)

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠(𝜍𝜋)
]  

[
(1+𝑣) (𝜍𝜋 𝜉⁄ )2

𝑎𝑚
2 +𝑎𝑛

2 +(𝜍𝜋 𝜉⁄ )2] [
1

(1+(𝑐𝜍𝜋 𝜉⁄ )2]       

      × [𝜓′1(𝑏) 𝜏3(𝑡)  −  𝜓′2(𝑏) 𝜏4(𝑡)]  

       

−𝛼  ∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

−(1+𝑣) 𝑙0

𝑎𝑚
2 +𝑎𝑛

2 −𝑙0
]  𝐴′3(𝑚,  𝑛, 𝑏, 𝑡)  (21) 

𝑢𝑧 =
𝛼𝑘

𝑐2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
(𝑘3+𝑘4) 𝑠𝑖𝑛 2𝑎𝑛𝑏

𝜆𝑛
] [

(1+𝑣) 𝑎𝑛
2

𝑎𝑚
2 +𝑎𝑛

2 −1/𝑐2]   

           × [𝜑1(𝑦) 𝜏1(𝑡)  −   𝜑2(𝑦) 𝜏2(𝑡)] 

 +
2𝛼𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛,𝜍=1  [
(𝑘3+𝑘4) 𝑠𝑖𝑛 2𝑎𝑛𝑏

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠 𝜍𝜋
]  

 [
(1+𝑣)𝑎𝑛

2

𝑎𝑚
2 +𝑎𝑛

2 +(𝜍𝜋 𝜉⁄ )2] [
𝜓1(𝑦)𝜏3(𝑡)−𝜓2(𝑦) 𝜏4(𝑡)

1+(𝑐𝜍𝜋 𝜉⁄ )2 ] 

 

−𝛼  ∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
(𝑘3+𝑘4) 𝑠𝑖𝑛 2𝑎𝑛𝑏

𝜆𝑛
] [

(1+𝑣) 𝑎𝑛
2

𝑎𝑚
2 +𝑎𝑛

2 −𝑙0
] 𝐴3(𝑚, 𝑛, 𝑦, 𝑡)     

         (22) 

Where 𝜑′1(𝑏) =
𝑐𝑜𝑠ℎ(𝑏 𝑐⁄ )−𝑠𝑖𝑛ℎ(𝑏 𝑐⁄ )−1

1 𝑐⁄ 𝑠𝑖𝑛ℎ(𝜉 𝑐⁄ )
 

𝜑′2(𝑏) =
𝑐𝑜𝑠ℎ((𝑏−𝜉) 𝑐⁄ )−𝑠𝑖𝑛ℎ((𝑏−𝜉) 𝑐⁄ )−𝑐𝑜𝑠ℎ(𝑏 𝑐⁄ )−𝑠𝑖𝑛ℎ(𝑏 𝑐⁄ )

(1/𝑐) 𝑠𝑖𝑛ℎ(𝜉 𝑐⁄ )
  

𝜓′1(𝑏) =
− 𝑐𝑜𝑠(𝜍𝜋 𝜉⁄ )  𝑏 − (𝑐𝜍𝜋 𝜉⁄ ) 𝑠𝑖𝑛(𝜍𝜋 𝜉⁄ ) 𝑏 + 1

(𝜍𝜋 𝜉⁄ )
 

𝜓′2(𝑏)

=
− 𝑐𝑜𝑠(𝜍𝜋 𝜉⁄ ) (𝑏 − 𝜉)  − (𝑐𝜍𝜋 𝜉⁄ ) 𝑠𝑖𝑛(𝜍𝜋 𝜉⁄ ) (𝑏 − 𝜉) + 𝑐𝑜𝑠 𝜍 𝜋

(𝜍𝜋 𝜉⁄ )
 

𝐴′3(𝑚, 𝑛, ℎ, 𝑡) = ∫ 𝐴3(𝑚, 𝑛, 𝑧, 𝑡)
ℎ

0
𝑑𝑧   

3.3 Determination Of Stress Function: 

Substituting values of (19) in equations (14) to (16) one 

obtains  

𝜎𝑥𝑥

=
𝛼𝐸𝑘

𝑐2
  ∑ [

𝑃𝑚(𝑥)

𝜆𝑚

]

∞

𝑚,𝑛,=1

 [
𝑃𝑛(𝑧)

𝜆𝑛

] [
−𝑎𝑛

2 + 1/𝑐2

𝑎𝑚
2 + 𝑎𝑛

2 − 1/𝑐2
] [𝜑1(𝑦) 𝜏1(𝑡)  

−   𝜑2(𝑦) 𝜏2(𝑡)] 

        + 
2𝛼𝐸𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛,𝜍=1   [
𝑃𝑛(𝑧)

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠(𝜍𝜋)
]

( )

( ) 











++

−−
222

22





nm

n

aa

a
  

 

 

  ×
[𝜓1(𝑦) 𝜏3(𝑡) − 𝜓2(𝑦) 𝜏4(𝑡)]

[1+(𝑐𝜍𝜋 𝜉⁄ )2]
   

          

−𝛼𝐸 ∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

𝑎𝑚
2 −(

𝑘0
2𝜋2

𝜉2 )

𝑎𝑚
2 +𝑎𝑛

2 −𝑙0
] 𝐴3(𝑚, 𝑛, 𝑦, 𝑡)                        

(23) 
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𝜎𝑦𝑦 =

(
𝛼𝐸𝑘

𝑐2 ) ∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

−𝑎𝑚
2 −𝑎𝑛

2

𝑎𝑚
2 +𝑎𝑛

2 −1/𝑐2] [𝜑1(𝑦) 𝜏1(𝑡)   −

 𝜑2(𝑦) 𝜏2(𝑡)]  

        

+
2𝛼𝐸𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛,𝜍=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠(𝜍𝜋)
] [

−𝑎𝑚
2 −𝑎𝑛

2

𝑎𝑚
2 +𝑎𝑛

2 +(𝜍𝜋 𝜉⁄ )2] 

       × [
𝜓1(𝑦) 𝜏3(𝑡) − 𝜓2(𝑦) 𝜏4(𝑡)

[1+(𝑐𝜍𝜋 𝜉⁄ )2]
] 

       −𝛼𝐸 

∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

−𝑎𝑚
2 −𝑎𝑛

2

𝑎𝑚
2 +𝑎𝑛

2 −𝑙0
] 𝐴3(𝑚, 𝑛, 𝑦, 𝑡)                             

(24) 

 

𝜎𝑧𝑧 = (
𝛼𝐸𝑘

𝑐2
)  ∑ [

𝑃𝑚(𝑥)

𝜆𝑚

]

∞

𝑚,𝑛=1

 [
𝑃𝑛(𝑧)

𝜆𝑛

] [

1
𝑐2 − 𝑎𝑚

2

𝑎𝑚
2 + 𝑎𝑛

2 −
1
𝑐2

] 

 )()()()( 2211 tyty  −         

   

+ 
2𝛼𝐸𝑘𝜋

𝜉2
∑ [

𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛,𝜍=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

𝜍

𝑐𝑜𝑠(𝜍𝜋)
] [

−(𝜍𝜋 𝜉⁄ )2−𝑎𝑚
2

𝑎𝑚
2 +𝑎𝑛

2 +(𝜍𝜋 𝜉⁄ )2]  

   ×
[𝜓1(𝑦) 𝜏3(𝑡) − 𝜓2(𝑦) 𝜏4(𝑡)]

[1+(𝑐𝜍𝜋 𝜉⁄ )2]
 

       −𝛼𝐸 

∑ [
𝑃𝑚(𝑥)

𝜆𝑚
]∞

𝑚,𝑛,=1  [
𝑃𝑛(𝑧)

𝜆𝑛
] [

𝑙0−𝑎𝑚
2

𝑎𝑚
2 +𝑎𝑛

2 −𝑙0
] 𝐴3(𝑚, 𝑛, 𝑦, 𝑡)                            

(25)  

Special Case and Numerical Results 

Set 𝑓(𝑥, 𝑧,  𝑡) = (1 − 𝑒−𝑡)(𝑥 + 𝑎)2(𝑥 − 𝑎)2(𝑧 +

ℎ)2(𝑧 − ℎ)2𝑒𝜉,   

𝑔(𝑥, 𝑧,  𝑡) = (1 − 𝑒−𝑡)(𝑥 + 𝑎)2(𝑥 − 𝑎)2(𝑧 + ℎ)2(𝑧 −

ℎ)2, 

𝛿 =
8(𝑘1+𝑘2)𝑘𝜋

ℎ
2 , a= 4m, b=5m, h=0.2m, ξ = 1.5 m, k= 

0.86, heating time= 5 minutes  in the equation (17) to obtain 

𝑇(𝑥,𝑦, 𝑧,𝑡)

𝛿
= ∑ ∑ ∑ (−1)(𝜂+1/2) (𝜂 +∞

𝜂=1
∞
𝑛=1

∞
𝑚=1

1

2
) (

𝑃𝑛(𝑥)

𝜇𝑛
) (

𝑃𝑚(𝑧)

𝜆𝑚
) (

1

1−𝑞2)                                   

                × [
𝑎𝑛 𝑐𝑜𝑠2(𝑎𝑛)−𝑐𝑜𝑠(𝑎𝑛) 𝑠𝑖𝑛(𝑎𝑛)

𝑎𝑛
2 ] × [𝛷(𝑦)𝑒 −

𝛹(𝑦)] 

                × ∫ (1 − 𝑒−𝑡 ′)𝑒
−0.86(𝑞2+(𝜂+

1

2
)

2
𝜋2)(𝑡−𝑡 ′)

𝑑𝑡 ′
𝑡

0
                                       

(26) 

Material Properties 

The numerical calculation has been carried out for a 
rectangular plate made of pure Aluminium material with 
following material properties and dimensions. 

Young’s modulus of elasticity = E = 70 x 109 Nm-2 
Poisson ratio= v = 0.281 
Density = ρ = 2700 Kgm-3 
Specific heat at constant pressure = Cp = 921 JKg-1K-1 
Thermal conductivity = 237 Wm-1K-1 
Linear coefficient of thermal expansion = α = 2.3 x 10-5 

K-1 
Thermal Diffusivity =k = 95 x 10-6 m2sec-1 
Dimensions 
Length of rectangular plate (x-direction) = 4m 
Breadth of rectangular Plate (y-direction) = 5m 
Thickness of rectangular plate (z-direction) = 0.2m  

IV. RESULTS AND DISCUSSION 

In this article an inverse thermoelastic problem of a  
rectangular plate is discussed and expression for unknown 
surface temperature is determined on the boundary y=b, 
along the y-axis, when the temperature at some internal 
point is known and both the boundaries along x and z –axis 
are maintained at zero temperature. A mathematical model 
is developed for the function 𝑓(𝑥, 𝑧,  𝑡) = (1 − 𝑒−𝑡)(𝑥 +

𝑎)2(𝑥 − 𝑎)2(𝑧 + ℎ)2(𝑧 − ℎ)2𝑒𝜉  and displacement 
components, and stress components are computed. As an 
example, numerical calculations have been done for a 
rectangular plate made up of Aluminium metal and the 
results are graphically represented. 

From Fig.1 and Fig.3 the displacement functions Ux and 
Uz show a compressive trend in the mid portion of the 
rectangular beam along Y-direction, while  from Fig.2 it is 
observed that  the displacement function Uy shows an 
elongation along the same direction. Fig.4 and Fig.6 indicate  
that the stress functions σxx and σzz induces a  stress of 
compressive  nature along the length of the rectangular 
beam in the Y-direction, while, fig.5 indicates that the stress 
component σyy induces a tensile stress along the same 
direction ie along the direction of existence of temperature 
gradient. 

Thus, it is observed that displacement and stress along 
the direction of temperature gradient, here Y-direction, 
produces a tensile stress. Displacement and stresses along X 
and Z-directions may be compressive, due to lack of 
temperature gradient. The possible cause of thermal stress-
strain in solid bodies can be attributed to the existence of 
temperature gradient and the resulting heat flux.  
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Fig 1. Variation of displacement Ux with distance y. Fig 2. Variation of displacement Uy with 

distance y. 

 

 
 

Fig 3. Variation of displacement Uz with distance y. Fig 4. Variation of stress σxx with distance y. 

 
 

Fig 5. Variation of stress σyy with distance y. Fig 6. Variation of stress σzz with distance y. 

V. CONCLUSION 

In this article an inverse thermoelastic problem of a 
rectangular plate is discussed and unknown surface 
temperature is determined on the boundary y=b, along the y-
axis, when the temperature at some internal point is known 
and both the boundaries along x and z –axis are maintained 
at zero temperature. Finite Marchi-Fasulo transform and 
Laplace transform techniques have been effectively  used to 
obtain expression for temperature, displacement and stress. 
The results are obtained in the form of infinite series. Any 
particular case of special interest can be derived by 
assigning suitable values to the parameters and functions in 

the expressions from (20) to (25). This  method of  
thermoelasticity study is  effective as compared to other 
analytical-numerical methods and results obtained show a 
good agreement with earlier studies.The study can be 
helpful in various design and structural engineering 
processes, particularly, the strain and stresses in rectangular 
shaped base or foundations of furnaces, containers, and 
nuclear reactors can be evaluated.   
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