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 
Abstract:  The problem of identifying unstructured nonlinear 

systems is generally addressed on the basis of multi-model 
representations involving several linear local models. In the 
present work, local models are combined to get a global 
representation using incremental fuzzy clustering. The main 
contribution is a novel vector similarity measure defined in the 
System Working Space (SWS) that combines the angular 
deviation and the usual Euclidean distance. Such a combination 
makes the new metric highly discriminating leading to a better 
partitioning of the operating space providing, thereby, a higher 
accuracy of the model. The developed partitioning method is first 
evaluated by performing linear local model (LLM) based 
identification of a academic benchmark multivariable nonlinear 
system. Then, the performances of the identification method are 
evaluated using experimental tropospheric ozone data. These 
evaluations illustrate the supremacy of the new method over the 
standard Euclidian-distance based partitioning approach. 

Keywords: MIMO Nonlinear Systems, System Identification, 
Local Linear Models, Fuzzy Clustering, Similarity Measure, 
Angular Deviation, Weighted Least-Squares (WLS). 

I. INTRODUCTION 

Nonlinear system identification is of major importance in 

control and forecasting system design. So far, several 
identification approaches have been developed to deal with 
nonlinear systems. The various approaches mainly differ on 
the model structures used to capture the system nonlinear 
dynamics. In this respect, one can mention the block-oriented 
nonlinear model approach [15],[20], [27], the nonlinear state 
space model approach [9], the Nonlinear System 
Identification using Neural Networks [37] and the 
Multi-Model (MM) approach involving LLMs [11], [18], 
[32], [20], [4]- [6][29]. In this paper, the emphasis is put on 
the MM approach that consists in determining a collection of 
Local Linear Models (LLMs) representing the linear 
behaviour of the system around various operating points and 
combining these LLMs to obtain a unique nonlinear model 
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approximating well the global behaviour of the system. The 
combination of the LLMs is a kind of interpolation of these 
models using e.g. fuzzy tools [42], [39]. That is the problem 
of MM identification amounts to select an appropriate 
structure of the LLMs, determine the best partition of the 
LLMs in the system working space (SWS) and estimate their 
parameters. The LLM partitioning and parameter estimation 
must be performed, not only in order to minimize the output 
estimation (prediction or simulation) error, but also in order to 
minimize the number of required local models i.e. to reduce 
the size of the MM. 

The partitioning problem in MM identification consists in: 
(i) finding the partitioning parameters i.e. the prototypes and 
covariance matrices; (ii) and estimating the parameters of the 
local models. These parameters must be determined so that a 
cost function of the output estimation error is minimized. 
There are two main types of partitioning strategies. The first is 
called supervised classification strategy and consists in a 
priori partitioning the entire product space including (or 
covering) the input variables; this task can be performed using 
e.g. grid partitioning [39] or heuristic tree-construction 
algorithms [41], [25], [28], [32], [33], [30]. The second 
partition type, referred to as unsupervised classification, is 
one where partitioning is driven by the distribution of the 
experimental data. This involves a cost function where a 
metric is used to discriminate between available data 
measurements, leading to overlapping fuzzy subdomains (the 
wider the input spanned space, the wider the validity domain). 
The point is that the complexity of all supervised 
classification methods grows rapidly with the number of input 
variables. This complexity is due to several facts e.g. grid 
partitioning leading to subdomains of hyper-cubic form and 
generating useless local subdomains and redundant sub 
models (i.e. neighbouring models that provide the same 
behaviour). Furthermore, the non-uniform distribution of the 
training, i.e. estimation data in the system working space, also 
contributes to this complexity. 

Various cost functions using standard metrics (e.g. 
Euclidian or Minkowsky) have been used to cope with the 
partitioning problem at hand. Besides, these cost functions 
have been performed in product-space clustering 
(self-organizing) and have been designed in several works 
[1], [2], [5]  

Presently, we are addressing the (fuzzy) partitioning 
problem for MM identification by developing an 
unsupervised partitioning method. The developed method 
involves a learning process using an Incremental Fuzzy 
Clustering algorithm (IFC) based on a cost function involving 
a novel similarity metric.  
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The novelty lies essentially in the combination of Euclidian 
distance and angular deviation between data vectors. 
Basically, an incremental fuzzy clustering algorithm amounts 
to finding expected partitions (while visiting the learning-set), 
increasing (if necessary) the number of clusters, and 
simultaneously determining their locations. Doing so, the 
fuzzy clustering is made much less sensitive to the number 
and the initial position of the prototypes, compared to 
non-incremental solutions [12], [10]. Introducing angular 
deviation in the distance between elements provides the 
learning algorithm with a higher discriminating capability. 
Specially, the obtained partitions have the following features: 
(i) the number of local domains and initial positions of their 
centers are much better optimized; (ii) the obtained local 
domains are allowed to take different forms, not only the 
common ellipsoidal form; (iii) the effects of the curse of 
dimensionality, which refers to the phenomena that occur 
when analyzing data in large spaces, are greatly reduced. A 
preliminary version of this work, limited to mono-input 
systems, has been presented in the conference paper [36]. The 
present paper presents the full result corresponding to the 
multi-input case and providing applications of the 
identification method to more systems including the 
three-tank system and the ozone process.  

This paper is organized as follows: in Section 2, the 
identification problem based on MM representation is 
formulated. In Section 3, the partitioning issue in MM 
identification is discussed and the proposed solution is 
presented, the unsupervised fuzzy partitioning based MM 
identification algorithm is developed and the MM parameter 
estimation procedure is described. The performances of the 
developed identification method are illustrated in Section 4 
through two case studies. Concluding remarks end the 
manuscript. 

II.  FORMULATION OF THE MULTIMODEL 

IDENTIFICATION PROBLEM OF NONLINEAR 

SYSTEMS 

We are considering the class of MISO nonlinear systems 
that can be represented by the following general nonlinear 
model: 
 )())(()( twtfty    (1) 
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where )(tz denotes either the system measured output 

)(ty  or an estimated output )(ˆ ty  (depending on whether (1) 

is a Nonlinear AutoRegressive with eXogenous input 
(NARX) model or Nonlinear Output Error (NOE) model [39]. 
The function (.)f  is an unknown nonlinear function mapping 

a subset )(RΩ
lnn ba 

 into R , and )(tw  is a model error 

term standing either for output measurement noise or for a 
bounded modelling error. In the present study, the system 
model (1) is subject to the following assumptions: 
 The function (.)f  is class C1.  

 The noise )(tw  is a zero mean sequence of independent 

random variables. 

 The LLM structure parameters an and bn  are 

upper-bounded by known bounds 

an  and 

bn  

respectively.  

2.1. Local Linear Modeling Approach 

The LLM approach consists in partitioning the system 
working space in a finite (preferably small) number of 
domains. In each domain, the system is assumed to be well 
represented by a local linear model (Fig 1). The local models 
are then combined in a suitable way forming a unique 
multi-model representation describing well the global 
behaviour of the system. The local domains are expressed in 
terms of their centers and associated covariance matrices. 
Accordingly, the output responses of the LLMs are combined 
together to form the system output estimate )(ˆ ty as follows: 




M

1k
kk tytty )())(()(ˆ   (3) 

 
Fig. 1. Partitioning of System Working Space 

 
Where ky  is the output of the kth LLM , )(t  is the system 

premise variable, and (.)k is the Membership Function 

(MSF), subject to some constraints (see equations (6) and (7) 
hereafter). In equation (3), M  is the number of sub-domains 
and )(tyk  denotes the output of the kth LLM and is assumed 

to be given by the following regression equation: 

 )()()( ttty kk
T
kk    (4) 

Where k  and k  denote, respectively, the parameter vector 

and the equation error of the kth LLM; k  is the regressor 

vector defined as follows:  
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As mentioned earlier, kz  designates either the system 

measured output ky  or the estimated output kŷ   of the kth 

LLM (depending on the nature, NARX and NOE, of the 
LLM). The model description is completed by the following 
constraints on the functions (.)k , for any )(t at any time t : 
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2.2. Identification problem formulation  

Considering the local linear modelling equations (2)-(7), 
the LLM identification problem at hand can be formulated as 
a constrained multi-objective optimization problem defined 
as follows: 
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 Given a consistent set of input-output estimation data 

record )( 1lNN
eZ    

 Find the minimal System Working Space partitioning 

parameters 
M̂

̂ , including the centers and covariance 

matrices of the local domains, and find the LLM 

parameter estimates 
M̂

̂ that minimize the global output 

errors, 
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As emphasized by (9), after the SWS is well partitioned, the 
LLM structures and parameters can be estimated by using 
local optimization tools such as the weighted least squares (or 
the principal component analysis), and structure selection 
criteria such as the Final Prediction Error (FPE). 
Nevertheless, the main problem which consists in finding the 

less complex, i.e. short-size partition
M̂

̂  that matches the 

global behaviour of the system is still a challenging problem. 
In summary, multi-model identification consists of answering 
the following questions: 

- What is the optimal number M̂  of sub-domains of SWS? 
- What common structure should be chosen for local models 
( n̂ order of LLMs)? 
- How should one build the membership functions 

(.)k delineating the sub-domains? 

- How should the parameters 
M̂

̂ of the local models be 

determined? 

2.3. On the partitioning issue in Multi-Model 
identification  

Partitioning in system identification consists in finding the 
locations of the different local domains within the system 
working space. It can be done using a variety of techniques 
that can be divided into two broad categories. A first category 
uses the strategy of a supervised learning where the 
partitioning of the SWS is constantly controlled by the user, 
according to rules provided from information a priori on the 
behavior of the system. These include: grid partitioning, 
decision tree-based partitioning [47], partitioning based on 
non-optimal construction algorithms with increasing heuristic 
strategies [33], partitioning based on the Johansen and Foss 
algorithm [25]. The problem with this category of techniques 
is that one can obtain sub-domains that are never or rarely 
visited, which makes the modeling unnecessarily heavier 
[23]. The second category implements the techniques of 
unsupervised learning (Clustering or self-organization) where 
the research of sub-domains (clusters) is guided by data 
collected themselves "data-driven". Partitioning is based on 
fuzzy classification, partitioning based on neural networks, or 
partitioning based on neuro-fuzzy techniques [3]. We can add 
the grouping technique where we start with a large number of 
small local models and as learning progresses, local models 
are merged to obtain an optimal structure. With these last 
techniques, it is certain that the results of the modeling will be 

much more optimized than those of the first category, but 
provided that the signals chosen for the excitation are 
persistent ie they allow to sweep and sufficiently the SWS. 
They must have enough amplitudes and frequencies 
appropriate to excite all the interesting modes of the system. 

When the transitions in the system working space between 
the local domains are rather softer than hard, unsupervised 
fuzzy learning may be an effective tool for data partitioning 
[21], [8], [19], [23], [4]. Unsupervised learning is data 
distribution driven clustering method. It consists in seeking 
the true local domains (clusters) i.e. regimes of a system. 
When the number of clusters is assumed to be a priori known, 
the initial positions of the clusters prototypes can be boosted 
by using an appropriate technique for e.g.  see [45], [35], [7]. 
If the number of subdomains within the SWS is unknown 
beforehand then standard fuzzy clustering tools, such as 
fuzzy-c-means (FCM) and Gustafson-Kessel (GK), cannot be 
used directly because the latter necessitate the knowledge of 
the number of clusters and their initial positions. Many 
iterative clustering algorithms combining supervised and 
unsupervised learning have been proposed to determine the 
number of sub-domains, see e.g.[43] where at each clustering 
iteration the largest and worst modelled cluster is divided into 
two new clusters, before recalling the GK classification. 
Presently, we get rid of the lack of knowledge on the number 
M of clusters by designing an incremental Fuzzy clustering 
algorithm involving a new metric combining the usual 
Euclidean and angular similarity. The new combined 
similarity metric is defined here after. 

2.4. New measure of similarity combining Euclidian and 
Angular distance 

Before addressing partitioning, it is necessary to recall the 
influence of the choice of the metric to use on the shape of the 
clusters or sub-domains. The usefulness of a distance is to be 
able to compare the similarities and the differences between 
two vectors (more generally between two objects). This 
comparison is highly sought after in several areas of pattern 
recognition and automatic classification. The choice of 
distance is a critical issue for multi-variable data mining 
methods. Indeed, it is at this stage that it is possible for the 
operator to make best use of the prior information available to 
him, in order to choose a relevant measure of distance to 
compare the similarities between the observations. The most 
commonly used dis-similarity measure is Minkowski's 
distance. Euclidean distance is the most common of 
Minkowski distances and it seems to be the most preferred in 
engineering work. Euclidean distance is the most common of 
Minkowski distances and it seems to be the most preferred in 
engineering work. It imposes spherical shapes for clusters, 
whereas the other Minkowski distances impose 
parallelepipedic shapes. In general, the shapes of the clusters 
can be arbitrary and the choice of a given distance inevitably 
affects the result of Clustering [13]. Other distances are more 
preferred in data mining applications (Cluster analysis) 
because they take into account the density of data in each 
cluster such as Mahalanobis distances [48], which lead to 
elliptical shapes. First, recall the general definition of 
similarity measure. 
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Definition 1 (Similarity measure). A similarity measure S  in 

a subset nZ  is defined as a mathematical mapping 

ZZ , with the following symmetry, positivity and 

minimality properties, for all Zyx , : 

 ),(),( xyyx SS   (11) 

 0yx ),(S  (12) 

 ),(),( xyxx SS   (13) 

 
New similarity measure introduced in this paper is defined 

as follows: 
 Definition 2 (Combined Euclidian - Angular similarity). In 

the present work the combined Euclidian-Angular similarity 
), yxEA (S between two points x and y within the SWS is 

defined as the root square of the product of the angular 

deviation ),( yxAS and Euclidian ),( yxES  similarities 

between vectors x  and y : 

 ),(S),(S),(S yxyxyx AEEA    
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Where 

Ed  is called normalized Euclidian distance and the jr  

designates the maximal distance between all points all along 
the dimension j :  

    j
SWSy

j
SWSx

j yxr


 minmax  (20) 

jx  and jy  designate the thj component of the vectors x  

and y , respectively. 

Two vectors representing two distinct objects are said to be 
similar if and only if they are similar from a point of view of 
two metrics: the Euclidean distance and the angular distance. 
Definition 2 is commented upon to emphasize the interest of 
the new similarity measure. First, note that in fuzzy clustering 
the Euclidian similarity, when separately considered, allows 
to distinguish between spherical shape regions (Fig.2). On the 
other hand, the angular similarity when separately used allows 
to distinguish between conical shape regions (Fig.2). The new 
combined similarity measure, as described by Definition 2, is 
able to differentiate define, and differentiate between, more 
complex shapes than just spherical or conical. This power of 
discrimination seems promising for systems with high 
nonlinearities.The partitioning example of (Fig.3) illustrates 
the higher discrimination capability of the combined 
similarity measure, over Euclidean measure. 
 

  

Fig. 2.  Equidistant regions to the vector T011 ][ , in 

the sense of the Euclidian ES  (left) and combined EAS  

(right) similarities respectively. 
 

 
Now that the combined Euclidian-Angular similarity 

metric is defined we are ready to define the statements of the 
unsupervised fuzzy clustering algorithm that will be used in 
order to seek the size of the MM that captures all the different 
regimes (or equivalently shapes in the SWS) of the system.  

III. INCREMENTAL FUZZY CLUSTERING (IFC)  

In the present study, the search for the number of 
sub-models representing the global model in the different 
zones of the product space of the system is ensured by an 
Incremental Fuzzy Clustering algorithm. The latter searches 
the minimal number of clusters that may exist in the training 
set (as well as prototyping initial positions). The search is 
performed with respect to a predefined similarity criterion, by 
applying the following Incremental Fuzzy clustering rule on 
the training data set.  

In the learning phase ),...,( N1t  , each T
t  vector [6] 

provides information on the distribution of measurements: 
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Fig. 3. Partitioning example of nonlinear function 

²²
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
   by using Euclidian (left) and the 

combined Euclidian-Angular (right) similarity 
metrics 
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Algorithm: Incremental Fuzzy Clustering (IFC) 
 Start 

1 Fix similarity threshold thS  

2 The first prototype being initialized by the first data 
sample included in the first learning phase 

T

11v  and 1M . 
3 For N2t ,..., { 
4 If the vector t  presents a sufficient similarity 

( EAS larger than thS ) with at least one prototype, all the 

prototypes of all the clusters iv ),,( M21i   are 

updated according to learning rule (22) to take into 
account the new information given by this vector. 

5 Else if t  does not present a sufficient similarity ( EAS  

smaller than thS ) with existing prototypes, a new class is 

created and centred on it )( 1MM  } 
6 Return   M21 vvvM ...,,,,  the found number of 

clusters and their prototypes. 
 End 
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Where tin ,  is the fuzzy cardinality of the cluster i  at the 

iteration t : 
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The competitive learning rule (22) can be seen as an 
adaptation of the general learning rule ‘winner takes all’ [22]. 
This provides a simple and effective way to exploit the 
information given by each new observation t  during the 

learning process.  In this step, the similarity threshold thS is 

fixed at a given value, and the IFC algorithm provides the 
number M  of clusters (or subdomains) existing in the 

operating space and their initial centers  0
M

0
2

0
1 vvv ,...,, . 

3.1. Unsupervised fuzzy partitioning based Multi Model 
identification algorithm 

As pointed out earlier in this section, the problem of lack 
of knowledge of the number M  of submodels and their initial 
prototypes is solved by the IFC algorithm, where partitioning 
is performed by the use of the combined similarity metric. The 

obtained partitioning 
M̂

̂  is optimized using the standard 

algorithm Fuzzy Means Clustering (FCM). The topological 
properties of the obtained clusters, i.e. the centers and 
covariance matrices estimates, are then used to construct 
Members Ship Functions (MSFs) which, in turn, are used to 

estimate the MM parameter vector M̂  by using the Weighted 

Least-Squares (WLS) minimization algorithm.  
The distance measurement to be used in the FCM 

optimization algorithm is also based on a combination of 
distances commonly used in pattern recognition [40], 
specifically; the used clustering distance is a linear 
combination of the Euclidian distance (19) and the angular 
deviation (16), i.e.  

 AEEA d1dd )(*    (24) 

For some scalar 
 10   (25) 

Bearing in mind the fuzzy clustering topics introduced 
above, the Skelton of the whole process of the proposed 
unsupervised fuzzy partitioning, based MM identification 
algorithm is shown in Figure 3. It is seen that the general 
identification scheme consists of three main iterative steps, 
namely: (i) clustering step, carried out by the IFC that 
provides the number M  of sub-domains; (ii) sub-domains’ 

optimization and parameter estimation; (iii) model validation 
according to prespecified user’s criteria.  In this algorithm, all 

possible models with structures, ranging from the minimal to 
the maximal size, are identified and tested. For clarity, the 
implementation details of FCM algorithm is summarized in 
Appendix A1. 

 The Multi Model identification algorithm based on 
unsupervised fuzzy clustering begins by initializing the order 
of the searched LLMs.  Then, at each order increment, the 
similarity threshold thS   is changed according to (28a) and the 

IFC algorithm is executed. Then, the optimal number M̂ of 
clusters and their initial prototypes are obtained, and the 
optimization of the partitioning of the SWS is performed 
using the fuzzy c-means (FCM) clustering algorithm [8]. This 
series of tasks is repeated until the constructed model 
successfully passes the validation test. Once the model 
candidates are built up, the best model in the sense of 
accuracy/complexity is selected based on the Akaike’s Final 

Prediction Error (FPE) criterion [33]:  
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Where N  is the number of data samples, pn is the number of 

effective parameters, and )(I  is the loss function.  

3.2. Update of the similarity measure threshold 

The similarity threshold thS  takes values in the interval 

 maxmin ,SS  where minS  and maxS are a priori determined 

using a conventional extremum search procedure in the 
operating space of the system. During the cluster search, the 
similarity threshold is tuned online as the learning process 
progresses. Presently, the following iterative law, that reduces 
the threshold during the learning process, is proposed (see 
also Figure 4). At each iteration max...,,, ss i21i  , the 

threshold similarity )( si
thS  is updated as follows: 
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With 0  is a parameter controlling step learning.  
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It depends on the relative extent of similarity measure and 
maximum number of iterations  maxSi   fixed by the user. 

3.3. Multi-Model Parameter Estimation 

Given the centers and the dispersions of the obtained 
clusters, the classification of all elements in the SWS can be 
performed by seeking for each prototype the elements with 
the highest membership degree. The MM parameter 
estimation consists in finding the best estimates of the 
parameters i.e. partitioning properties of the MSFs and the 
parameters of the LLMs. Presently, these parameters are 
estimated by exploiting the statistical properties of the 
clusters and using the WLS algorithm as a local minimization 
tool. 

a) Construction of the MSFs 
In the fuzzy approach, the membership function may be 

triangular, trapezoidal, Gaussian or sigmoid. In this work, 
Gaussian MSFs are used which. Each of them is characterized 
by a mean vector iv  M1i ...,,  and a dispersion matrix i  

and is defined as follows [44], [1]: 

      







 

i
1

i
T

ii CtQCt
2

1
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Where iC  and iQ  designate the center and the dispersion 

matrix of the first n  components of the argument (i.e. vector 

t ) belonging to the cluster )(i . More specifically, one has:  

 )( : n1C ii v  (30) 
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Fig. 4. Example of membership degree function of 

multi-models 
 

Where iF   is the covariance matrix of the set of elements 

forming the cluster )(i , and kiu  is the degree of 

membership of the vector k  in cluster )(i of center iC  

(see Fig. 4). 

b) LLM parameter estimation   
Given the properties of the cluster’s MSFs, the parameter 

estimates ̂  of MM are estimated using the Weighted Least 
Squares (WLS) algorithm: 
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It is well known that the WLS estimate converge to its true 
value if the matrix R full rank which is guaranteed persistently 
exciting input signals are used in the identification 
experiment. 
 

Algorithm: Multi Model identification algorithm based on 
unsupervised fuzzy clustering 

 Start 

1 Acquire the experimental input / output data of the system by 
respecting the identification protocols. 

2 Initialize the order value of the sub models ( 1n : ) 

3 Determine the extent of the value of the similarity measure, then 

initialize the value of its threshold ( ],[ maxmin SS , min: SS th ) 

4 Use the IFC algorithm to detect the number "" M  of sub models 
which can represent the system globally 

5 Call the FCM algorithm to optimize the partitioning of the system 
workspace  

6 Construct the functions of the degrees of appearance of the sub 
models and their parameters 

7 Test the combination of models obtained, by calculating the RMS 
and PFE indicators 

8 If the results are not satisfactory and if the similarity measurement 

threshold value has not yet reached maxS , update the similarity 

measurement threshold value(  thth SS : ) and go to 4 

9 Else 
     Increase the value of the order of the multi-models 
( 1nn : ) 

10
 

If the maximum permissible value of the order has not yet been 

reached,(if ( maxnn  ) go to 3 

11
 

Else  
     According to the RMS and PFE criteria, choose the best 
partitioning and obtain the optimal values of the number M of sub 
models and the value n of the corresponding order 

 End 
 

3.4. Identification method assessment  

The multi-model identification method based on fuzzy 
partitioning that we have just described, will now be 
evaluated through applications to multivariable nonlinear 
systems.  
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These include the MIMO academic reference in (Narendra, 
1990) and the phenomenon of pollution by tropospheric 
ozone [28]. In any case, the selection of the best multi-model 
partitioning is performed using the following root mean 
square (RMSE): 
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IV. RESULT OF SIMULATION AND DISCUSSION 

4.1. Multi-Model Identification Of Narenda’s Mimo 

Benchmark 

Narenda’s MIMO benchmark [31][26] is a two-input 
two-output nonlinear dynamical system. The two outputs 

21 yy , are related to the two inputs 21 uu ,  by the following 

input-output equations: 
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 (40) 

Where the input signals take values in the following 
interval: ],[)()( , 11tutu 21  . The input-output data used in 

the identification process are collected on the system being 
excited with Amplitude modulated Pseudo-Random Binary 
Signals (APRBS). The identification data set of size 600 is 
divided in two segments: the first 450-length data are used for 
estimation of the multiple model parameters; the remaining 
150-length data are used in model validation.  To determine 
the optimal dimension of the regression vector, the FPE is 
used. To this end, the effective number of parameters 

bap nlnn   is considered and the order )( nnn ba   

of the regression vector is tuned from 1 to 4, using both 
metrics (the Euclidean and the new combined metric). The 
validation results, based on the criterion FPE, show that the 
optimal value, for the two output variables, corresponds to 

2n ˆ , see Appendix A2, Fig.14-17. 

 
Fig. 5. Estimation of output )(ty1  using Euclidean metric 

(Euc_Dist) and combined metric (Com_Dist), with ordre 
2n ˆ , )( MfRMSE dB   

 
Fig. 6. Validation of output )(ty1  using Euclidean metric 

(Euc_Dist) and combined metric (Com_Dist), with 
ordre 2n ˆ , )(MfRMSE dB   

 
Fig. 7. Estimation of output )(ty2 using Euclidean metric 

(Euc_Dist) and combined metric (Com_Dist), with 
ordre 2n ˆ , )(MfRMSE dB   

 
Fig. 8. Validation of output )(ty2 using Euclidean metric 

(Euc_Dist) and combined metric (Com_Dist), with 
ordre 2n ˆ , )( MfRMSE dB   

 
Comparing the results obtained with the two metrics, 

especially during the validation test, we note the importance 
of the combined metric compared to the Euclidean metric.  
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For example, for a quality of dB15.5RMSE    of the two 

outputs )(ty1 (Appendix A2, Fig.15) and )(ty2  (Appendix 

A2, Fig.17), only 5M   sub-domains will be needed for the 
combined metric, whereas for the Euclidean metric we need at 
least 12M   sub-domains. 

In validation stage of the global model obtained the 
obtained error rate obtained (RMSE) with the use of the 
combined metric is much lower than that obtained using the 
Euclidean metric (see Fig.5-8). With an optimal order 2n ˆ , 
the optimal number of sub-models is 12M  , and the error 
rate is better with the new metric than with the Euclidean 
metric, see Fig. 9. 
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Fig. 9.  Measured (black) and estimated (coloured) output 

using combined metric ( 12M2n  ˆ,ˆ ) Identification 

stage (bleu) and validation stage (red). 

4.2. Multi-Model Identification of the tropospheric 
Ozone Pollution phenomenon 

In this example, we are interested in the monitoring of the 
tropospheric ozone for health and flora safety. Ozone (O3) is a 

summer pollutant harmful to human health, wildlife and 
Flora, due to its deep penetration into the lungs. It can cause 
high concentration inflammation and bronchial 
hyper-reactivity, Eyes, nose and throat irritations, 
accompanied by breathing difficulties. The ozone level is an 
air pollution indicator. It indicates the amount of ozone in the 

atmosphere. From 3mg180 / , people are aware of the 

pollution, and from 3mg240 / , a pollution alert is launched. 

The tropospheric ozone phenomenon is non-linear, 
multivariable (MISO) and time-varying. Several works has 
addressed the modelling of the ozone concentration in the 
ambient area [28], [38], [12]. The selection of influent input 
variables has been done according to the (hourly) correlation 
between the output and all input variables [12].  

In the present study, the measurement data concerning the 
period from the first to September 15, 2014 are provided by 
the "NORMAND AIR" Observatory air quality. The Factors 
affecting on the concentration of ozone O3 are especially: the 
temperature, the rate of humidity, the wind speed, and the 
rates of nitrogen oxide NO and dioxide NO2. The histogram 
plots in Fig. 14 confirm this. 

The number of input signals is relatively high, )( 5l   and 

with an order )ˆˆ( 4nn ba   , the size of regression vectors 

reached 25. The problem of the concentration of the fractional 
distances [17], also called the curse of dimensionality, is 
displayed. At this level, the contribution of discriminating 
character of the angular deviation is feeling well and helps to 
separate observations (regression vectors). The selected input 
data measurements used to carry out the MM identification 
algorithm are plotted together in Fig. 10. 
 
 
 
 

Fig.10. Physical factors affecting on ozone O3 
concentration: a) Temperature (°C), b) Humidity (%), c) 

Wind speed (m/s), d) NO (%µg/m3), e) NO2 (%µg/m3) 
 

Fig.11. Distribution of the factors influencing the 
concentration of ozone in the air a) Temperature (°C), b) 
Humidity (%), c) Wind speed (m/s), d) NO (%µg/m3), e) 

NO2 (%µg/m3), f) ozone O3 (%µg/m3) 
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Fig.12. Measured (black) and estimated ozone concentration 
with Euclidean metric; estimation (blue) and validation 

(red) )ˆ;ˆˆ( 16M4nn ba   

Fig.13. Measured (black) and estimated output signals 
with metric combining the angular deviation; estimation 

(blue) and validation (red) )ˆ;ˆˆ( 16M4nn ba   

Applying our approach to the prediction of the rate of 
ozone in the ambient air, we can see that it can be expected at 
least in the next three days with good precision(Fig. 13). This 
confirms the interessant relative results obtained by the new 
metric introduced. 

V. CONCLUSION 

In this work, we have addressed nonlinear dynamical 
multivariable systems identification using the multi-model 
approach based on fuzzy classification. A new similarity 
measure is constructed, by combining Euclidian distance with 
an angular metric that enjoy higher discriminating capability 
than standard metrics. Partitioning operating space is carried 
out by means of two main nested loops. The external loop is 
devoted to finding local models order while the internal loop 
is devoted to determining the threshold of similarity measure. 
Clusters search is performed by the fuzzy learning based FCM 
algorithm. Finally, the weighting functions are constructed 
and parameters estimation, of each sub-model, is carried out 
by least squares (LS) technique. RMSE and PFE criteria are 
used in model validation. The proposed identification 
approach is assessed through applications to nonlinear 
dynamic system benchmarks and to ozone concentration 
modelling in ambient air. The results obtained, show that, 
with the combined metric, it is possible to obtain a good 
compromise between the precision (error rate) and the 
complexity (number of sub-domains and order of the 
sub-models) of the model overall obtained, compared to the 
results obtained with the Euclidean metric alone. This would 
give more interest to the multimodel identification of the 
nonlinear dynamic systems. 

APPENDIX A1 

FCM algorithm generates a fuzzy partition. This means that 
each data sample is assigned to each cluster with a certain 
degree of membership. For each data sample all degrees of 
membership sum up to 1 (41). And no cluster is completely 
empty, and no cluster aggregates all data (42). 
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FCM Algorithm 

 Start 

1
 

Fix:  

- Number of clusters: MM ˆ   
- parameter  controls the fuzziness: 2m   

- Maximum number of iterations: maxk  

- Criterion for stopping the algorithm:
75

1010


   

 
2
 

Initialize: 

- initial centers :  )()()()( ...,,, 0
M

0
2

0
1

0 vvvV   

- Counter of iterations: 1k    
3
 

Repeat { 

 for M21i ...,,,  and   for sN21t ...,,,  

Calculate  ituU   according to (44) 

 for M21i ...,,,  

Update the new centers  )(k
iV according to (45) 

 1kk   

       } until    )()( 1kk
VV  or   maxkk   

4
 

Return )ˆ,ˆ( UV  

 End 
 

 
This algorithm is based on the minimization of the 

objective function (43). Since this functions minimized by 
clustering techniques is typically nonlinear, FCM algorithm 
operates iteratively starting from initially chosen clusters 
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where for each iteration of the clustering process the 
membership degree (MSD) of each element to each cluster 

sN1tM1iituU ..,..)(  and the positions of the clusters 

M1iivV ..)(   are updated by (44-45) respectively. 
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The parameter m  controls the fuzziness of the 
memberships and usually it is set to 2. For high values of m  
the algorithm tends to set all the memberships equals 
meanwhile for m  tending to 1 we obtain the K-Means 
algorithm where the memberships are crisp. The algorithm 
stops when the prototypes of all the clusters )...;( M1iv i   

become almost stable by satisfying: 


)()( 1k
i

k
i vv  

APPENDIX A2 

 
Fig. 10. Validation of output )(ty1 using Euclidian 

metric, f(M)FPE     2n ˆ  

 
Fig. 11. Validation of output )(ty1 using the new 

combined metric, f(M)FPE    2n ˆ  

 
Fig. 12. Validation of output )(ty2 using Euclidian 

metric, f(M)FPE    2n ˆ    

 
Fig. 13. Validation of output )(ty2 using the new 

combined metric, f(M)FPE     2n ˆ  
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