
Traffic Simulation Environment Based on

Sumo Software

Xuhong Li1*, Liyong Zheng1†, Bin Su1,

Xu Guo1, Yonggang Hao1 and Wenjing Li1
1HANGZHOU HIKVISION DIGITAL TECHNOLOGY CO.LTO.

lixuhong@hikvision.com, zhengliyong@hikvision.com, subin5@hikvision.com,
guoxu5@hikvision.com, haoyonggang@hikvision.com, liwenjing8@hikvision.com

Abstract

In recent years, traffic modeling and simulation techniques have been widely used in

the research on urban traffic planning, signal control optimization, and many other traffic-

related subjects. Meanwhile, the extensive employment of traffic simulation in industry

gave rise to numerous traffic virtual environments. In this paper, we introduced an easy-

to-use simulation environment based on SUMO (SumoEnv). The SumoEnv can generate

a wealth of traffic indicators and provide a simpler access to them by encapsulating the

original SUMO application programming interfaces (API) into a more integrated and

intuitive one. With this convenience, algorithm engineers who are not familiar with traffic

simulation may save their precious time and effort while working with SUMO. Moreover,

the SumoEnv is also equipped with a lot of traffic simulation scenario models to reduce

the difficulty of using SUMO.

1 Introduction

With the rise of digital twin concepts and technologies, urban traffic simulation environments are

becoming more and more popular in the industrial world. Up to now, traffic simulation is widely used

in the traffic management and control, such as signal control, vehicle guidance, road channelization

design, traffic incident simulation, etc. [1, 2, 3]. Typically, most simulation applications must rely on

mature traffic simulation software, SUMO or VISSIM for example. [4] As a result, when developing

algorithms in the environments of this software, it is necessary to manually build credible traffic

simulation models. On the other hand, corresponding programs are needed to monitor the interactions

between the algorithm and the simulation environment. Unfortunately, both of these two works are very

time-consuming and labor-intensive, with the outcomes of them hardly to be reused effectively.

In current situation, there is a strong demand for traffic simulation. However, the construction of

simulation models and the development of interactive environments raise a high barrier between the

professionals and others, which is time-consuming and labor-intensive to overcome. This unbalanced

relationship reflects the status quo of traffic simulation applications and seriously restricts the rapid

practice of them. Therefore, we are committed to develop a complete and universal traffic simulation

environment to solve this problem. The traffic simulation environment consists of an interactive

environment and a scenario library. Many traffic indicators are ready to be retrieved from the interactive

environment through only a few interfaces. In addition, the simulation scenario library covers several

standard simulation models such as single intersection, trunk and region model, as well as the scenarios

gathered in practical application process.

More recently, the deployment of reinforcement learning (RL) in the development of traffic

management and control algorithms further spawned some associated traffic virtual environments, such

as the CityFlow maintained by Shanghai Jiaotong University [5], and the flow project maintained by

Berkeley University [6]. These projects construct a RL framework in the simulation environment,

providing a large-scale city traffic scenario for the training of traffic optimization algorithms. However,

these environments are strongly tied with RL itself, which means that there would be a large number of

complex configurations and strict constraints. One must handle a large amount of complicated coding

work first before creating a single traffic scenario, and has no access to obtain additional traffic

indicators. This makes the virtual environments very unfriendly to users who have little experience in

using traffic simulation. Worse still, the communities of these projects are not very active, leaving the

out-of-date versions and a lack of documentation.

To fill the abovementioned gap, we are aiming to develop a generic and simple simulation

environment that can provide a wealth of traffic indicators and support the expansion of custom ones.

Certainly, fewer and simpler interface functions are preferred to facilitate the interaction between users

and the simulation environment. In addition, the environment is expected to have the capabilities of

traffic incident simulation. Along with a scenario library that contains many traffic models, this

simulation environment may significantly reduce the cost of time and effort for users when using traffic

simulation.

Therefore, with the goal of providing better services for practical applications, we built a simulation

environment based on the secondary development of SUMO. Furthermore, we are planning to

contribute this work to the SUMO community. The main characteristics of it are as follows:

1) An out-of-the-box virtual traffic environment, which is able to provide a wealth of traffic

indicators according to the configuration of the user;

2) A few easy-to-use APIs to interact with the traffic simulation environment;

3) A traffic simulation scenario library including many pre-defined simulation models;

4) Compatibility with SUMO's TraCI and Libsumo interfaces;

5) A web-based visualization interface for simulation indicators;

6) Ability to simulate traffic incidents.

2 Design Concepts

Basically, there are two interactive interfaces named TraCI and Libsumo in the SUMO software.

They already present many functions for users to obtain several traffic indicators or interact with the

traffic lights and vehicles in simulation environment. Despite this, to fully utilize the TraCI or Libsumo,

users have to be familiar enough with not only SUMO, but also some common sense of traffic

simulation, which raises a high barrier for normal algorithm engineers.

In order to reduce the difficulty for users to use SUMO, we re-encapsulate the SUMO software

into a simulation environment (SumoEnv) with the concept of object-oriented programming (OOP).

Although the SumoEnv exposes only a few simple interface functions, it is able to provide users with

access to obtain all traffic indicators, control traffic lights, or simulate traffic incidents. Additionally, it

is equipped with a built-in simulation scenario library, so users may have no need to build sumo

simulation models by themselves.

The traffic indicators in the SumoEnv are designed as attributes attached to the lanes. Users can

decide which traffic indicators will be computed and how to compute them by setting parameters in the

SumoEnv’s configuration (JSON files). Users can choose the calculation logic of indicators freely, and

the SumoEnv will load corresponding indicator operator according to the strategy mode. Considering

the efficiency of the algorithm development, a coroutine is deployed to allow transferring program

control between the SumoEnv and the investigated algorithm. The design outline is shown below:

a) An initialization function that integrates features such as parsing the road network file,

initializing the lane class, and loading the configuration file, is presented.

b) We adopted the idea of strategy combination in the calculation of traffic indicators to make

sure that the SumoEnv loads only the required operators. By inheriting from the superclass,

users are allowed to customize their own indicator calculation operators.

c) The calculation of traffic indicators is designed as a method of the lane class. Parallel

computing is employed here to reduce the calculation time.

d) The simulation is conducted with coroutine that allows transferring program control between

the SumoEnv and the investigated algorithm.

e) An interface is reserved for interacting with the traffic lights. And it supports the signal

control schemes with both the dual ring and signal group protocol.

f) A function is designed in the SumoEnv for easy and dynamic generation of traffic incidents

during the simulation. Most common traffic incident scenarios such as vehicle accidents, lane

closures, and speed limits are covered by it.

g) A web-based visualization interface is provided to display traffic indicators and quickly

evaluate the simulation results.

Both the original TraCI and Libsumo interfaces are supported by the SumoEnv, which means that

the SumoEnv can meet the requirements of both simulation animation effects and speed. Moreover, the

adoption of the strategy mode not only guarantees the principle of subscribing traffic indicators on

demand, but also saves computing resources and improves simulation efficiency. Meanwhile, plenty

room is reserved for the expansion of the indicator calculation, which facilitates the subsequent

maintenance of SumoEnv.

3 Brief Description

The SumoEnv is designed with the concept of OOP and implemented by python based on the

open-source SUMO. The virtual environment is available to users via source code or python wheel

package. In this section, the framework of the environment, classes unified modeling language (UML),

API presented to users, and the interaction logic between the environment and external algorithms are

described.

3.1 System Framework

SUMO is a microscopic traffic simulation software that can handle large networks and multi-

modal random traffic. It supports intermodal simulation including pedestrians and comes with a large

set of tools for scenario creation. It was manly developed by employees of the institute of transportation

systems at the German Aerospace Center. In fact, simulation software is an ideal tool for algorithms

research, except for the difficulty for users who are not familiar with it to get started. Based on the

SUMO simulator, the SumoEnv was developed to provide an easy-to-use simulation environment for

algorithm engineers. The four-layer framework of the SumoEnv is shown in Figure 1.

The first layer of the framework is a simulation scenario library that contains many standard

SUMO network files and models calibrated with real-world data. Scenarios like single intersection,

trunk, and region are all covered. The second layer is the SUMO simulator engine. As for the third layer,

a simulation environment including road network parsing, signal control interaction, traffic indicators

computing, and traffic incidents simulation functions is presented. These functions are easily accessible

through only one simple API that is re-encapsulated from the original TraCI and Libsumo. Therefore,

in the last layer, algorithm engineers can develop, train, and validate their algorithms without any

concern about the simulation software. Additionally, the left side of the framework is the overall

configuration of the virtual environment, while the right side represents the visualization for traffic

indicators.

Simulation scenarios library

SUMO simulator engine

Road network
parsing

Signal control
interaction

Traffic indicators
computing

Traffic incidents
simulation

Simulation environment API (part of the SumoEnv)

Algorithms developing Algorithms training Algorithms validating

Configur
ation

Visualiz
ation

Based on TraCI&Libsumo

Figure 1. Framework of the SumoEnv

3.2 Object Structure of the SumoEnv

There are six main classes in our simulation environment, namely the SimEnv class, NetInfo class,

LaneStuct class, TrafficLightHelper class, TrafficIncidentHelper class, and IndicatorAction class

respectively.

All public functions available to users are included in the SimEnv class, the initialization and

interaction functions for example. The NetInfo class undertakes the work of detecting and parsing the

simulation network and additional files (*.net.xml and *.add.xml files in the SUMO model). Then, lane

static information are extracted to create the LaneStruct class instances. The TrafficLightHelper

provides the approach to control the signal lights, while the TrafficIncidentHelper enables the

simulation of traffic incidents, such as lane closure, vehicle emergency stop, and lane speed limit.

Finally, all traffic indicators provided by the SumoEnv are accessible in the IndicatorAction class that

defines the logic of traffic indicators computing. The UML of those six classes is shown in Figure 2.

Since the NetInfo, TrafficLightHelper, and TrafficIncidentHelper class are just a plain

combination of the raw SUMO APIs, only the SimEnv class, LaneStruct class, and IndicatorAction

class will be described in detail here.

NetInfo

-init

-functions

SimEnv：API

-init

-functions

TrafficLightHelper

-init

-functions

LaneStruct

-init

-functions

TrafficIncidentHelper

-init

-functions

IndicatorAction

-init

-functions

-dict(intersectionId,laneStruct)

dependence<bind>

composition

association

association

1..*

Figure 2. UML Structure

3.2.1 The SimEnv Class

The functions of the SimEnv class may be classified into four categories: basic simulation control,

signal control, traffic incidents simulation and indicators computation. They are introduced in order as

follows:

1） Basic simulation control

 Configuration

The configuration is formatted as a JSON file that declares some options about the SUMO

simulator, detector types, indicators subscribed, and the computing logic of the indicators. An example

of the configuration file is shown below.

{

 "auto_quit": true,

 "no_warning": true,

 "no_step_log": true,

 "num_threads": 1,

 "random": false,

 "route_steps": 200,

 "scale": 1.0,

 "e1Det":{"19":"LAST_STEP_OCCUPANCY",

 "23":"LAST_STEP_VEHICLE_DATA"},

 "e2Det":{"16":"LAST_STEP_VEHICLE_NUMBER",

 "20":"LAST_STEP_VEHICLE_HALTING_NUMBER",

 "18":"LAST_STEP_VEHICLE_ID_LIST"},

 "laneDet": {"122":"VAR_WAITING_TIME",

 "90":"VAR_CURRENT_TRAVELTIME",

 "51":"LANE_LINKS"},

 "Indicators":["PassVolume","OriginLaneQueue",

 "LaneVehicleNum","StopVehRate",

 "LoopOccupancy","TravelTime",

 "TravelSpeed"]

}

 Environment initialization

While initializing, users first have to choose which API (TraCI or Libsumo) to use. After the

SUMO model file (*.sumocfg file) is loaded, the NetInfo class and LaneStruct class will be initialized.

Then, some functions of those two classes will be called during the initialization of the SimEnv class

to create a simulation environment instance.

 Simulation step

The simulation step of the SumoEnv is a wrapper of the SUMO’s step function. During a simulation

step, many tasks would be executed, including calling the current_step_evalution() function of the

LaneStruct instance to compute all the traffic indicators specified in the configuration.

2） Signal control

 Signal control schemes extraction

A function is offered for users to extract signal control schemes from the simulation environment

and save them in the format of the LanePhaseStruct class. Since not all signal plans in SUMO can be

converted to the dual ring structure successfully, the saved schemes are not presented with that structure.

The structure of the LanePhaseStruct is shown as below.

LanePhaseStruct

-laneId : str
-direction: str

-yellow:int
-green: int
-connectionIndex: str
-turnType: str

-cycleLength:int
-greenEnd:int , time since the cycle begin

-greenStart: int , time since the cycle begin

-allRed:int

Figure 3. Structure of the LanePhaseStruct

 Interaction with traffic lights

As shown in Figure 4, the SumoEnv supports two kinds of signal control scheme protocols: the

dual ring and signal group structure. Users can set up a new signal control scheme in the SUMO

simulator via API of the SumoEnv.

a)Dual ring b)Signal group

Figure 4. Two kinds of the protocols

Figure 4 shows the same signal control plan defined in different structures, i.e., dual ring and signal

group. Nevertheless, as shown in Figure 5, some special signal control schemes can only be represented

by the signal group structure.

Figure 5. An example of the scheme

As signal control schemes in real world are represented by either dual ring or signal group structure,

the SumoEnv is thus designed to compatible with both of the protocols. Once the scheme data is loaded

in the SumoEnv, a conversion process would be conducted to obtain control data with the logic structure

of the SUMO. Thereafter, the traffic lights’ states may be changed according to it. The detailed logic of

the conversion is defined in the TrafficLightHelper class.

3） Traffic incidents simulation

The TrafficIncidentHelper enables the simulation of traffic incidents, such as lane closure, vehicle

emergency stop, and lane speed limit. These incidents simulation functions can also be supported by

the original SUMO APIs.

4） Indicators computation

Traffic indicators are designed as the attributes attached to the LaneStruct class. They are computed

every simulation step and then aggregated over the time interval specified by users.

 Current-time indicator

Part of the indicators named current-time indicators will be computed every simulation step, which

is triggered simultaneously by the simulation step function. That is to say, when we call the simulation

step function, the attributes of all the LaneStruct instances in the SumoEnv will update. Moreover,

different computing logic are supported in the IndicatorAction class to generate different indicators.

Detailed information about this can be found in the “The IndicatorAction Class” section.

 Time-interval indicator

The SumoEnv has the flexibility to adjust how long the time interval for indicators aggregation is,

depending on the input of the SumoEnv.get_interval_data function. In order to reduce the memory and

time consumption of the computation, an incremental computing method is adopted. Again, the detail

will be descripted in the following section.

3.2.2 The LaneStruct Class

According to their variability, the attributes of the LaneStruct class can be divided into two

categories: static and dynamic information of the lane. The lane’s static information includes ID, length,

direction etc., whereas the dynamic information includes the current-time and time-interval indicators:

volume, queue length, delay, stops, travel time, and travel speed for example. The computing logic of

those indicators is shown in Figure 6.

start

Simulation step

IndicatorAction
called

Save the
increments of

indicators

Time==time
Window

Time-interval
indicators
computing

Time+1

no

yes

Time<timeEnd

yes

Time=0

end no

Figure 6. Computing logic of the indicators

Rather than all the history values, only part of the changed indicators will be saved by the

incremental computing method. Taking the calculation of volume as an example, at the beginning of

each time interval, the volume variable is cleared and only the cumulative volume from then on will be

recorded.

3.2.3 The IndicatorAction Class

The IndicatorAction is a superclass designed for indicator computing. As shown in Figure 7, the

computation of indicators like the pass volume and queue length is achieved by inheriting the superclass

to rewrite the computing logic of the indicator. The SumoEnv provides some pre-defined subclass of

the IndicatorAction superclass. Meanwhile, users can also implement a new subclass to overwrite a

customized computing logic of the indictor. More considerately, the IndicatorAction is attached to the

LaneStruct class in a way of combination to make sure that users can choose the computing logic freely.

As for which subclasses of the IndicatorAction would be loaded onto the LaneStruct class, it depends

on the configuration file of the SumoEnv.

IndicatorAction

-fire()

PassVolume

-fire()

LaneLampColor

-fire()

VehicleTrajectory

-fire()

OriginLaneQueue

-fire()

...

-fire()

Figure 7. The relationship of indicators’ algorithms

3.2.4 Interfaces of the SumoEnv

Tables 1 & 2 show all the pre-defined traffic indicators and functions provided for users

respectively. By default, traffic indicators are computed in lane dimension. Still, users are allowed to

compute them in other spatial dimensions, for example in the road, intersection, or network dimension.

Furthermore, the latter visualization module is able to display all of these indictors.

index function signature parameters description

1 get_interval_data(tlsId) tlsId->string
get statistics for all indicators

within the time interval window

2 veh_stop()

vehId->string

laneId->string

position->float

duration->int

make a specified vehicle stop at

the given position in the lane for

a given duration of time

3 lane_close() laneId->string close a specified lane

4 lane_resume() laneId->string reopen a lane if it is closed

5 lane_speed_limit()

targetRoad->string

targetSpeed->double

isEdge->bool (default: true)

limit the speed of a specified

road or lane to the targetSpeed

(m/s)

6 load_dual_ring()
tlsId->string

pattern->DualRingStruct object

load a dual-ring signal control

plan into the SUMO

7 load_signal_group()
tlsId->string

pattern->FlowSchemeStruct object

load a signal group (traffic flow)

control plan into the SUMO

8 switch_phase()
tlsId->string

phaseLst->[PhaseStruct,…]

switch the phase of a specified

set of traffic lights according to

the PhaseStruct

9 run_step(parallel=True) None run a simulation step

Table 1: Functions for users provided by the SumoEnv

index indicator name description

1 current_arrival_volume
the number of vehicles that arrived at the upstream of the lane

within the last simulation step

2 current_pass_volume
the number of vehicles that passed the stop line of the

intersection within the last simulation step

3 current_lane_veh_num
the number of vehicles that were on the lane within the last

simulation step

4 current_queue_num
the number of queued vehicles that were on the lane within

the last simulation step

5 current_queue_length
the sum of queued vehicles length that were on the lane within

the last simulation step

6 current_waiting_time
the mean waiting time of all vehicles that were on the lane

within the last simulation step

7 current_queue_ratio_of_lane
the proportion of queue length to lane length within the last

simulation step

8 current_travel_time
the mean travel time of vehicles that were on the lane within

the last simulation step

9 current_travel_speed
the mean travel time of vehicles that were on the lane within

the last simulation step

10 current_stops
the stop time of vehicles that were on the lane within the last

simulation step

11 current_nonstop_rate
the proportion of non-stop vehicles to total vehicles that were

on the lane within the last simulation step

12 current_lamp_color
the lamp color(green/yellow/red) of the lane controlled by

traffic light within the last simulation step

13 current_veh_trajectory
the position (x, y, z) of vehicles that were on the lane within

the last simulation step

14 current_lane_density the vehicle density on the lane within the last simulation step

statistics of the time-interval indicators

15 interval_arrival_volume
the total number of vehicles that arrived at the upstream of

the lane in the interval

16 interval_pass_volume
the total number of vehicles that passed the stop line of the

intersection in the interval

17 interval_max_queue_num the max number of queued vehicles in the interval

18 interval_max_queue_length the max queue length in the interval

19 interval_mean_queue_num the mean number of queued vehicles in the interval

20 interval_mean_queue_length the mean queue length in the interval

21 interval_wait_time the max waiting time of all vehicles in the interval

22 interval_mean_travel_time the mean travel time in the interval(second)

23 interval_mean_travel_speed the mean travel speed in the interval(m/s)

24 interval_mean_stops the mean number of vehicles stopped in the interval

25 interval_mean_nonstop_rate the mean ‘current_nonstop_rate’ in the interval

Table 2: Pre-defined indicators for users provided by the SumoEnv

3.2.5 Interaction Logic

As shown in Figure 8, users can interact with the SumoEnv via python APIs in the SimEnv class

listed in Table 1.

The SumoEnv

User program

Signal control
algorithm input

Signal control
algorithm output

Indicators of lane
Dual ring/signal

group struct

Enviroment API
(traffic indicators, signal api, etc.)

Open to users

Figure 8. logic of interaction

Take the development of the signal control optimization algorithm as an example. During the

simulation, algorithm engineers can easily access the traffic indicators they need with the

get_interval_data function. These indicators are fed back into the optimization algorithm to iteratively

generate an adjusted signal control plan. Then, this new plan will be loaded into the SumoEnv to interact

with the simulation environment and yield new indicators. More specifically, the inputs of the

optimization algorithm are queue length and pass volume, and the outputs are signal control plans in

the form of dual ring or signal group protocol. On the contrary, the signal control plans are inputs of the

SumoEnv and the traffic indicators are outputs. In the optimization process, traffic indicators and signal

control plans serve as a bridge between the simulation environment and the algorithm. The overall

process is shown in Figure 9.

Prepare in advance: choose a SUMO model from the simulation scenario library or build a new

model

step0: initialize the SumoEnv (load SUMO model and configuration)

step1: while sim_time<endTime

step1.1: simulation step

step1.2: call the get_interval_data function to compute time-interval indicators if a time

interval ends, else do nothing

step1.3: call signal control optimization algorithm to generate a new signal control plan if

the algorithm is triggered

step1.4: call the load_dual_ring function to load the signal control plan into the SUMO if the

algorithm returned a new one, then loop step 1

step2: end loop, then visualize the traffic indicators

step3: end simulation

start

Simulation step

Get interval
indicators

Time==
als_time

Run signal
optimization

algorithm

Time+1

no

yes

Time<timeEnd

yes

Time=0

Return dualRing

end

no

Time%interv
alTime==0

yes

Do nothing no

Set new dual-
ring signal cycle

Indicators
visualization

Figure 9. process of algorithm

4 Application

The SumoEnv can provide a virtual environment for traffic algorithm developing, training and

testing in many different simulation scenarios. Both the development of the traditional and

reinforcement-learning-based signal control algorithms may be conducted in the SumoEnv. Moreover,

other work, such as observing the evolution of the traffic flow under incidents and evaluating the

optimization of the road channelization, is also available on it.

4.1 Algorithm Development and Validation

4.1.1 Isolated-intersection and Arterial-coordinated Signal Control Algorithm

Development

The evaluation of the development of isolated-intersection and arterial-coordinated signal control

algorithm is shown in Figure 10. On the left, red circles and boxes highlight the targeted intersections

and arterials in the road network. And the charts on the right show the improvement in each indicator,

including the maximum queue length, average stops, time delay, and travel speed.

a) Isolated-intersection algorithm evaluation

b) Arterial-coordinated algorithm evaluation

Figure 10. Signal control algorithm development and validation in the SumoEnv

4.1.2 Reinforcement–learning-based Signal Control Algorithm Development

The employment of the reinforcement learning method in the development of signal control

algorithm makes the algorithm more intelligent. In general, the RL works by obtaining traffic indicators

from the SumoEnv and then generating an adjusted signal control plan to interact with the simulation

environment, which is shown in Figure 11 a). RL algorithm obtains the traffic state from SumoEnv,

calculates a new signal control scheme, and sends it to SumoEnv. As the simulation results we can see

in Figure 11 b) and c), the RL-based algorithm is superior to the traditional adaptive algorithm.

SumoEnv Switch phase

Change Green time

strategy

RL

rewardobversion

Green ratios

queue

volume

a) Framework of the reinforcement learning method

b) Average waiting time of vehicles c) Queue length

Figure 11. Reinforcement learning in simulation

4.1.3 Traffic Incidents Simulation

As shown in Figure 12, simulation of incidents like vehicle emergency stop and lane closure may

be carried out in the virtual environment by functions of the SumoEnv’s TrafficIncidentHelper class.

Furthermore, by predicting the evolution of the traffic flow after incident, the signal control plan could

be adjusted to mitigate its impact, namely the incident-based adaptive signal control algorithm..

a) Car-stop-incident b) Lane-closure-incident

Figure 12. Traffic incidents simulation in the SumoEnv

4.2 Visualization of the Traffic Indicators

In addition, a web-based visualization module in the SumoEnv is designed to realize the

visualization of the traffic indicators. With the traffic indicators obtained from the SumoEnv and saved

as csv files, the visualization module will read and show them in charts with different spatial dimensions

on the web page, as shown in Figure 13.

a) Comparative evaluation b) Road level

c) Intersection level d) Network level

Figure 13. Visualization in different spatial dimensions

4.3 The Simulation Scenario Library

Finally yet importantly, the SumoEnv is equipped with a simulation scenario library that covers

standard traffic models built with SUMO and models calibrated with observed data in real world. More

calibrated models will be continuously uploaded in the future.

index name screen

1 isolated-intersection-

with-double-hump-flow

2 long-short-arterial

3 normal-network

4 abnormal-network

models with real data

5 isolated-intersection

-with-peds-and-bikes

-with-real-data

6 isolated-intersection

-with-real-data

7 two-intersection

-with-real-data

8 middle-network

-with-real-data

9 middle-network

-calibrated-with-real-data

10 complex-network

11 city-network

-with-real-data

Table 3: Simulation scenarios in the library

Note: Induction loops (E1) and lane-area detectors (E2) are deployed by default in all models.

5 Conclusion

In this paper, we introduced an easy-to-use SUMO-based simulation environment called the

SumoEnv. By presenting its development objective, design concepts, logical framework, traffic

indicators computation, and specific application cases, we are trying to help you understand it and get

started quickly. A step further, the fewer and simpler APIs provided by it are beneficial to algorithm

engineers who are not familiar with the SUMO and traffic simulation. Besides, the SumoEnv is

equipped with a simulation scenario library, which minimizes the time-consuming work of building

simulation models. Moreover, the web-based visualization module facilitates the graphical presentation

of traffic indicators in multiple spatial dimensions. Since the SumoEnv has provided a set of simple

API to interact with the simulation environment, a large number of built-in scenarios ready to be used,

and a visualization module to display traffic indicators intuitively, algorithm engineers may entirely

concentrate on their algorithm without any concern.

In summary, the SumoEnv is an out-of-the-box traffic simulation environment. Currently, it is

compatible with the SUMO version 1.2-1.8 and python 3.6-3.7. Moving forward, we plan to contribute

it together with the simulation scenario library to the community in the form of source code and python

third-party package.

References

[1] Mahajan S K, Umadekar A, Jethwa K. New Concept of Traffic Rotary Design at Road

Intersections [J]. Procedia - Social and Behavioral Sciences, 2013, 96:2791-2799.

[2] Pei J. Application of Vissim in the Traffic Simulation of Changzhou Integrated Passenger Hub.

Journal of Transport Information and Safety, 2010.

[3] https://sumo.dlr.de/docs/Other/Projects.html

[4] P. A. Lopez et al., "Microscopic Traffic Simulation using SUMO," 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 2018, pp. 2575-2582, doi:

10.1109/ITSC.2018.8569938.

[5] Zhang H, Feng S, Liu C, et al. CityFlow: A Multi-Agent Reinforcement Learning Environment

for Large Scale City Traffic Scenario. 2019.

[6] Wu C, Kreidieh A, Parvate K, et al. Flow: Architecture and Benchmarking for Reinforcement

Learning in Traffic Control. 2017.

