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Abstract. Despite the acknowledged ability of automated static analy-
sis to detect software vulnerabilities, its adoption in practice is limited,
mainly due to the large number of false alerts (i.e., false positives) that
it generates. Although several machine learning-based techniques for as-
sessing the actionability of the produced alerts and for filtering out false
positives have been proposed, none of them have demonstrated sufficient
results, whereas limited attempts focus on assessing the criticality of the
alerts from a security viewpoint. To this end, in the present paper we
propose an approach for assessing the criticality of security-related static
analysis alerts. In particular, we develop a machine learning-based tech-
nique for prioritizing and classifying security-related static analysis alerts
based on their criticality, by considering information retrieved from the
alerts themselves, vulnerability prediction models, and user feedback.
The concept of retraining is also adopted to enable the model to correct
itself and adapt to previously unknown software products. The technique
has been evaluated through a case study, which revealed its capacity to
effectively assess the criticality of alerts of previously unknown projects,
as well as its ability to dynamically adapt to the characteristics of the
new project and provide more accurate assessments through retraining.

Keywords: Software Quality · Software Security · Automated Static
Analysis · Self-adaptive Systems · Vulnerability Prediction

1 Introduction

Security is an important aspect for modern software products, especially for
those that are accessible through the Internet and handle sensitive information.
The exploitation of a single vulnerability may lead to far reaching consequences
both for the users and for the owning enterprises, ranging from information
exposure to reputation damages and financial losses [1]. As a result, the software
industry has recently shifted its focus towards building software that is highly
secure from the ground up [2, 3]. For this purpose, several mechanisms have been
proposed for adding security during the overall software development lifecycle
(SDLC) [2, 3]. Among them, automated static analysis (ASA) has been proven
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effective in uncovering software vulnerabilities, and therefore adding security,
during the coding phase of the SDLC [4–6], whereas several well-established
secure SDLCs (e.g., Microsoft’s SDL [7]), as well as leading technological firms
like Google, Microsoft, and Intel (according to the BSIMM1 initiative) highlight
its importance in improving software security.

Despite its effectiveness in detecting vulnerabilities, static analysis has been
observed to be underused in practice [8, 9]. The main reason for its limited adop-
tion is that it tends to produce a large number of false alerts (i.e., false positives),
that is, alerts that do not correspond to actual issues. This leads to the gener-
ation of large reports of alerts that developers and reviewers have to manually
inspect in order to detect those that are actionable (i.e., that correspond to
actual issues, which require immediate fix). This process, called triaging [8], is
very time-consuming and effort demanding, discouraging developers from using
ASA in practice. Several attempts have been made in the literature to reduce
the number of the produced false positives. Since the construction of an ASA
tool able to detect all existing issues while maintaining satisfactory performance
is an undecidable problem [10], the majority of the research endeavors focus on
proposing techniques that post-process the produced alerts, to detect those that
are actionable, known as actionable alerts identification techniques (AAITs).

Despite the large number of AAITs that have been proposed until today,
none of them have demonstrated very sufficient results [11, 10, 12]. In fact, their
accuracy is observed to drop significantly when applied to software products that
have not been used during their training. In addition to this, almost no contri-
butions have been made with respect to extending these techniques towards the
security realm, i.e., for assessing the criticality of security-related static analysis
alerts (i.e., potential vulnerabilities). This would be beneficial for the production
of secure software, as it would allow developers better prioritize their refactoring
activities by focusing on fixing issues that are more likely to correspond to ac-
tual vulnerabilities. An extension is necessary, as vulnerabilities are considered
special types of bugs that exhibit unique characteristics [13].

To this end, in the present paper, we propose a technique for assessing the
criticality of security-related static analysis alerts. In particular, we propose a
technique for prioritizing (and classifying) security-related static analysis alerts
based on their criticality, by taking into account information retrieved from (i)
the alerts themselves, (ii) vulnerability prediction models, and (iii) user feedback.
The proposed technique is based on machine learning models, with emphasis on
neural networks, which were built based on data retrieved from static analysis
reports of real-world software applications. It is grounded on the generation
of a general model based on real world data and on the regular application
of retraining (based on user feedback) so that the model could provide more
accurate results for the project on which it is applied. The proposed technique
is operationalized in the form of web services that can be used in practice,
whereas an intuitive web-based interface is also provided. Finally, the approach is
demonstrated through a case study on a real-world commercial software product.

1 https://www.bsimm.com/



2 Related Work

A large number of techniques have been proposed with the purpose to re-
port alerts that are actionable and eliminate false positives produced by ASA.
These techniques, which are known as actionable alerts identification techniques
(AAITs), typically utilize machine learning to discriminate between actionable
and non-actionable alerts [11, 14, 10, 15]. They are normally classified into two
categories [14, 10]: (i) classification AAITs, and (ii) prioritization AAITs.

Classification AAITs (e.g., [16]) classify alerts into two groups, particularly
alerts that are likely to be actionable (i.e. actual issues identified by static code
analyzers that require fix) and alerts that are likely to be unactionable (i.e. false
positives or less critical issues that are reported by static code analyzers and
do no require immediate correction), and they prune those that are marked as
unactionable. For instance, a static analysis alert that corresponds to a bug that
can lead to a system crash (e.g., memory leak) is an actionable alert, whereas a
wrong naming convention issue (e.g., a variable name that is very long) can be
considered unactionable. The main advantage of the classification AAITs is that,
due to alert pruning, they lead to a significant reduction in the number of the
alerts that are reported to the developers. However, these techniques may lead
to the introduction of false negatives, as they may mistakenly prune alerts that
are in fact actionable due to the model’s error [11, 14, 10]. Prioritization AAITs
(e.g., [17, 18]) rank the alerts based on their “actionability”, i.e., their likelihood
to be actionable, without eliminating any of the reported alerts. This allows
the developers to better prioritize their fortification activities, by starting their
refactoring from alerts that are more likely to be actionable. Since no pruning
is applied, no false negatives are introduced, but the volume of the alerts is not
reduced as well, which may be still overwhelming.

None of these techniques has been widely-adopted in practice, mainly due to
their inaccuracies, especially when applied to projects that were not used during
their training [19, 14, 20]. In fact, the predictive performance of these models sig-
nificantly drops, when applied to assess alerts from previously unknown projects,
hindering, in that way, their practicality. For instance, Heckman et al. [17, 21] ob-
served that updating the models adaptively may lead to more accurate rankings
in future versions of a project. However, further work is needed [14].

AAITs focus on assessing the “actionability” of static analysis alerts in gen-
eral. Security-related static analysis alerts are considered good indicators of
software vulnerabilities [5, 6]. However, AAITs cannot be applied directly for
assessing the criticality of security-related static analysis alerts, since software
vulnerabilities are considered special types of software bugs, with unique char-
acteristics [13]. In particular, the accessibility of a security bug from the attack
surface determines its criticality, something that does not hold for common bugs
[22, 4]. In fact, the criticality of a vulnerability, apart from its type, also depends
on project-specific parameters, like its location in the source code, its reachabil-
ity from the attack surface, the system configuration, etc. [23, 22, 4]. Therefore,
these parameters (i.e., code semantics) need to be considered for assessing the
criticality of a security issue, normally through code analysis and user feedback.
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Hence, AAITs need to be extended towards the security realm. Very limited
contributions exist toward this direction. The most representative contribution
was made by Baca [4], who used context-sensitive data flow analysis in order to
detect locations of code that are tainted, and marked all the alerts that belonged
to these lines as potentially critical from a security viewpoint. However, no model
was built, whereas emphasis was given only on the reachability, neglecting other
information that may provide inference about the actual criticality of the alerts.

From the above analysis, it is clear that none of the existing AAITs has man-
aged to sufficiently address the problem and therefore to be broadly adopted in
practice. The main reason for this is that the accuracy drops when they are ap-
plied to previously unknown projects. Another open issue is that little work has
been conducted with respect to the criticality of security-related static analysis
alerts, which are alerts that are characterized by unique characteristics. To this
end, in the present paper we focus on security-related static analysis alerts, and
we propose an ML-based approach for assessing their criticality, leveraging the
concept of retraining based on user feedback. The approach supports both the
classification and prioritization concepts. Another novelty is that it considers
information from vulnerability prediction, which has not been studied before.

3 Methodology

3.1 Overview of the Methodology

In Figure 1, a high-level overview of the proposed approach, as well as of the
methodology that was adopted for constructing the required model is illustrated.
The left part of Figure 1 (termed as “Model Construction”) demonstrates the
process that was followed for building the ML model that is used as the basis of
our proposed approach based on real-world data. More specifically, as can be seen
by Figure 1, we split the open-source projects that constitute our dataset into a
list of software classes and then these classes were analysed both by a static code
analyzer and by a vulnerability prediction model (VPM), to collect the required
features of the dataset. Subsequently, a process for assigning labels in the dataset
was followed, and, after the pre-processing, the final dataset was produced. The
extracted features of the classes of the final dataset (i.e., static analysis alerts and
vulnerability prediction results) along with their corresponding labels composed
the input to our supervised learning model during its training. The right part
of Figure 1 (termed as “Model Execution”) illustrates how the produced model
is used in practice for assessing the criticality of security-related static analysis
alerts. In brief, as can be seen by the figure, the produced model receives as
input a new static analysis alert and classifies it as critical or non-critical. As
will be discussed later, it also reports the likelihood of the alert to be critical
from a security viewpoint, allowing the developers to prioritize the reported
alerts based on their criticality. Finally, the users are allowed to express their
disagreement with respect to the model decisions by providing feedback. This
feedback is stored in order to be used for the future retraining (see Section 3.4).



Fig. 1. High-level overview of the proposed approach

The overall approach that is depicted in Figure 1, can be summarized in the
following seven steps:

1. Data Definition. The first step of the study is to define the input vari-
ables that will be used for the construction of the ML models, as well as
the class attribute of the model. Regarding the input variables, we decided
to use information retrieved from the static analysis alerts themselves (e.g.,
vulnerability type, severity, etc.), along with information retrieved from vul-
nerability prediction models (see Section 4). The model’s output is actually
a binary prediction, indicating whether the analyzed alert is critical (from a
security viewpoint). It also reports a continuous value, indicating the alert’s
“criticality”, i.e., its likelihood to correspond to a critical security issue.

2. Data Collection. In this step, we applied a popular automated static analy-
sis tool that was properly configured in order to report only security-related
issues, on two real-world software projects, in order to retrieve the alerts
that exist in source code. Text mining-based vulnerability prediction mod-
els were also used to get information about the vulnerability hot spots on
source code (see Section 4). Regarding the labeling of these alerts as critical
or non-critical, a manual code review method was followed (see Section 3.2).

3. Data Pre-processing. Pre-processing is responsible for bringing the dataset
in a form suitable for ML model training. More specifically, the categorical
features were encoded in 1-hot vector representation. No sampling techniques
were performed since the dataset is quite balanced.

4. Classification Techniques Selection. In this step, the most suitable clas-
sification techniques are selected. A comparison of these techniques is also
performed. Our selection is based on classification evaluation metrics.

5. Model Training. This step is responsible for building the model selected
at the previous step, based on a carefully selected set of hyper-parameters.

6. Model Execution. This step corresponds to the actual execution of the
produced model in practice. The pre-trained model is used in order to assess
the criticality of previously unknown security-related static analysis alerts.
To facilitate the adoption of the approach in practice, it has been opera-
tionalized in the form of a standalone tool (see Section 4).
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7. Retraining Process. This step corresponds to the process of model retrain-
ing. The user is allowed to express their disagreement to specific decisions of
the model, by providing their feedback. This feedback is then utilized (under
specific circumstances described in Section 3.4) in order to retrain the model
and provide more accurate results for the project to which it is applied.

3.2 Data Collection and Pre-processing

For the purposes of the present study, a dataset was created based on two real-
world software products developed by colleagues in CERTH as part of ongoing
and past EU Projects. The reasoning behind the decision to use in-house soft-
ware products for the construction of our dataset is threefold. Firstly, we have
complete access to the source code of these products, allowing us to verify the
correctness of the retrieved data. Secondly, we have direct communication with
their developers, allowing us to request their assistance with respect to the man-
ual labeling of the produced alerts. Finally, it also allows us to request a sufficient
number of instances, leading to the construction of reliable ML models.

The selected software projects are mid-size projects written in Java program-
ming language with an approximate lifetime of three years. The first project
is a cloud-based platform for analyzing software products written in Java and
C/C++ with respect to their quality. The platform is implemented as a collec-
tion of RESTfull microservices that are interconnected. The second project is
a crawler that crawls projects from online Git-based repositories (e.g., GitHub,
Bitbucket, etc.) with the purpose to find software projects that have depen-
dencies on third-party software that contain known vulnerabilities. The tool is
accessible through command line and it is actually based on the OWASP De-
pendency Check2 tool. For privacy reasons, the names of the projects are not
disclosed, since they are not open-source projects.

For the construction of the dataset, a static code analyzer, which was prop-
erly configured for detecting security issues through the utilization of a novel
Security Assessment Model [2, 24] (see Section 4), was applied on these software
projects. The SAM is able to detect important security-related issues, includ-
ing Null Pointer, Resource Handling, Exception Handling, Synchronization, and
Logging issues [24]. The produced static analysis alerts were presented to the
actual developers of the associated projects, who labelled them as critical and
non critical. Since the developers were not security experts, in order to prevent
instances of mislabelling, the labelling was inspected by the authors of the paper.
Several instances of potential mislabelling were spotted and discussed with the
developers. Based on the discussion outcomes the final labelling was decided.

Apart from alert-specific information, we decided to integrate security-related
information retrieved from the software project itself. In particular, we applied
text mining-based deep learning vulnerability prediction models [25–27] (see
Section 4), in order to spot the security hot-spots of the software products, i.e.,
software classes that are likely to contain vulnerabilities. By highlighting the

2 https://owasp.org/www-project-dependency-check/



security hot-spots, we expect our approach to consider as more critical those
static analysis alerts that belong to the identified hot-spots. We included this
information in the produced dataset, to empirically examine this assumption
through the construction of ML models.

In brief, the features that we focused on and we used for model’s training are
the rule name, ruleset name, priority, and vulnerability score. It should be noted
that the first three features are alert specific, whereas the last one is project
specific. Since the approach is based on a binary classifier, the outcome of the
model is a binary value (which is termed crtiticality flag), i.e., 0 or 1, where 0
denotes that the analyzed alert is not critical and 1 that the analyzed alert is
critical. The model also reports a criticality score, i.e., a continuous value in the
[0,1] interval that indicates the likelihood of the analyzed alert to be critical from
a security viewpoint. A description of the selected features is provided below:

– The rule name is the name of the rule of the static code analyzer that is
violated. It indicates the type of the issue that is reported by the alert.

– The rule set is a grouping of code analysis rules that can be detected by
the selected static code analyzer. It actually indicates the broader category
that the issue that is reported by the alert belongs to.

– Priority is the severity score provided by the vendor and it represents the
importance of each alert based on static analysis. It usually gets discrete val-
ues between one (more severe) and five (less severe). It should be noted that
the vendor-specific priority cannot be used solely as a reliable measure of the
criticality of security related alerts, as it is highly subjective and it neglects
the important code semantics that may affect the criticality of security issues
[8, 13, 22]. It needs to be used in conjunction with other features.

– Vulnerability score is the score produced by a vulnerability prediction
model. Actually, it is the probability of a software component to be vulner-
able, and therefore it receives a continuous value in the [0,1] interval.

The final dataset comprises 1200 alerts produced by the aforementioned pro-
cess. From these 1200 alerts, 650 are marked as non-critical, whereas the rest
550 are defined as critical. Hence, the final dataset is rather balanced, which
is important for the construction of the ML models that are described in the
following sections, as it reduces the probability of overfitting. From a prepro-
cessing viewpoint, since the “rule name” and “rule set” features are categorical
variables, and considering that ML models understand numerical values, 1-hot
vector representation was used.

3.3 Model Selection

After constructing the final dataset, the next step was to build a set of ML
models and select the one that demonstrates the best predictive performance
as the basis of our approach. For this purpose, different ML algorithms are
trained in order to discriminate static analysis alerts, which point to code lines
in the classes, between critical and non-critical. We investigate various ML al-
gorithms, including Support Vector Machines (SVM), Random Forest, Decision
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Tree and the Näıve Bayes method. We also examine the ability of deep learning,
specifically the Multi-Layer Perceptron (MLP), to provide reliable predictions
in our dataset. The evaluation is performed using 10-fold cross-validation. As
performance indicators we use accuracy, precision and recall. The results of the
evaluation process are presented in Table 1.

Table 1. Comparison of main machine learning classification algorithms

Classifier Accuracy Precision Recall
Decision Tree 76.36 78.08 75.48
Näıve Bayes 56.06 53.50 88.33
Support Vector Machines 78.44 80.38 75.24
MLP 86.33 90.52 83.33
Random Forest 79.52 80.19 77.14

From Table 1, it is clear that the MLP is the best performing model. In fact,
MLP is the only model that outperforms all the others with respect to all the
three selected performance metrics, except the recall which is higher in the case
of Naive Bayes. However, Naive Bayes accuracy and precision are observed to
be the lowest (i.e., 53.5% and 56.06%) indicating that it generates an excessive
number of false positives.

For the construction of these models, hyper-parameter tuning was employed
to find the parameters that produce the optimal predictive performance for each
model. More specifically, we performed the commonly used Grid-search method.
The selected properties of the best performing model (i.e., the MLP model) are
presented in Table 2. As can be seen in the Table 2, specific techniques were
employed in order to avoid overfitting (e.g., dropout layer, regularizer, etc.) and
make the produced model as generic as possible. As explained later, even if
minor bias exists in the parameters of the original model, they are expected to
be corrected through the applied retraining.

Table 2. The selected hyperparameters of the Multi-layer Perceptrons (MLPs)

Hyperparameter Name Value

Number of Layers 4
Number of Hidden Layers 3
Number of Hidden Units (per Hidden Layer) 1000/500/50
Weight Initialization Technique Glorot Xavier
Learning Rate 0.01
Gradient Descent Optimizer Adagrad
Batch Size 128
Activation Function relu
Regularizer Max Norm (3)
Output Activation Function sigmoid
Loss Function Binnary Cross-entropy
Over-fitting Prevention Dropout = 0.15 (after last hidden layer)



3.4 Retraining Process

The best performing model that was selected in Section 3.3, can be then used in
practice in order to assess the criticality of previously unknown static analysis
alerts. In brief, after executing the model, the predictions (i.e., criticality flags
and criticality scores) of the analyzed alerts are returned to the user and he/she
can agree or disagree with the proposed criticalities. The users are equipped
with the capacity to correct the model and improve its predictive performance,
by sending their feedback to the model and retraining it. Developers can change
the criticality of any alert they believe the model has classified wrongfully. They
are able to submit to the system a non-critical alert as critical and vice versa,
depending on which alerts they consider to be critical or not, for their own code.

As already stated, this is an important feature as the accuracy of AAITs
normally drop when they are applied to previously unknown software projects
[14, 10, 11]. This behavior is expected due to the fact that (i) there are types of
alerts that were not part of the dataset used for the training of the models, and
(ii) some types of alerts may be more (or less) important for specific types of
software. For instance, an SQL Injection issue may not be critical for an offline
application, but highly important for a cloud-based software. Hence, retraining,
enables the developers to start with an original model and frequently update it
in order to adapt to the specific needs of the project to which it is applied.

As can be seen in Figure 1, after the initial predictions, a user can give
his/her feedback to the classifier and choose whether to retrain the model (i.e.,
retraining is an on-demand feature). The retraining process that is adopted by
our approach is relatively simple, and it is summarized in the following steps:

1. Initially, the system collects the user feedback that has been retrieved through
the several iterations of alerts inspection. This feedback consists of alerts
with which the user disagreed with the criticality assigned by the model.

2. Subsequently, the system checks the user’s changes, which are the user’s
corrections on the initial decisions of the model, in order to determine the
subset of the alerts that can be used for retraining. In fact, the user feedback
(i.e., user’s changes) are passed through two filters to verify that (i) sufficient
information has been provided by the user, and (ii) the user feedback is not
contradictory. Those filters are described in detail later in this section.

3. The alerts that pass these filters are included in the training set that will be
used for the retraining process, whereas those that do not pass, remain in
the memory in order to be used in future retraining attempts.

4. Finally, the original dataset is updated by including the user-labeled alerts
that passed the previous filtering process, and then the model is retrained.

As stated above, an important step of the retraining process is the filtering
mechanism that is applied in order to choose the subset of the user-labeled alerts
that could lead to the reliable retraining of the model. This process is based on
two filters (i.e., criteria) that are applied to the user-labeled alerts:

– The user changes that are related to a specific alert type (i.e., rule name)
have to be more than N in number.
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– If there are contradictory samples (i.e., alerts), the proportion of the alerts
that belong to the minority group, has to be less than M % of the overall
feedback alerts of the same rule name (alert type). Two samples are contra-
dictory if they have exactly the same values to their features, but the user
assigned different criticalities to each other.

Hence, the model is retrained based on the user-labeled alerts that satisfied
the above criteria. As can be seen the filters (i.e., criteria) are highly configurable.
The values of N and M can be defined by the user, depending on how loose or
strict they would like the retraining process to be. For instance, by assigning a
large value in N and a small value in M, the retraining process is enforced to
be feasible only when a large number of non-contradictory feedback is collected.
In that way, the retraining process is less frequent, but the retrained model is
expected to be more reliable, as it was built based on a lot of user feedback. The
effectiveness of the retraining mechanism to improve the predictive performance
of the original model when applied to a previously unknown software is examined
in Section 5 through a case study.

4 Implementation

As a proof of concept, the proposed approach has been implemented in the
form of a tool. This would enable its adoption by developers in practice, and, in
turn, its further quantitative and qualitative evaluation by the community. The
high-level overview of the tool is presented in Figure 2.

Fig. 2. High-level overview of the Security-related Alerts Criticality Assessment tool

As can be seen by Figure 2, the proposed tool, i.e., the Security Alert Assessor
(SAA), depends on the outputs of two other components, namely the Security
Assessment Model (SAM) and the Vulnerability Predictor (VP). The former is
responsible for providing the security-related static analysis alerts that need to
be assessed by the SAA, whereas the VP provides the vulnerability scores of the
classes of the analyzed software, which is a feature that is considered by SAA
during the assessment of the alerts’ criticality.

The Security Assessment Model (SAM) [24] is a novel hierarchical model that
quantifies the internal security level of software products that are written in Java



based exclusively on static analysis. In brief, it employs static analysis in order
to detect security-related static analysis alerts that reside in the source code and
aggregates these alerts in a sophisticated way [28] in order to produce a single
score (i.e., the Security Index) that reflects the internal security of the analyzed
software. SAM is based on the PMD3 static code analyzer, which is a popular
open-source ASA tool. SAM is able to detect seven vulnerability categories based
on their relevance, namely Null Pointer, Logging, Exception Handling, Resource
Handling, Misused Functionality, Assignment and Synchronization.

The Vulnerability Predictor (VP) is based on machine learning models that
are able to detect security hot spots that reside in the source code of a soft-
ware product. More specifically, these models, which are based on deep neural
networks, utilize text mining and software metrics in order to assess the likeli-
hood of a software class to contain a vulnerability. The selected models are the
outcome of previous research endeavors [29, 25, 26].

Hence, as can be seen by Figure 2, initially the given software product is
analyzed using SAM and VP, to produce the security-related static analysis
alerts that need to be assessed, and the vulnerability scores of its classes. This
information is passed to the SAA, which combines them in order to assess the
criticality of the reported alerts, by assigning a criticality flag and computing a
criticality score for each alert (see Section 3.2). The tool also equips the users
with the ability to express their disagreement with specific choices of the model,
and retrain the model based on this feedback (see Section 3.4).

From a technical viewpoint, the back-end of the tool has been implemented
in the form of microservices using the Docker technology. The tool is available for
download on DockerHub4. Apart from the back-end we have also implemented
an intuitive front-end (i.e., user interface), which communicates with the back-
end, in order to facilitate its adoption in practice. As can be seen by Figure 3, the
results of the tool are presented to the user in the form of a table, which provides
information for each alert that was detected, displaying also the alerts criticality
flag and criticality score. The user can also mark those alerts for which they
disagree with the criticality assigned by the model through dedicated checkboxes
and retrain the model based on their feedback. Useful guidelines on how to install
and use the tool, can be found on the tool’s wiki page5.

5 Case Study

In this section, a case study on a real-world commercial software product is
presented in order to demonstrate the proposed approach and evaluate its cor-
rectness. For the purposes of the case study, we used a software application
developed by a company that is working in the automotive industry. It is an
Android application, written in Java programming language, consisting of 87

3 https://pmd.github.io/
4 https://hub.docker.com/repository/registry-1.docker.io/iliakalo/evit-image/
5 https://gitlab.com/iliaskalou/aait/-/wikis/Exploitable-Vulnerability-Identification-

Wiki
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Fig. 3. A snapshot of the front-end data table of the Security Alerts Criticality Assessor

classes and 382 methods, comprising approximately 15,409 lines of code. It runs
on Augmented Reality (AR) glasses and its main purpose is to connect a techni-
cian in the field with an engineer in a support center, in order to appropriately
guide him/her to successfully complete a manual task.

Initially, the selected software application was analyzed with the Security
Assessment Model (SAM) [24], in order to produce a report with the security-
related static analysis alerts that it contains. Then its source code was parsed
by our Vulnerability Prediction Models [29, 25, 26], in order to compute the vul-
nerability scores of the 87 classes of the software, which is a required input for
the proposed approach for assessing the criticality of the observed alerts. Then
the Security Alerts Assessor (SAA) analyzed the produced alerts and assigned
a criticality flag and a criticality score to each one of them (see Figure 2).

The above mentioned process resulted in a list of 133 security alerts. These
alerts were presented to developers with security expertise, who manually in-
spected them and expressed their agreement or disagreement with the criticalities
assigned by the model. The criticalities assigned by the model were compared to
the criticalities assigned by the manual inspection in order to evaluate the accu-
racy of the model when applied to a new (i.e., previously unseen) software. The
results of the evaluation are presented in Table 3. As can be seen by Table 3, the
overall accuracy of the model was approximately 82%, which is 4% lower than
the model’s descriptive accuracy, and the recall was found to be approximately
73%, which is 10% lower than the descriptive recall (see Table 1).

From this experiment, it is obvious that there is a drop in the predictive
performance of the model. This drop was expected since it is applied to a pre-
viously unknown software product, which may exhibit alerts of specific types
that were not present during the training of the model, whereas some of the
already trained alert types may be more (or less) critical for the specific type



Table 3. Evaluation metrics showcasing the ability of the model to adapt to user
feedback

Dataset/Model Accuracy (%) Precision (%) Recall (%)
Initial Model 81.95 89 73.13
Retrained Model (N = 2,M = 20) 86.32 89.70 87.14
Retrained Model (N = 0,M = 50) 88.02 90.13 89.67
Retrained Model (N = 5,M = 20) 86.21 84.92 96.34

of software. However, at least for the given example, this drop is not observed
to be significant. This provides confidence that sufficient prediction performance
can be achieved when the model is applied to a project that was not used during
its training, indicating that some general trends in the criticality of alerts are
horizontal across different project types.

Subsequently, we retrained the model based on the feedback that was pro-
vided by the developers through the aforementioned manual inspection, and we
evaluated its predictive performance. In fact, part of the user feedback was se-
lected randomly and excluded from the model retraining to be used for the model
evaluation. We considered the case of N = 2 and M = 20, as it was the most
representative for the given dataset. The performance metrics of the retrained
model are also presented in Table 3. As can be seen by Table 3, there is a sig-
nificant increase in all the performance metrics, all of them being higher than
85%. This suggests that the retraining process leads to a significant increase in
the predictive performance of the model, and, thus, that it is able to capture the
user feedback.

For reasons of completeness, in Table 3, the evaluation results of the retrained
model for two additional cases of N and M values are provided. In particular, we
consider a more loose model (N = 0,M = 50), i.e., a model that accepts the user
feedback without much filtering, and a more conservative model (N = 5,M =
20), i.e., a model that requires more data to be collected by the user in order to
consider their input reliable to be used for retraining. As can be seen by Table 3,
the predictive performance of the retrained models are also high and comparable
to the model of the use case. This observation (which was expected) suggests
that the model is able to learn the new data provided by the user and adapt
well to the user feedback, regardless of the values of N and M . As mentioned
in Section 3.4, the purpose of N and M are to allow the developer define how
loose or strict the retraining process should be. In fact, the more conservative the
model, the more non-contradictory data should be collected by the user, making
the retraining process less frequent, but the produced model more reliable.

To sum up, the above analysis, although preliminary, led to some interesting
observations. The results of the analysis highlight that when applying the original
model to previously unknown alerts, the accuracy does not drop massively. This
indicates that our approach can provide a relatively accurate assessment even on
a dataset with alerts of different defined criticality. We can also notice that the
model retraining process based on user feedback, leads to a substantial increase
in the accuracy of the model. This fact suggests that the model, retrained based
on feedback provided by the user, is capable of adapting to dynamically changing



Siavvas et al.

behaviors and it can actually improve its accuracy. Hence, frequent application
of retraining would allow the model to adapt to the characteristics of the specific
project to which it is applied.

At this point, it should be noted that a comparison with similar approaches
and models was not feasible. Although a large number of AAITs have been
proposed in the literature, very few contributions have been made with respect
to security. In addition to this, the existing contributions (e.g., [4]), are not
operationalized and have become obsolete, whereas no sufficient information and
data are available that would enable their replication.

A note with respect to the validity threats of the present work is considered
necessary. First of all, the model was based on information retrieved exclusively
from Java projects, potentially affecting its generalizability to other program-
ming languages. However, the adopted techniques are language agnostic enabling
the developers to apply them in other programming languages. In addition, the
selection of the model hyperparameters could be biased to the specific dataset
that has been used for its training. However, techniques for avoiding over-fitting
were employed (see Section 3.3), whereas the applied retraining process is ex-
pected to adjust the parameters to the project to which it is applied, neutralizing
the potential bias of the parameters of the initial model.

6 Conclusions and Future Work

The purpose of the present paper was to develop a mechanism for assessing the
criticality of security-related static analysis alerts. To this end, we developed a
technique for prioritizing and classifying security-related static analysis alerts
based on their criticality, by taking into account information retrieved from the
alerts themselves, vulnerability prediction models, and user feedback.

To achieve this, a manually curated dataset of security-related static analysis
alerts was constructed, by statically analyzing two real-world Java software prod-
ucts that were developed by CERTH as part of past and ongoing EU Projects.
Based on this dataset, several machine learning models were built, for predicting
alerts’ criticality. Among the studied models, the Multi-layer Perceptron (MLP)
demonstrated the best results, and thus it was chosen as the basis of our ap-
proach. The proposed approach was evaluated through a simple case study on
a real-world commercial Java application provided by the automotive industry.
The results of the case study revealed that the proposed model can be used as
a good basis for assessing the criticality of the alerts of a new project, and that,
through regular retraining, it can easily adapt to the characteristics of the model
to which it is applied, providing more accurate assessments with time. The pro-
posed technique has been operationalized in the form of web-services, providing
also a web interface, to facilitate its adoption in practice. To the best of our
knowledge, this is the first technique that focuses exclusively on security-related
static analysis alerts, and adopts the concept of retraining. It is also the first
approach that combines information retrieved from: (i) the alerts themselves,
(ii) vulnerability prediction models, and (iii) user feedback.



Future work includes the investigation of the generalizability of the produced
results by replicating our method using software products that are written in
other programming languages (e.g., C/C++, Python, JavaScript, etc.), as well
as by using different VPMs and static code analyzers. We are also planning to
investigate how legacy systems could benefit from the proposed approach, such
as those implemented in outdated languages like COBOL [30, 31].
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