
 

Supplementary Material 

Introduction 

The interest around climate services, their operational value and use has been increasing since their first 

appearance in early 2000s (Bruno Soares and Buontempo, 2019). The concept itself expanded and embraced 

perspectives derived from climatology and physical sciences, as well as economics and social disciplines. This 

allowed the investigation of technical aspects required to build science-based services (Dekker et al., 2018; 

Troccoli et al., 2018; De Felice et al., 2019), as well as research on users’ needs (Buontempo et al., 2017; 

Christel et al., 2018) and market and non-market dynamics that should be in place to boost their uptake (Bremer 

and Meisch, 2017; Webber and Donner, 2017; Damm et al., 2019). Despite these efforts, a ‘usability gap’ 

(Dinku et al., 2014; Kirchhoff, Lemos and Kalafatis, 2015) between providers of climate information and their 

potential users is still in place. Reasons for this are imputed to the existence and co-occurrence of multiple 

factors: inefficient underutilization of climate models as tools to support robust decision-making in a complex 

reality (Weaver et al., 2013), poor inclusion of insights from social sciences to fully understand users’ needs 

(Vaughan et al., 2016), a good-dominant logic that fails at including users’ experiences and perspectives in the 

co-production and co-generation process (Alexander and Dessai, 2019), as well as timeliness in meeting 

expectations (Ford, Knight and Pearce, 2013; Webber, 2017) among others.  

The implicit assumption behind this literature is the complete knowledge of what climate services are. 

However, there is no agreement on their definition (Vaughan and Hewitt, 2018; Bruno Soares and Buontempo, 

2019) and this poses challenges in identifying what they are. In this paper, we consider “climate services” 

those innovations translating climate science into a user-tailored, decision-relevant tool. Examples of 

operational climate services are provided in Table 0S. 

Table 0s. Examples of climate services 

Climate service Description URL 

IRRICLIME Spatially-explicit, open-source tool providing short- 

and medium-term water budget forecasts to the target 

user. 

https://gecosistema.com/climate-services-

and-tools/  

CLIME Offers a multi-model approach to integrate high-

resolution post-processed climate data, uncertainty 

evaluations from national to local level with the 

purpose of supporting decision-making. 

https://www.dataclime.com/en/dataclime-

en/ 

MAREX SPECTRON Offering to commodity traders the “Global Seasonal 

Weather Outlook” to help managing risks related to 

soft commodities 

https://climate.copernicus.eu/marex-

spectron 

Africa Hydromet program A partnership of development organisations working 

to improve weather, water and climate services to 

boost local economies in Africa. 

http://www.worldbank.org/en/programs/a

frica_hydromet_program 

AgroClimas Historical analysis, monitoring services and climate 

forecasts developed to support local farmers in 

Colombia under threat of food insecurity 

https://ccafs.cgiar.org/es/agroclimas#.XQ

IXCYgzZPY 

  

Materials and methods.  

Framework.  

Data. We used Scopus web-portal (www.scopus.com), the largest abstract and citation database of peer-

reviewed literature, with almost 70 million items and 1.4 billion cited references dating back to 1970. We run 
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a specific query1 in the database specifying to look for any type of document. We found 358 records at January 

23rd 2019 (Table 1S). We cross-checked the initial results launching the same query to Web of Knowledge 

(www.webofknowledge.com) under “Topic”. In this case, the sample included records from 1985 to present. 

Hence, the time series differed. Scopus reported a significantly larger collection (358 vs 243 records). We 

exported the dataset in .bib format to perform data cleaning on multiple software (Mendeley and TeXMaker).  

  

                                                 
1 “climate service*” AND NOT “service* climate”. We also run an alternative query (“climate services” AND “Climate 

Services” AND “climate service” AND “Climate Service” AND NOT “service* climate”) to check on the validity of our 

first search. The two gave the exact same results. 

http://www.webofknowledge.com/


 

Table 1S. Main information 

Variable   

Documents 358 

Sources 173 

Keywords Plus (ID) 1788 

Author's Keywords (DE) 770 

Period 1974-2018 

Average citations per documents 14.32 

Authors 1427 

Author appearances 1729 

Author of single-authored documents 56 

Authors of multi-authored documents 1371 

Single-authored documents 82 

Documents per author 0.251 

Authors per document 3.99 

Co-authors per document 4.83 

Collaboration Index 4.97 

 

We included only peer-reviewed publications in English language. English is the universal language for peer-

reviewed literature. Hence, despite the existence of French and Spanish written works, we feel our sample 

successfully represents official literature. Many projects have produced or are still producing material often 

included under “grey literature” label. This corpus comprises project deliverables, milestones, press releases, 

communication records, workshop and meeting reports. Given the novelty of the field, their exclusion from 

the sample may drive the results towards well-established and purely research-oriented actors. Furthermore, 

private firms and institutions are rarely involved in the peer-review process and do not take credit for 

publications or dissemination of their innovation actions. Despite this limitation, we restricted our analysis to 

scientifically recognized works for two main reasons: (i) projects funded under public schemes (i.e. 

Horizon2020, FP7, FP6, multilateral funds and bilateral agreements) are normally developed by a consortium 

of partners, where research institutions may cover a portion of the workflow. However, they are normally 

assessed against a set of criteria that necessarily involve a peer-review process. Therefore, outcomes of projects 

can be reflected in scientific works and co-authorship networks capture variety of authors involved. (ii) Ideas, 

methodologies and concepts published through a peer-review mechanism are useful tools to backup the 

strengths behind some of the most promising and cutting-edge innovations. Hence, they serve as proxies of 

the most prominent topics and areas of work. The distribution of publications considered in the sample is 

presented at continuation (Table 2S). 

Table 2S. Distribution of records per source type 

Source Type   

Article 221 

Article in press 6 

Book 8 

Book chapter 26 

Conference paper 55 



 

Editorial 3 

Erratum 1 

Letter 1 

Note 14 

Review 21 

Short survey 1 

 

Climate services have been formally defined only in 2001. Therefore, the steady growth of research (Figure 

1S) around this topic is justified by the lack of a shared vision and a still not existent action plan. Despite the 

novelty of the concept, we believe the query launched on Scopus is fully valid. One could argue that every 

document published before 2001 should not be included in the sample of interest. However, we claim that the 

broad scope of “climate services” definition allows for their inclusion because it does not constitute a limitation 

under any circumstance. The growth rate of the overall period is 16.81%. 

Bibliometrics. Bibliometrics, Scientometrics and Infometrics share the same theory and methods, but differ 

for fields of application and usage (Figure 2S). Bibliometrics has been widely employed in Engineering and 

Science (Tian, Wen and Hong, 2008; Larivière et al., 2013), Social Sciences (Archambault and Gagné, 2004) 

and others (Thomson Reuters, 2008; Zare-Farashbandi, Geraei and Siamaki, 2014). We used the 

“bibliometrix” package of R software (Aria and Cuccurullo, 2017). Despite the existence of several tools for 

bibliometric and science mapping tools, the use of bibliometrix R-package is justified by two reasons: (i) it 

works in R, an open-source environment, fully accessible to the research community; (ii) it allows to download 

data and its associated metadata from two bibliographic sources (Scopus and Clarivate Analytics WoS) and to 

convert them into a data frame to facilitate data mining.  

Bibliometrics can provide quantitative estimates of the scientific production ina  given field, but presents some 

frawbacks: it is not able to provide insights about the properties that interactions and collaboration patterns 

show, failing in considering the individual agent as part of the complex systems where microscopic dynamics 

affect the emergence of meso and macroscale phenomena. Bibliometrics also struggles with three additional 

challenges: (i) outcomes are often extrapolated out of context and may not reflect the quality of an individual; 

(ii) performance of  authors are often not fully comparable; (iii) the sample size affects the reliability of the 

results (Belter, 2015; Ball, 2017; Suebsombut et al., 2017; Martín-Martín, Orduna-Malea and Delgado López-

Cózar, 2018). Therefore, it provides a partial vision of the actual success of a scholar, institution or country 

and requires additional and complementary tools. 

First, we computed descriptive statistics for the co-authorship networks of individuals, affiliations of the main 

author and country of the institution they work for. Co-citation networks were explored only in a dynamic 

framework: we addressed the most 20 cited manuscripts throughout our sample to derive implications around 

the conceptual evolution of the field. For visualization purposes, we used a combination of ggplot2 and igraph 

packages’ libraries.  



 

 
Figure 1S. Scientific production 

 

 
FIG 2S. Information science: scientific domains 

 

We also checked the validity of the Lotka’s Law of Scientific Productivity in the case of Climate Services to 

see whether regularities can be found. Given a set of publications (𝑥), the relative frequency of researchers 

with 𝑛 publications (𝑦) and 𝑘 as a field-specific constant, the Lotka’s Law takes the following form: 

𝑥𝑛𝑦 = 𝑘 

The Law states that the number of authors contributing 𝑥 to the overall sample in a given timeframe is a fraction 

of those making a single contribution, following an inverse-quadratic form of the type 1/𝑥𝛼, with 𝛼 ≈ 2. The 

higher the number of articles in a given field, the less frequent the number of authors publishing that amount 

of publications. Given the heterogeneity of disciplines, the actual ratios – expressed as a function of α – 

changes. We first checked whether the Lotka’s Law can be used to predict publication productivity in the field 

of Climate Services, examining the goodness-of-fit of the empirical distribution of our publication sample and 

a theoretical one using the Lotka’s formula (1926). We limited our analysis to the number of publications. We 

obtained the goodness-of-fit from a Kolmogorov-Smirnov (K-S) two sample test, which is used to compare 

the functions of the two distributions and check if structural differences between the two exist. The estimation 

of the constant is equal to 0.58. This figure indicates that the proportion of authors publishing a single item in 

the field of Climate Services is almost 58%, which is slightly higher than the one predicted by Lotka. However, 

results from the K-S test give a goodness-of-fit of 0.95 and a p-value of 0.164, which means that no significant 

differences exist between the two distributions and that Lotka’s Law can be adopted to predict the evolution 

of research on Climate Services (Figure 3S). 



 

 
Figure 3S. Scientific productivity (Lotka’s Law) 

We ranked the top scholars, institutions and countries based on the quantity of publications produced and 

published (Figure 4S). Despite the significant presence of European entities, the United States are still largely 

dominating the field. Overall, national weather offices, well-established research institutions and international 

organisations are shaping research with their contributions. Multi-country collaborations are enhancing the 

existing stock of knowledge by allowing inputs to travel beyond borders.  

As stated in the article, the sample under study is not taking into account any contribution belonging to the so-

called “grey literature”. This may possibly lead to a biased result in favor of universities and Research 

Performing Organisations (RPOs), which are – by mandate – required to produce scientific contributions. 

However, we are confident that advancements in the field of climate services are representative of the efforts 

made at global level: public-private partnerships are often the most appropriate frameworks where research 

and innovation are pursued. This holds for European-funded schemes, where representatives of both domains 

are asked to merge their competences and skills in order to win projects and initiatives.  Nevertheless, the 

bibliometric results hereby presented are important to stimulate reflections about the uneven coverage of 

research on climate services, which appears skewed in favour of English-speaking countries and established 

institutions.  

We run a specific analysis on the author-scientific production to explore productivity patterns (Table 5S), while 

also measuring the research impact (quality) through bibliometric indicators (Table 3S). Authors are ranked 

on the Dominance Factor (DF), which is a ratio indicating the fraction of papers of a given author in which she 

appears as first author over the total amount of papers of that author (Kumar Surendra Kumar and Kretschmer, 

2008).  Within the top 20 authors, 35 percent are US-based, 30 percent are working in UK institutions and 20 

percent is currently in Spain. The remaining 15 percent is allocated in Indonesia, The Netherlands and South 

Africa. Despite the role of productivity in assigning a relative importance to authors, the research impact is 

signaling how appreciated are the produced works. Based on the h-index, Lowe R. is ranked first, followed by 

Hewitt C. and Buontempo C.. Given the h-index does not average the number of citations received, we ranked 

authors on their g-index: the top three authors are Hewitt C. (11), Buontempo C. (7) and Lowe R. (6), Vaughan 

C. (6) and Thomson MC. (6). The m-index provides the research impact of any individual scholar over their 

professional career in a given field of interest: Golding N. (1), Lowe R. (0.83) and Bruno-Soares M. (0.75) are 

the first three authors listed. Results from the bibliometric analysis also provide insights on the main subjects 

tackled by the top 20 scholars: Earth and Planetary Sciences (20), Environmental Sciences (20) and Social 

Sciences (17) are the dominant research areas. This distribution reflects the global one of the overall sample 

of publications considered. 

Table 3S. Authors’ ranking by productivity patterns and research impact 
Author DF h-index g-index m-index 

CARR ER 1 2 3 0.5 

WINARTO YT 0.8 2 2 0.4 

BRUNOSOARES M 0.75 3 4 0.75 

VINCENT K 0.75 2 4 0.5 

VAUGHAN C 0.66 3 6 0.5 



 

ASRAR GR 0.66 3 3 0.37 

BETT PE 0.66 2 2 0.66 

BRÖNNIMANN S 0.66 1 2 0.5 

GUIDO Z 0.6 3 5 0.42 

LOWE R 0.57 5 6 0.83 

DUNSTONE N 0.5 3 4 0.75 

GOLDING N 0.4 3 4 1 

THOMSON MC 0.33 3 6 0.33 

BALLESTER J 0.33 3 3 0.6 

DOBLAS-REYES FJ 0.25 4 4 0.57 

RAY AJ 0.25 3 4 0.75 

TALL A 0.25 2 4 0.22 

TROCCOLI A 0.25 0 0 0 

BUONTEMPO C 0.23 4 7 0.66 

HEWITT C 0.18 4 11 0.5 

 

 
Figure 4S. Bibliometric results. The left-hand side reports the top institutions in the sample; the right-hand 

side shows the most productive countries differentiating between multi-country and single-country 

publication records. 

Conceptual structure. The conceptual structure of our global map of climate services includes the assessment 

of exploration of the most relevant topics covered by the sample of authors and institutions and their temporal 

dynamics. We extracted the abstracts of each publication record and we computed the most frequent terms 

overtime. We applied two main restrictions: (i) we accepted only terms mentioned at least 5 times (quantity); 

(ii) we computed a “relevance score” of the so-obtained collection, including only those with score greater 

than 60 percent. The relevance score is automatically obtained from the software VOSViewer: the score is 

lower in case the co-occurrence of terms with other phrases follow a random pattern. The score increases in 

case the co-occurrence of certain words occur primarily in a limited set of sentences.  

The top 10 words of our sample present all a significantly steep curve, especially in recent times (Figure 5S). 

Interest has shifted from a global to a more regional and localized perspective, hence leading to a significant 

turn towards adaptation. This is also confirmed by the dynamic snapshot of the network of concepts (Figure 

6S). Research has progressively moved away from a mitigation-centered and carbon-related focus in favor of 

a user-centric view where decision-making becomes central. The observation of links between different 

concepts reinforce once more this transformation: “emission” and “mitigation” were strictly connected to 

“agriculture” and “land” between 2010 and 2012. Since 2014-2016, our results show an intensified connection 

between “farmer”, “risk management” and “adaptation”. 



 

 
Figure 5S. Word growth graph: evolution of top mentioned keywords in abstracts 

 
Figure 6S. Network of abstract keywords co-occurrence 

 
Network Analysis. We used Social Network Analysis to uncover four main aspects: similarities, relations, 

interactions and patterns. The fundamental axiom behind the choice of this methodology is that “structure 

matters” (Otte and Rousseau, 2002; Borgatti et al., 2009). We performed the analysis using a combination of 

igraph, statnet, itergraph and sna R packages on undirected graphs. For visualization purposes, we also used 

Gephi (https://gephi.org/) and VOSViewer (http://www.vosviewer.com/). We extracted the Giant Component 

of each sub-graph and we assigned the following names: 𝑁𝑖𝑛𝑑 , 𝑁𝑐𝑜𝑢𝑛𝑡𝑟 , 𝑁𝑖𝑛𝑠𝑡 for individuals, countries and 

institutions respectively. Then, we computed the following: 

https://gephi.org/
http://www.vosviewer.com/


 

1. Graph density 

2. Degree distribution and average degree 

3. Average path length and diameter 

4. Clustering coefficient 

Density is an indicator of cohesion within a graph. It gives the number of ties in a network, as a proportion of 

the total possible ties (which describe the case of complete graphs, where density =1). Density of 𝑁𝑖𝑛𝑑 is 0.026, 

which indicates a loosely connected graph. Degree distribution (Figure 8S) is the simple count of the number 

of nodes presenting each possible degree realization. High-degree nodes are typically influential within a 

network and have potentially more power in influencing the information flows.  

 
FIG 8S. Degree Distribution 

The average degree is 15.093 and represents the average number of links touching upon a node. The average 

path length of the giant component of out network of individual scholars is mathematically expressed as: 

⟨𝐿⟩ =
1

𝑛(𝑛 − 1)
∑ 𝑑𝐺(𝑣𝑖, 𝑣𝑗)

𝑖≠𝑗

 

where 𝑑𝐺(𝑣𝑖, 𝑣𝑗) is the distance between two vertices, meant as the amount of edges in the shortest path running 

between 𝑣𝑖 and 𝑣𝑗.  

Equally connected to the edge dimension, the clustering coefficient estimates the probability of two neighbors 

of a given node to be connected to each other. The average clustering coefficient is given by 

𝐶̅ =
1

𝑛
∑ 𝐶𝑖

𝑛

𝑖=1

 

where 𝐶𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 ∈ 𝑁𝑖

𝑘𝑖(𝑘𝑖−1)

2

  is a vertex-specific (local) clustering coefficient. Local clustering coefficients 

represent the number of cliques to which a given node belong over the maximum number of triangles the same 

node could be part of. 



 

 

 
Figure 9S. Cumulative degree distribution function 

Centrality measures. Literature on complex networks has proved them to share three main features: the “small 

world” property, the “scale free” effects and the “clustering” trait. A network typically displays short distances 

between the nodes (“small world”), which scales following a logarithmic scale with the total number of nodes 

(Latora and Marchiori, 2001). The second effect prescribes the existence of “hubs”: few nodes with high degree 

and many nodes with low degree, following a power-law distribution (Boccaletti et al., 2006). Finally, 

clustering property forecasts that each pair of nodes will be linked to a third one, forming at least a triangular 

shape (Estrada and Rodríguez-Velázquez, 2005). Other subgraph functional forms (“network motifs”) are 

actually proved to be significant and they indicate patterns occurring in a graph far more frequently than in a 

random network with the same degree sequence (Milo et al., 2002).  

Centrality measures are useful numerical characterization of networks. The most common is Degree centrality, 

which quantitatively assesses the scale-free feature and broadly represents the number of links each node has 

with other nodes. Degree centrality is a measure of “popularity” of a given actor. It is expressed as the sum of 

all the actors directly connected to the node of interest: 

𝑑(𝑖) = ∑ 𝑚𝑖𝑗

𝑗

 

where 𝑚𝑖𝑗 = 1 if there is a link between two authors and 𝑚𝑖𝑗 = 0 otherwise.  

 In the context of social networks, Betweenness Centrality is also very common. It measures the number of 

times an individual connects a pair of other actors: 

𝑏(𝑖) = ∑
𝑔𝑗𝑖𝑘

𝑔𝑗𝑘
𝑗,𝑘

 

where  𝑔𝑗𝑘 is the number of shortest paths from 𝑗 to 𝑘 passing through 𝑖 (𝑤𝑖𝑡ℎ 𝑗, 𝑘 ≠ 𝑖). Betweenness allows 

the information to circulate smoothly within their neighborhoods and, ultimately, the overall network. 

Therefore, authors with larger values of betweenness centrality are facilitators of knowledge flows. Whenever 

in presence of connected networks, it is possible to measure Closeness centrality, which is equal to the total 

distance of a given node from all the others:  

𝑐(𝑖) =
1

∑ 𝑑𝑖𝑗𝑖
 

where 𝑑𝑖𝑗 represents the number of ties in the shortest path from 𝑖 to 𝑗. Comparison between nodes of different 

sizes is possible via normalization (the average length of the shortest possible path).  

The three measures emphasize different aspects, but they all depend on the graph size. Freeman (1979) 

pioneered in the analysis of “the effects of network size” and solved the issue introducing the point-centrality, 



 

an absolute measure allowing for interpretation of the values with respect to a [0,1] scale. In contrast with 

point-centrality, node-centrality is any 𝑛𝑐(𝑣𝑖) function, which assigns a real value to every node of an 

undirected and connected graph 𝐺 = (𝑉, 𝐸) with |𝑉| = 𝑛. We can say that 𝑛𝑐(𝑣𝑖) is a node-centrality of a 

node 𝑣𝑖 if  

(𝑖)  𝑛𝑐(𝑣𝑖)  ∈   [0,1]            𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑣𝑖 ∈ 𝑉, and 

(𝑖𝑖)  𝑛𝑐(𝑣𝑖) = 1           𝑖𝑓𝑓 𝐺 = 𝑆1,   𝑛−1 𝑎𝑚𝑑 𝑖 = 1 

Eigenvector centrality is also related to connected components of the graph. It provides the most appropriate 

simulation of a case where each node has simultaneous effect on its neighborhood. It is mathematically 

expressed as “the principal or dominant eigenvector of the adjacency matrix A” (Estrada and Rodríguez-

Velázquez, 2005) representing the considered connected subgraph: 

𝑥𝑣 =
1

𝜆
∑ 𝑥𝑡

𝑡∈𝑀(𝑣)

  =    
1

𝜆
∑ 𝑎𝑣,𝑡𝑥𝑡

𝑡∈𝐺

 

where 𝐺 ≔ (𝑉, 𝐸) is a given graph defined over a set of vertices and edges; 𝐴 = (𝑎𝑣,𝑡) is the adjacency matrix; 

𝑀(𝑣) is the set of all the neighbors of v and λ is a constant. Note that 𝑎𝑣,𝑡 = 1 if vertex v is linked to vertex t, 

and 𝑎𝑣,𝑡 = 0 otherwise. Eigenvector centrality can be interpreted as an extension of degree centrality. 

Throughout the past 50 years, multiple centrality measures have been computed and used for a variety of 

complex networks. Table 4S provides a list of the most commonly observed, with their relative mathematical 

formulation and their interpretation.  

Table 4S. Centrality measures used in this work 
Measure Definition Mathematical formulation Explanation Source 

Average 

distance 

Average distance of 

node u to the rest of 

the nodes in the 

network 

 

𝐶𝐴𝑉(𝑢) =
∑ 𝑑(𝑢, 𝑤)𝑤∈𝑉

𝑛 − 1
 

The measure 

requires strongly 

connected 

networks. It is the 

inverse of closeness 

centrality.  

(Del Rio, 

Koschützki 

and Coello, 

2009) 

Barycenter 

centrality 

The inverse of total 

distance between a 

given node and all 

the others. 

 

Running these 

scores require to 

rank one subgraph 

at a time. 

1

𝑑(𝑣, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠)
 

 

Closeness scores 

are calculated on 

the average 

distance between a 

vertex and all the 

others. Barycenter 

scores use the total. 

More central nodes 

in a connected 

subgraph will 

present overall 

shortest paths.  

(Ashtiani et 

al., 2017) 

Betweenness 

centrality 

The number of 

times an individual 

connects a pair of 

nodes. 

 

𝑏(𝑖) = ∑
𝑔𝑗𝑖𝑘

𝑔𝑗𝑘
𝑗,𝑘

 

 

where  𝑔𝑗𝑘 is the number of 

In co-authorship 

networks, the 

measure gauges the 

extent to which a 

node facilitates the 

flow of information 

in the network. 

Therefore, it is a 

(Otte and 

Rousseau, 

2002; Estrada 

and 

Rodríguez-

Velázquez, 

2005) 



 

shortest paths from 𝑗 to 𝑘 

passing through 𝑖 
(𝑤𝑖𝑡ℎ 𝑗, 𝑘 ≠ 𝑖). 

measure of 

potential control in 

a graph. 

BottleNeck 

centrality 

A tree 𝑇𝑣 of shortest 

paths is drawn from 

node v; 𝑛𝑣 is the 

number of shortest 

paths included in 

𝑇𝑣. Extract all nodes 

s in 𝑇𝑣, such that 

more than 
𝑛𝑣

4
 meet 

at node s. Nodes 

extracted in this 

way are 

“bottlenecks” of 𝑇𝑣.  

 

 

𝐵𝑉𝑣 = ∑ 𝑃𝑠(𝑣)

𝑠∈𝑉

 

 

with 𝑇𝑠 be the tree of shortest 

paths rooted at node s; 

𝑃𝑠(𝑣) = 1 if more than 
|𝑉(𝑇𝑠)|

4
 

paths from node s to other 

nodes in 𝑇𝑠 meet at v and 

𝑃𝑠(𝑣) = 0 otherwise.  

The high-

betweenness 

characteristic of 

nodes that tend to 

share similar 

functions and find 

themselves as 

“between” highly 

interconnected 

subgraph clusters. 

Removing these 

edges could 

partition the 

network. 

(Yu et al., 

2007) 

Closeness 

centrality 

(Freeman) 

An inverse measure 

of centrality, equal 

to the total distance 

of a given node 

from all the others). 

It is computed as the 

inverse of the sum 

of distances to all 

other nodes 

 

 

 

𝑐(𝑖) =
1

∑ 𝑑𝑖𝑗𝑖
 

 

where 𝑑𝑖𝑗 represents the 

number of ties in the shortest 

path from 𝑖 to 𝑗. 

How far each actor 

is located from all 

the others.  

It often interpreted 

as either an 

indication of 

efficiency or of 

independence.  

It is related to 

betweenness 

because they are 

both expressed as 

function of the 

shortest path and 

they conceptually 

share a duality in 

terms of 

dependency:  

(Ruhnau, 

2000; Otte 

and 

Rousseau, 

2002; 

Brandes, 

Borgatti and 

Freeman, 

2016) 

Closeness 

centrality 

(Latora) 

Expressed as the 

sum of the inversed 

distances to all 

other nodes. 

 

∑
1

𝑑𝑖𝑗
𝑖≠𝑗

 

 

where 𝑑𝑖𝑗 represents the 

number of ties in the shortest 

path from 𝑖 to 𝑗. 

Variant of the 

Freeman algorithm, 

suitable for 

networks with 

disconnected 

components. 

(Latora and 

Marchiori, 

2001; 

Crucitti, 

Latora and 

Porta, 2006; 

Opsahl, 

Agneessens 

and Skvoretz, 

2010) 

Closeness 

vitality 

The change in the 

sum of distances 

between all node 

𝐶𝐶𝑉(𝑥) = 𝐼𝑊(𝐺) − 𝐼𝑊(
𝐺

{x}
) 

It requires a 

strongly connected 

network and 

(Brandes, 

Erlebach and 

Gesellschaft 



 

pairs when 

excluding a given 

node. It requires the 

computation of the 

Wiener Index 

 

where 𝐼𝑊(𝐺) is the Wiener 

Index: 

 

𝐼𝑊(𝐺) = ∑ ∑ 𝑑(𝑣, 𝑤)

𝑤∈𝑉𝑣∈𝑉

 

 

denotes how much 

will the relationship 

change in an all-to-

all communication 

if a given element x 

is removed form the 

graph 

für 

Informatik., 

2005) 

ClusterRank 

A measure inspired 

by PageRank and 

LeaderRank 

capable of 

accounting for the 

number of 

neighbors, 

neighbors’ 

influences and 

clustering 

coefficient of a 

given node. 

 

𝑠𝑖 = 𝑓(𝑐𝑖) ∑(𝑘𝑗
𝑜𝑢𝑡 + 1)

𝑗∈𝛤𝑖

 

 

where 𝑓(𝑐𝑖) includes the 

effects of the local cluster of i, 

while the +1 term results from 

the contribution of the j node 

itself. 

The clustering coefficient of a 

directed network is: 

𝑐𝑖 =
|{𝑒𝑗𝑘|𝑗, 𝑘 ∈ 𝛤𝑖}|

𝑘𝑖
𝑜𝑢𝑡(𝑘𝑖

𝑜𝑢𝑡 − 1)
 

with 𝑘𝑗
𝑜𝑢𝑡 is the out-degree of 

i, which represents the 

number of followers of node i 

and 𝛤𝑖 if the set of followers of 

I, {𝑒𝑗𝑘|𝑗, 𝑘 ∈ 𝛤𝑖} is the set of 

links connecting two of i’s 

followers. 

Typically applied to 

directed networks, 

it can be used in 

undirected graphs 

where ClusterRank 

is significantly 

higher than degree 

centrality and k-

core 

decomposition. 

(Chen et al., 

2013; Wang 

et al., 2017) 

Clustering 

coefficient 

Local clustering 

coefficient of a 

node 𝑛𝑖 is a measure 

of the cliquishness 

of 𝑛𝑖 neighborhood. 

 

Global clustering 

coefficient is the 

average of local 

clustering 

coefficients. 

𝑐𝑖 =
𝑦𝑖

(𝑑𝑖
2 )

 

 

where  𝑦𝑖 is the number of 

links between the neighbors 

of 𝑛𝑖 and 𝑑𝑖 is its degree. 

 

 

The local clustering 

coefficient can be 

viewed as a local 

density measure in 

the neighborhood 

of a node i.  

 

In the case of 

undirected graphs, 

the global 

clustering 

coefficient is the 

number of closed 

triplets over the 

(Hernández 

and 

Mieghem, 

2011; Fouss, 

Saerens and 

Shimbo, 

2016) 



 

𝐶 =
1

𝑁
∑ 𝑐𝑖

𝑖∈𝑁

 
total number of 

closed triplets. 

Current-

Flow 

Closeness 

Centrality 

Alternative measure 

of distance between 

two nodes, treated 

as differentiated 

electric potential in 

the case of an 

electric network. 

𝐶𝑢

=
𝑛

∑ (𝑣𝑢𝑣(𝑢) − 𝑣𝑢𝑣(𝑣))𝑣∈𝑉
 

 

 

with 𝑢 ≠ 𝑣; 𝑣𝑢𝑣(𝑢) is the 

absolute potential of vertex u, 

based on the power supply 

from vertex u to vertex v;  

(𝑣𝑢𝑣(𝑢) − 𝑣𝑢𝑣(𝑣)) is an 

alternative measure of 

distance or, in the case of an 

electric network, the effective 

resistance measured in 

voltage. 

Appropriate t 

measure critical 

nodes in the 

network. Current-

Flow closeness 

measures how 

easily others can 

access a node and 

viceversa. 

Limit: the measure 

cannot assess which 

nodes impact more 

on the total network 

current-flow 

efficiency once a 

node fails. 

(Li et al., 

2018; Liu and 

Yan, 2018) 

Communicab

ility 

Betweenness 

centrality 

Let 𝐺 = (𝑉, 𝐸) be 

an undirected graph 

and be A the 

adjacency matrix of 

G. 

Let 𝐺(𝑟) =
(𝑉, 𝐸(𝑟)) be the 

graph obtained by 

removing all edges 

connected to node r, 

but not r itself. 

The adjacency 

matrix becomes 

A+E(r), where E(r) 

has nonzero values 

in row and column 

r. 

𝜔𝑟 =
1

𝐶
∑ ∑

𝐺𝑝𝑟𝑞

𝐺𝑝𝑞
,   

𝑞𝑝

 

𝑝 ≠ 𝑞, 𝑝 ≠ 𝑟, 𝑞 ≠ 𝑟 

 

whit 𝐺𝑝𝑟𝑞 = (𝑒𝐴)𝑝𝑞 −

(𝑒𝐴+𝐸(𝑟))
𝑝𝑞

 is the number of 

random walks involving 

vertex r; 𝐺𝑝𝑞 = (𝑒𝐴)𝑝𝑞 is the 

number of closed walks 

starting at p and ending at q; 

𝐶 = (𝑛 − 1)2 − (𝑛 − 1) is a 

normalization factor. 

The measure takes values 

[0,1]. 

Derived from the 

concept of shortest 

path, it takes into 

account the shortest 

path between nodes 

and all the paths 

between nodes. 

(L.D and Raj, 

2017) 

Community 

centrality 

The sum of local 

influence zones of 

all network edges 

and nodes, 

including the one 

under study.  

 

𝐶𝐶(𝑖)

= ∑(1 −
1

𝑚
∑ 𝑆(𝑗, 𝑘))

𝑚

𝑖∈𝑗∩𝑘

𝑁

𝑖∈𝑗

 

 

where the main sum is 

expressed over the total N 

communities to which node i 

belongs to; m is the number of 

A community is 

ultimately a 

subgraph depicting 

a set of interacting 

agents. The 

measure uses the 

pairwise similarity 

between detected 

communities as 

weights for the 

number of 

communities a 

given node belongs 

(Kalinka and 

Tomancak, 

2011; 

Konstantinidi

s, 

Papadopoulo

s and 

Kompatsiaris

, 2017) 



 

communities paired with 

community j and to which 

node i jointly belongs; 𝑆(𝑗, 𝑘) 

is computed using the Jaccard 

coefficient for the number of 

shared nodes between 

community j and k.   

to. 

Dangalchev 

Closeness 

Centrality 

It is a variation of 

closeness centrality.  
𝐶(𝑖) = ∑

1

2𝑑(𝑖,𝑗)
𝑗≠𝑖

 

 

where d(i,j) is the distance 

between two nodes. 

It is aimed at 

assessing the 

network’s 

resistance after the 

removal of 

individual links or 

nodes. 

(Dangalchev, 

2006a) 

Decay 

centrality 

Based on proximity 

between a given 

node and every 

other weighted by a 

decay.  

 

∑ 𝛿𝑑(𝑥,𝑦)

𝑦∈𝑉(𝐺)

 

 

where δ is a parameter taking 

values [0,1] 

The prerequisite is 

the existence of a 

strongly connected 

network. 
(Tsakas, 

2017) 

Degree 

centrality 

Number of ties a 

node has 

𝑑(𝑖) = ∑ 𝑚𝑖𝑗

𝑗

 

where 𝑚𝑖𝑗 = 1 if there is a 

link between two authors and 

𝑚𝑖𝑗 = 0 otherwise. 

In co-authorship 

networks, degree 

expresses the 

number of authors 

in the graph with 

whom she has co-

authored at least 

one article. 

 

(Otte and 

Rousseau, 

2002) 

Diffusion 

Degree 

The cumulative 

distribution score of 

the node itself and 

its neighbors 

𝐶𝐷𝐷(𝑣) = 𝐶𝐷𝐷
′ (𝑣) + 𝐶𝐷𝐷

′′ (𝑣) 

 

= 𝜆𝑉 ∗ 𝐶𝐷(𝑣)

+  ∑ 𝐶𝐷𝐷
′ (𝑣)

𝑖∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣)

 

= 𝜆𝑉 ∗ 𝐶𝐷(𝑣)

+ ∑ 𝜆𝑖 ∗ 𝐶𝐷(𝑖)

𝑖 ∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣)

 

 

where 𝐶𝐷
′ (𝑣) represents the 

contribution of node v in the 

diffusion process; 𝐶𝐷𝐷
′′ (𝑣) is 

Differently from 

other measures, 

Diffusion degree 

considers 

neighbors’ 

contributions in 

addition to the 

degree of a given 

node. Furthermore, 

DD works 

accurately with not 

uniform 

propagation 

probability 

distributions. 

(Pal, Kundu 

and Murthy, 

2014) 



 

the total contribution of 

neighbors of v; λ is the 

propagation probability of a 

given node to activate another 

node  

DMNC – 

Density of 

Maximum 

Neighborhoo

d Component 

Ratio between the 

number of edges of 

the Maximum 

Neighborhood 

Component of a 

given node v and 

the number of nodes 

elevated to a given 

parameter, 

conveniently set to 

describe the number 

of communities in 

the neighborhood 

sub-network of v. 

 

|𝐸(𝑀𝑁𝐶(𝑣))|

|𝑉(𝑀𝑁𝐶(𝑣))|𝜀
, 1 ≤ 𝜀 ≤ 2 

 

 

Neighborhood-

based measure, 

capable of 

undercovering 

unrecognized hubs 

within a given 

network 

(Chin and 

Samanta, 

2003; Lin et 

al., 2008) 

Eccentricity 

centrality 

The greatest 

distance between 

vertex v and any 

other vertex in the 

network. 

𝐶𝐸(𝑣)

=
1

max {𝑑𝑖𝑠𝑡(𝑢, 𝑣): 𝑢 ∈ 𝑉}
 

An eccentricity 

with high values 

implies a greater 

node proximity. If 

eccentricity is low, 

there is at least one 

node far from node 

v. 

(Hage and 

Harary, 1995; 

Hernández 

and 

Mieghem, 

2011; Takes 

and Kosters, 

2013) 

Eigenvector 

centrality 

The principal or 

dominant 

eigenvector of the 

adjacency matrix A 

of the connected 

subgraph 

𝑥𝑣 =
1

𝜆
∑ 𝑥𝑡

𝑡∈𝑀(𝑣)

  

=    
1

𝜆
∑ 𝑎𝑣,𝑡𝑥𝑡

𝑡∈𝐺

 

 

where = (𝑎𝑣,𝑡) is the 

adjacency matrix; 𝑀(𝑣) is the 

set of all the neighbors of v 

and λ is a constant. Note that 

𝑎𝑣,𝑡 = 1 if vertex v is linked 

to vertex t, and 𝑎𝑣,𝑡 = 0 

otherwise 

Eigenvector 

centrality can be 

interpreted as an 

extension of degree 

centrality. 

 

(Ruhnau, 

2000; Estrada 

and 

Rodríguez-

Velázquez, 

2005; 

Fletcher and 

Wennekers, 

2018) 

Entropy 

centrality 

Centrality of nodes 

is measured 

depending on their 

contribution to the 

entropy of the 

graph. 

𝐻𝑐𝑒(𝐺) = − ∑ 𝛾(𝑣𝑖)

𝑛

𝑖=1

× log2 𝛾(𝑣𝑖) 

where 

The measure 

provides 

information on the 

degree of centrality 

for a node in the 

graph 

(Nie et al., 

2016) 



 

𝛾(𝑣)

=
𝑝𝑎𝑡ℎ𝑠(𝑣𝑖)

𝑝𝑎𝑡ℎ𝑠(𝑣1, 𝑣2, … , 𝑣𝑀) 
 

 

represents the total number of 

geodesic paths from node v to 

all the others over the total 

number of geodesic paths M 

existing across all nodes. 

EPC – Edge 

Percolated 

Component 

Assign a removing 

probability p to 

every edge of a 

connectivity 

network G. G’ is the 

realization of a 

random edge 

removing from G. If 

two nodes v and w 

are connected 

within G’, then 

𝑑𝑣𝑤 = 1 and 0 

otherwise. The 

percolated 

connectivity of v 

and w, 𝑐𝑣𝑤 , is the 

average of 𝑑𝑣𝑤 over 

realisations. The 

EPC is the size pf 

the percolated 

component. 

 

𝐸𝑃𝐶(𝑣) =
1

|𝑣|
∑ ∑ 𝛿𝑣𝑡

𝑘

𝑡∈𝑉

1000

𝑘=1

 

 

where  

 

𝛿𝑢,𝑣 = {
0 𝑖𝑓 (𝑢, 𝑣) ∉ 𝐸′ 

1 𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸′
 

 

is the Kronecker delta 

function defined on the set of 

initial edges 

A proportion of 

edges are randomly 

removed from the 

graph. The measure 

shows the impact of 

removing 

communication 

channels between 

individuals 

(Dokas et al., 

2017) 

Geodesic K-

path 

centrality 

The number of 

geodesic paths up to 

length k emanating 

from a given node 

𝐶𝐾 = 𝑊′ 

 

where W is a matrix in which 

𝑤𝑖𝑗 is the number of paths of 

length k or less from node i to 

j.  

It is the measure of 

direct involvements 

that a given node 

has within the 

geodesic structure 

of the network. 

(Borgatti and 

Everett, 

2006; 

Agneessens, 

Borgatti and 

Everett, 

2017; Dokas 

et al., 2017) 

Harmonic 

centrality 

It is the sum of all 

the inversed 

distances between 

every pair of 

distinct nodes.  ∑
1

𝑑(𝑖, 𝑗)
𝑖≠𝑗

= ∑
1

𝑑(𝑖, 𝑗)
𝑑(𝑖,𝑗)<∞,𝑖≠𝑗

 

It is an extension of 

closeness 

centrality. Instead 

of using average 

distances, harmonic 

centrality employs 

harmonic mean of 

all distances. 

Hence, it accounts 

also for nodes j that 

cannot reach nodes 

i. It can be applied 

to not weel 

(Boldi and 

Vigna, 2014) 



 

connected graphs, 

too.  

Hubbell 

Index 

Based on the 

Leontief’s input-

output model. 

𝐶𝐻𝑢𝑏𝑏 = 𝐸 + 𝑊𝐶𝐻𝑢𝑏𝑏 

 

Where E is an exogenous 

input and W is a weight 

matrix derived from the 

adjacency matrix A. 

 

The measure 

requires connected 

and free loop 

networks. 
(Hubbell, 

1965) 

Information 

centrality 

The relative drop in 

network efficiency 

originated by the 

removal form the 

graph of the edges 

incident in node i. 

 

𝐶𝑖
𝐼 =

∆𝐸

𝐸
=

𝐸[𝐺] − 𝐸[𝐺′]

𝐸[𝐺]
 

 

where 𝐺 is a graph of N nodes 

and K edges and 𝐺′ is the 

graph with N nodes and 𝐾 −
𝑘𝑖 edges.  

Efficiency of G (E[G]) is: 

𝐸[𝐺]

=
1

𝑁(𝑁 − 1)
∑

𝑑𝑖𝑗
𝐸𝑢𝑐𝑙

𝑑𝑖𝑗
𝑖,𝑗∈𝐺,𝑖≠𝑗

 

 

The measure relates 

the importance of a 

given node to the 

capacity of the 

network to react to 

the deactivation of 

the node. Network 

performance is 

assessed through an 

indicator of 

efficiency. 

(Crucitti, 

Latora and 

Porta, 2006; 

Ferreira et 

al., 2016; 

Das, Samanta 

and Pal, 

2018) 

K-core 

decompositio

n 

A subgraph 𝐻 =
(𝐶, 𝐸|𝐶), induced 

by a subset of 

vertices 𝐶 ⊆ V is a 

k-core or a core of 

order k iff ∀𝑣 ∈
𝐶: 𝑑𝑒𝑔𝑟𝑒𝑒𝐻(𝑣) ≥
𝑘 and H is the 

maximum subgraph 

with this property 

𝑘𝑖 = ∑ 𝑑𝑖𝑗

𝑁

𝑗

 

 

where 𝑘𝑖 is the node degree of 

i and j is the number of nodes 

connected to i. Note that: 

 

{
𝑑𝑖𝑗 = 1 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑑𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

The measure allows 

the identification of 

particular subsets of 

the graph, named k-

cores, each of 

which is obtained 

removing all the 

vertices of degree ≤
𝑘, until the degree 

of those left is equal 

to k.  

(Alvarez-

Hamelin et 

al., 2005; Al-

garadi, 

Varathan and 

Ravana, 

2017) 



 

Katz 

Centrality 

Weighted count of 

the number of walks 

starting or ending at 

a given node. 

𝑥𝑖 = 𝛼 ∑ 𝐴𝑖𝑗𝑥𝑗 + 𝛽

𝑗

 

 

Where A is the adjacency 

matrix with eigenvalues λ; β 

controls the initial centrality 

and 𝛼 <
1

𝜆_𝑚𝑎𝑥 
 

It measures the 

number of 

immediate 

neighbors (first 

degree) plus all 

other nodes in the 

network that 

connect to the node 

through the first 

degree ones. 

(Borgatti and 

Everett, 

2006; 

Fletcher and 

Wennekers, 

2018) 

Kleinberg’s 

centrality 

scores 

The authority score 

at node i, 𝑥𝑖
𝑎, is 

equal to the 

normalized 

(weighted) sum of 

hub scores of all 

nodes pointing to i.  

 

The hub score of a 

node i is equal to the 

(weighted) sum of 

the authority scores 

that hub node i links 

to. 

𝑥ℎ = 𝐴𝐴𝑇 

 

𝑥𝑎 = 𝐴𝑇𝐴 

 

Hubs and 

authorities should 

intuitively hold two 

properties: (a) a 

good hub is a page 

cited by many 

authorities. The 

larger the number 

of authorities and 

the highest their 

quality, the larger is 

the hub score; (b) a 

good authority is 

being cited by 

many (large hub 

score). Therefore, 

the larger the 

number of hubs and 

their quality, the 

larger the authority 

score. 

(Kleinberg, 

1998; Fouss, 

Saerens and 

Shimbo, 

2016) 

Laplacian 

centrality 

The centrality of a 

given vertex v is 

characterized as a 

function in terms of 

its Laplacian 

energy, a measure 

capturing the ability 

of the network to 

respond to the 

deactivation of that 

vertex from the 

graph.  

𝐶𝐿(𝑣𝑖, 𝐺) =
(∆𝐸)𝑖

𝐸𝐿(𝐺)
 

 

where (∆𝐸)𝑖 = 𝐸𝐿(𝐺) −
𝐸𝐿(𝐺𝑖) is the variation of 

Laplacian energy and must be 

nonnegative.  

It requires weighted 

networks and allow 

a better evaluation 

of “intermediate” 

information around 

a vertex. The 

Laplacian centrality 

method values both 

the number of 

connections a 

vertex has and the 

importance of those 

nodes to which a 

given vertex is 

connected to. 

(Qi et al., 

2012, 2013) 



 

Leverage 

centrality 

Measure to count 

the difference of 

degree between a 

node and its 

neighbors. In the 

average case, 

positive and high 

values implies a 

higher influence of 

a node on s 

neighbors. 

𝑙𝑖 =
1

𝑘𝑖
∑

𝑘𝑖 − 𝑘𝑗

𝑘𝑖 + 𝑘𝑗
𝑁𝑖

 

 

where 𝑘𝑖 is the degree of a 

given node and 𝑘𝑗 is the 

degree of its neighbors. The 

measure is then averaged by 

the number N of all 

neighbors.   

The measure allows 

the identification of 

the most relevant 

nodes within their 

own neighborhood 

(“critical network 

nodes”) 

(Joyce et al., 

2010; Dokas 

et al., 2017) 

Lin centrality 

The normalized 

closeness centrality 

measure 

(considered as the 

inverse of the 

average distance in 

the graph) 

multiplied by the 

square of the 

number of 

reachable nodes. 

{𝑦|𝑑(𝑦, 𝑥) <  ∞}|2

∑ 𝑑(𝑦, 𝑥)𝑑(𝑦,𝑥)< ∞
 

 

For a nonempty reachable set. 

Used in the specific 

case of graphs with 

infinite distances. 

Nodes with larger 

reachable sets are 

more important. 

However, given 

that the average 

distance is the 

same, the measure 

is re-multiplied by 

the number of 

reachable nodes. 

(Boldi and 

Vigna, 2014) 

Load 

centrality 

It weights shortest 

paths according to 

their probability of 

being selected in a 

random walk on a 

directed graph of 

shortest paths from 

node I to node k. 

 

Alternative 

measure to 

betweenness and 

optimal for the 

analysis of flow 

structures operating 

below their 

capacities. 

 

Given an input of 

flow x arriving at v 

with destination v’, 

v splits x in equal 

parts among all 

neighbors of 

minimum geodesic 

distance to the 

target. 

(‘Package 

“sna”: Tools 

for Social 

Network 

Analysis’, 

2016) 

Lobby Index 

(Centrality) 

The largest integer 

k such that a node x 

has at least k 

neighbors with a 

degree of at least k. 

𝑙(𝑥) = max {𝑘: deg (𝑦𝑘)
≥ 𝑘} 

 

where deg (𝑦𝑘) is the degree 

of x’s neighbors 𝑦𝑖 with 

The lobby index is 

closer to closeness 

centrality, 

betweenness and 

eigenvector 

centrality measures. 

(Korn, 

Schubert and 

Telcs, 2009; 

Campitelli et 

al., 2013) 



 

deg(𝑦1) ≥ deg(𝑦2) …  

MNC – 

Maximum 

Neighborhoo

d Component 

The neighborhood 

of a given node v, 

expressed as nodes 

adjacent to v, 

induces a 

subnetwork N(v). 

The MNC score of a 

node v is defined by 

the size of the 

maximum 

connected 

component of N(v) 

𝑀𝑁𝐶(𝑣) = |𝑉(𝑀𝐶(𝑣))| 

 

(Lin et al., 

2008; Kabir 

et al., 2017) 

Markov 

Centrality 

The average of the 

average Mean first-

passage time 

(MFPT) in the 

Markov chain. 
𝐶𝑀(𝑣) =

𝑛

∑ 𝑚𝑠𝑣𝑠∈𝑉
 

 

where 

 

𝑚𝑠𝑡 = ∑ 𝑛𝑓𝑠𝑡
𝑛

∞

𝑛=1

 

 

is the MFPT, or the expected 

number of steps starting at 

node s taken until the first 

arrival at node t.  

The measure 

requires directed 

and weighted 

networks. It uses 

the concept of 

random walks 

through the graph 

and it uses the 

MFPT as a measure 

of how tight the 

connection between 

a given node and 

every other vertex 

of the network is. 

Random walks 

reach quicker well-

connected vertices. 

Therefore, this 

method helps 

measuring 

distances, that can 

eventually be used 

as ranking between 

nodes. 

(Boldi and 

Vigna, 2014) 

Radiality 

Centrality 

The shortest path 

between node v and 

all other nodes in 

the graph. The value 

of each path is 

removed by the 

value of the 

maximum possible 

distance between 

nodes (diameter) 

𝐶𝑟𝑎𝑑(𝑣)

=
∑ (∆𝐺 + 1 − 𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑤∈𝑉

𝑛 − 1
 

If the shortest paths 

are short, the 

radiality centrality 

will be high – given 

that they are 

subtracted by the 

maximal possible 

distance (the 

diameter). Overall, 

if radiality has high 

(Cueno and 

Imai, 2018; 

Ivanov, 

Gorlushkina 

and Ivanova, 

2018) 



 

+1. Resulting 

values are summed 

together and so 

obtained numerical 

value is divided by 

the total number of 

nodes -1. 

values, with respect 

to the diameter, the 

node is closer to 

other nodes. If 

radiality is low, 

then the node is 

peripheral. Results 

are meaningful 

when compared to 

the average of 

graph. 

Residual 

closeness 

centrality 

Be 𝑑𝑘(𝑖, 𝑗) be the 

distance between i 

and j, originated 

from the original 

graph where all 

links of node k are 

deleted. Using the 

definition of 

closeness, we can 

derive a modified 

version. 

𝐶𝑘 = ∑ ∑
1

2𝑑𝑘(𝑖,𝑗)
𝑗≠𝑖𝑖

 

 

The vertex residual closeness 

is  

𝑅 = min
𝑘

{𝐶𝑘} 

 

The link residual closeness is 

𝑅 = min
(𝑘,𝑝)

{𝐶(𝑘,𝑝)} 

More sensitive than 

other measures, 

because it is able to 

capture the effects 

of a node removal 

even if this does not 

produce any 

disconnected 

components. 

(Dangalchev, 

2006b; Chen 

et al., 2013) 

Semi local 

centrality 

The measure 

considers the 

nearest and the next 

nearest neighbors of 

node, which 

introduces a trade-

off between low-

relevant degree 

centrality and other 

consuming 

measures. 

𝑄(𝑢) = ∑ 𝑁(𝑤)

𝑤∈𝛤(𝑢)

 

𝐶𝐿(𝑣) = ∑ 𝑄(𝑢)

𝑢∈𝛤(𝑣)

 

 

Where Γ(u) is the set of all the 

nearest neighbors of node u; 

N(w) is the number of the 

nearest and the next nearest 

neighbors of node w. 

High performing 

measure in low 

computational 

complexity 

(Chen et al., 

2013) 

Shortest-

Paths 

Betweenness 

Centrality 

 

 

 

 



 

Stress 

centrality 

Stress is computed 

as the measure of 

the shortest paths 

passing through a 

node. 

𝐶𝑠(𝑣) = ∑ 𝜌𝑠𝑡(𝑣)

𝑠≠𝑡≠𝑣∈𝑉

 

 

Where 𝜌𝑠𝑡(𝑣) is the number 

of shortest paths passing 

through v. The same 

definition applies to links: 

 

𝑐𝑠(𝑒) = ∑ ∑ 𝜎𝑠𝑡(𝑒)

𝑡∈𝑉𝑠∈𝑉

 

 

where 𝜎𝑠𝑡(𝑒) denotes the 

number of shortest paths 

containing edge e. 

A node is highly 

stressed if it is 

transversed by a 

high number of 

nodes. The measure 

itself does not 

automatically 

imply that node v is 

a critical one to 

maintain 

communications 

within the graph 

(Scardoni, 

Petterlini and 

Laudanna, 

2009; Zheng 

et al., 2017) 

Subgraph 

centrality 

The sum of closed 

walks of different 

lengths in the 

network that starts 

and ends on vertex 

i. 

 

𝐶𝑆(𝑖) = ∑
𝜇𝑘(𝑖)

𝑘!

∞

𝑘=0

 

 

where 𝜇𝑘(𝑖) = (𝐴𝑘)
𝑖𝑖

 are the 

local spectral moments 

defined as the 𝑖𝑡ℎ diagonal 

entry of the 𝑘𝑡ℎ power of the 

adjacency matrix A. 

The measure 

characterizes nodes 

according to their 

participation in 

structural 

subgraphs of G. 

Contribution of 

walks decreases as 

the length of the 

walk increases (due 

to the “small 

world” property). 

(Estrada and 

Rodríguez-

Velázquez, 

2005) 

Topological 

coefficient 

Number of 

neighbors shared 

between a pair of 

nodes, n and m, plus 

one if there exists a 

direct link between 

the two, divided by 

the number of 

neighbors of node n. 

 

𝑇𝑛 =
𝑎𝑣𝑔(𝐽(𝑛, 𝑚))

𝑘𝑛
 

 

Where  𝐽(𝑛, 𝑚) is defined for 

all the nodes sharing at least 

one neighbor with n. 

It is a relative 

measure of the 

extent to which a 

node shares 

neighbors with 

other nodes. 

(Deng, Zhu 

and Huang, 

2016) 

 

  



 

Principal Component Analysis 

The 42 centrality measures listed in Table 4S were detected automatically via the R package CINNA. 

Depending on the topology of the network under study, a specific function detects the optimal number of 

metrics to be used. We launched a PCA on the 42 measures and then we assessed their correlation and their 

contribution to each factor.  

 
Figure 10S. Most correlated centrality measures as expressed by cos2 

Community detection. Communities are groups of nodes strongly connected within themselves and poorly 

linked to each other (Barabasi, 2016). They play a significant role in understanding the spread and diffusion 

of epidemics (Johnson, de Roode and Fenton, 2015), economic inequality (Nishi et al., 2015), diversity in 

social networks (Becker, Brackbill and Centola, 2017; Han et al., 2017) and consensus (Baronchelli, 2018). 

Knowledge about the structure of the network and the groups offers the opportunity to predict where critical 

connectors are, hence the chance to manipulate the graph. This “power” can be very helpful in driving and 

increasing the efficiency of processes. Real word networks often present structured groups: there exists a 

wealth of algorithms to perform community detection, but the main methods still remain hierarchical 

clustering. Therefore, the main question lies in the optimality of the algorithm used to perform community 

detection. In fact, the challenge lies in the speed of the Bell number: the number of ways allowing the partition 

in communities grows faster than exponentially with the size of the graph (Barabasi, 2016). Community 

detection is a major field of investigation in network science: Scopus reports 5320 documents, 41.6% in the 

Computer Sciences domain2. 

 
Graph clustering algorithms may be: (i) hierarchical methods; (ii) spectral methods; or (iii) modularity-based 

methods. Each solution presents advantages and bottlenecks and it may be more appropriate for certain 

networks, rather than generically applicable to every type. Hierarchical clustering methods comprise   

agglomerative or divisive procedures. The former populates an empty graph of nodes with edges, ranging from 

“stronger” to “weaker” connections. Conversely, the latter removes links from a complete graph in every 

iteration, recomputing at every step the weights assigned. We computed four community detection algorithms: 

the Newman-Girvan, the Greedy Community, the Spectral Community and the Louvain method. In order to 

                                                 
2 The query “community detection” was launched in January 21st 2019 



 

assess their performance and choose between the available outcomes, we used the modularity criterion.  

Modularity is a structural measure in network science. It is “the fraction of the edges that fall within the given 

groups minus the expected fraction if edges were distributed at random” (Li and Schuurmans, 2011). It is 

mathematically expressed as a difference between two ratios: 

𝑄 =  ∑(𝑒𝑖𝑖 − 𝑎𝑖
2)

𝑘

𝑖=1

 

where 𝑒𝑖𝑖 is the percentage of edges falling under module i and 𝑎𝑖
2 is the probability that a random edge falls 

into module i. Extending the above mathematical formula, modularity is defined as: 

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
) 𝛿(𝐶𝑖, 𝐶𝑗)

𝑖𝑗

 

where  𝐴𝑖𝑗 is the adjacency matrix, 𝑘𝑖 𝑎𝑛𝑑 𝑘𝑗 are degrees of nodes i and j, m is the number of edges, 𝐶𝑖 is the 

community to which node i belongs and 𝛿(. ) is the Kronecker function that takes values 1 if 𝐶𝑖 = 𝐶𝑗 and 0 

otherwise. Modularity has useful properties that may be used to check the quality of the partitioning: (i) high 

values of modularity implies a better portioning, given 𝑄 ∈ [−1,1]; (ii) 𝑄 = 0 when the network is observed 

as a single community. For values 0.3 < 𝑄 < 0.7 the community structure is significantly valid.  The 

community structure with maximal modularity is the optimal one. We are hereby presenting the characteristics 

of each of them and discussing further the outcome and comparing their performance. 

The Newman-Girvan algorithm. The Newman-Girvan algorithm (Newman and Girvan, 2004b) is a divisive 

community detection method. It builds upon edge betweenness, a value that equalizes edge weights to the 

number of shortest paths crossing the edge. It is an extension and generalization of central vertex betweenness 

that provides the quantification of the influence of a given node on the others. Edge betweenness is 

mathematically expressed as: 

𝑒𝑏(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡

 

Where the numerator represents the number of shortest paths from s to t including v and the denominator 

includes all the shortest paths from s to t. The algorithm: 

(i) starts with one node 

(ii) computes edge betweenness for every edge of the network 

(iii) removes the edges with highest edge betweenness and  

(iv) recomputes edge betweenness with the remaining ones.  

Steps are iteratively repeated until every edge is removed. Given the order in which edges with highest weight 

is not defined, the implementation of the algorithm may produce different results. Therefore, the best partition 

is provided by modularity.  

The Greedy community algorithm. The Greedy algorithm is the first modularity-maximisation algorithm 

ever conceived (Newman, 2004). It is built on the “Maximal Modularity Hypothesis”, which states that “for a 

given network, the partition with maximum modularity corresponds to the optimal community structure” 

(Barabasi, 2016). The algorithm works iteratively according to the following steps: 

(i) each node constitutes a community on its own for the total amount of N communities of N single 

nodes 



 

(ii) compute the modularity difference ∆𝑀 for each pair of connected communities, obtained as outcome 

of a merging procedure. Identify the pair for which ∆𝑀 is higher and merge them 

(iii) repeat the second step until all the nodes form a single community 

(iv) select the partition with the maximal value of M 

This is a hierarchical agglomerative method: the outcome is – as in the N-G case – a dendrogram where 

different cuts provide alternative partitions. 

The Spectral community method. This algorithm builds on the eigenvectors of the normalized Laplacian 

matrix (Newman, 2013). The Laplacian is normalized by the size of identified clusters. Modularity is expressed 

as:  

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿𝑔𝑖

𝛿𝑔𝑗

𝑖𝑗

 

where  𝛿 = 1 if i and j are in the same community. 

For simplicity, we consider only two clusters. We introduce the Ising spin variable that takes values 𝑠𝑖 = 1 if 

i belongs to the first group and 𝑠𝑖 = −1 if included in group 2. The Kronecker function can be conveniently 

rewritten as 𝛿𝑔𝑖
𝛿𝑔𝑗

=
1

2
(𝑠𝑖𝑠𝑗 + 1). Hence, the modularity assumes the form: 

𝑄 =
1

4𝑚
∑[𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
](𝑠𝑖𝑠𝑗 + 1)

𝑖𝑗

 

We substitute 𝐵𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
 to rewrite the modularity as 𝑄 =

1

4𝑚
∑ 𝐵𝑖𝑗(𝑠𝑖𝑠𝑗 + 1) =

1

4𝑚
∑ 𝐵𝑖𝑗𝑠𝑖𝑠𝑗𝑖𝑗𝑖𝑗 .  

As the Ising sping variable takes discrete values, the modularity maximisation becomes a combinatorial 

problem. To simplify the computation, the algorithm relaxes the assumption of discreteness and allows 𝑠𝑖 to 

take real values, under the constraint of a “spherical model”, i.e. ∑ 𝑠𝑖
2 = 𝑛𝑖 , that is −√𝑛 ≤ 𝑠𝑖 ≤ √𝑛.  

The maximisation problem becomes: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒𝑠𝑄 = 𝑠𝑇𝐵𝑠     𝑠. 𝑡. ||𝑠||
2

= 1 

Which is a spectral matching problem, where the global optimum corresponds to the leading eigenvector of 

matrix B. The solution of the maximisation problem is provided by the derivative of the Lagrangian function. 

The Louvain method. The Louvain Method (Blondel et al., 2008) is a multi-level aggregation technique based 

on modularity optimization. It consists of two phases: i) it locally optimizes modularity and observes the 

potential gain generated by moving one node from its original community to another; ii) it aggregates nodes 

belonging to different communities. The two steps are applied repeatedly and sequentially. The first run 

typically results in smaller communities, while subsequent ones generate bigger ones as an outcome of the 

aggregation process. The Louvain method algorithm is highly efficient, mainly due to the fact that the potential 

modularity gains generated in phase one are easily computed as: 

In the undirected case, the gain of modularity is easily computed as: 

∆𝑄 = [
∑ +𝑑𝑖

𝐶
𝑖𝑛

2𝑚
− (

∑ +𝑑𝑖𝑡𝑜𝑡

2𝑚
)

2

] − [
𝛴𝑖𝑛

2𝑚
− (

𝛴𝑡𝑜𝑡

2𝑚
)

2

− (
𝑑𝑖

2𝑚
)

2

] =
𝑑𝑖

2

2𝑚
−

∑ ∙ 𝑑𝑖𝑡𝑜𝑡

2𝑚2
 

where 𝑑𝑖
𝐶 is the degree of agent 𝑖 in community 𝐶; 𝛴𝑖𝑛 is the number of links belonging to community 𝐶, while 



 

𝛴𝑡𝑜𝑡 is the number of links globally incident to community 𝐶. The algorithm runs up to maximal modularity 

is found. 

Detecting key players. This step requires the punctual and explicit identification of actors exerting such a 

significant influence that their removal may cause a drop of cohesion or even a collapse of the network. The 

problem of influential agents has been widely discussed in literature: link deletion approaches (Valente and 

Fujimoto, 2010) are similar to node removal techniques (Borgatti, 2006), but they conceptually differ. While 

the former is exploring changes in cohesion as effect of manipulation of edges, the latter focuses on the 

consequences of modifications at node level.  

We computed fragmentation centrality, which measures how fragmented the network becomes as effect of a 

node removal. The metric is mathematically expressed as: 

𝐹𝑖 = 1 −
∑ 𝑑𝑗𝑘

−1
𝑗,𝑘≠𝑖

𝑑 ∙ (𝑛 − 1)(𝑛 − 2)
 

where 𝑑𝑗𝑘 is equal to the shortest path between nodes two nodes 𝑗 and 𝑘 once node 𝑖 has been removed; 𝑑 is 

the maximal of 𝑑𝑗𝑘
−1. We obtained the set of key players that are crucial in not altering cohesion of the graph.  

 
Figure 12S. Identification of key players in the network of individual scholars and their position within 

communities 

We evaluated the performance of the four community detection algorithms by comparing their modularity 

score (Table A). The algorithms generate different community sizes and heterogeneous number of partitions. 

The top performer is the Louvain Method.  

Algorithm Communities Modularity 

Newman-Girvan 21 0.8313877 
Greedy community 16 0.7897702 

Spectral community 17 0.7905254 

Louvain method 19 0.8395771 

Table A. Comparison between community detection algorithms and their modularity scores 

Results 

Table 5S. Top 20 authors ranked per productivity (#articles) 
Author Score 

Buontempo C. 13 

Hewitt C. 11 



 

Doblas-Reyes F. 9 

Dessai S. 8 

Lowe R. 7 

Rodò X. 6 

Thomson M.C. 6 

Vaughan C. 6 

Golding, N. 5 

Guido Z. 5 

Jacob D. 5 

Winarto Y.T. 5 

Bruno Soares M. 4 

Dunstone N. 4 

Kumar A. 4 

Mason S. 4 

Ray A.J. 4 

Scaife A.A. 4 

Tall A. 4 

Troccoli A. 4 

 

The most productive authors are ranked on the number of published articles in the sample. Hence, productivity 

is a simple metric of quantity. Authors are also ranked according to their centrality score (Table 6S), as derived 

from the Principal Component Analysis (PCA) of the available centrality measures. The score reflects the 

contribution of each agent to the first five dimensions. These explain approximately 86% of the total variance 

of the sample, which was deemed a significant threshold. Distance between scholars is progressively reduced 

along the ranking.  

Table 6S. Top 20 authors ranked per centrality 
Author Score 

Buontempo, C. 5.059 

Kumar A. 1.692 

Wintzer J. 1.256 

Hewitt C. 1.153 

Webb R.S. 1.091 

Schulz J. 0.999 

Kjellström E. 0.715 

Jack C. 0.710 

Zebiak S.E. 0.640 

Brönnimann S. 0.639 

Jourdain S. 0.615 

Ray A.J. 0.614 

Brown T.J. 0.613 

Doblas-Reyes F. 0.597 

Blaschek M. 0.539 

Dahlgren P. 0.539 

Vidard A. 0.538 

Haimberger L. 0.537 

Weaver A. 0.537 

Valente M.A. 0.536 

 

Table 7S. Top 20 institutions per centrality score 
Affiliation Score 

Columbia University 4.358 

University of Reading 3.687 

University of Oxford 1.476 



 

Desert Research Inst. 1.422 

University of East Anglia 1.404 

University of Helsinki 1.234 

Observatori de l’Ebre 1.128 

University of Florida 0.899 

University of Chile 0.852 

Barcelona Supercomputing Center 0.850 

Sorbonne Université 0.838 

University of Belgrade 0.837 

Karlsruhe Institute of Technology 0.803 

Spanish Meteorological Agency 0.792 

Pacific Marine Environmental Laboratory 0.792 

Izaña Atmospheric Research Center 0.788 

Physikalisch-Meteorologisches 

Observatorium Davos 

0.788 

National Observatory of Athens 0.788 

Max Planck Institut for Meteorologie 0.788 

Naval Research Laboratory 0.786 

 

Computation of the bridging properties at author and institution level offers a new perspective on the power of 

nodes included in the sample. The ranking provided below are the top 20 agents based on their role in reducing 

fragmentation in the network. These are the “brokers” of the graph: they reduce distances and facilitate the 

flow of information and knowledge. 

Table 8S. Set of key authors 
Author Score 

Kolli R.K. 0.773 

Baklanov A. 0.756 

Daly M. 0.756 

Vincent K. 0.754 

Brown T.J. 0.753 

Buontempo C. 0.752 

Grimmond C.S.B. 0.748 

Jacob D.. 0.747 

Schulz J. 0.747 

Kumar A. 0.746 

Ray A.J.. 0.745 

Soubeyroux J-M 0.741 

Jack C. 0.740 

Vaughan C. 0.739 

Vautard R. 0.738 

Hewitt C. 0.738 

Kjellström E. 0.737 

Coughlan de Perez E. 0.737 

Guido Z. 0.736 

Zebiak S.E. 0.736 

 

Table 9S. Set of key institutions 
Affiliation Score 

University of Nairobi 0.605 

Joint Research Centre 0.600 

Met Office 0.599 

Institució Catalana de Recerca i Estudis Avançats 0.592 

National Center for Atmospheric Research 0.591 



 

Desert Research Institute 0.590 

University of Reading 0.590 

NOAA 0.590 

University of Chile 0.589 

Royal Belgian Institute for Space Aeronomy 0.588 

ECMWF 0.588 

Columbia University 0.588 

University of Leeds 0.588 

Swedish Meteorological and Hydrological Institute 0.587 

University of Helsinki 0.586 

University of Oxford 0.586 

Barcelona Supercomputing Center 0.586 

Royal Netherlands Meteorological Institute 0.586 

London School of Hygiene and Tropical Medicine 0.586 

Deutscher Wetterdienst 0.586 

 

  



 

Country-network 

 
Figure 13S. Centrality as derived from the PCA. Different colors correspond to different clusters as extracted 

from the Louvain Method 

 

Table 10S. Set of top central countries 

Country Score 

USA 44 

United Kingdom 38 

France 33 

Germany 30 

Switzerland 28 

Spain 27 

The Netherlands 27 

Italy 26 

Australia 26 

China 21 

Canada 21 

Norway 19 

Japan 19 

Sweden 18 

Finland 17 

South Africa 17 

Austria 16 

Kenya 15 

Chile 14 

Portugal 14 

  



 

References 

Agneessens, F., Borgatti, S. P. and Everett, M. G. (2017) ‘Geodesic based centrality: Unifying the local and 

the global’, Social Networks. North-Holland, 49, pp. 12–26. doi: 10.1016/J.SOCNET.2016.09.005. 

Al-garadi, M. A., Varathan, K. D. and Ravana, S. D. (2017) ‘Identification of influential spreaders in online 

social networks using interaction weighted K-core decomposition method’, Physica A: Statistical Mechanics 

and its Applications. North-Holland, 468, pp. 278–288. doi: 10.1016/J.PHYSA.2016.11.002. 

Alexander, M. and Dessai, S. (2019) ‘What can climate services learn from the broader services literature?’, 

Climatic Change. Springer Netherlands, pp. 1–17. doi: 10.1007/s10584-019-02388-8. 

Alvarez-Hamelin, I. et al. (2005) ‘k-core decomposition: a tool for the visualization of large scale networks’, 

arxiV. Available at: https://arxiv.org/pdf/cs/0504107.pdf (Accessed: 10 May 2018). 

Amissah-Arthur, A. (2003) ‘Targeting Climate Forecasts for Agricultural Applications in Sub-Saharan Africa: 

Situating Farmers in User-Space’, Climatic Change. Kluwer Academic Publishers, 58(1/2), pp. 73–92. doi: 

10.1023/A:1023462613213. 

Archambault, É. and Gagné, É. V. (2004) The Use of Bibliometrics in the Social Sciences and Humanities. 

Available at: www.science-metrix.com (Accessed: 22 January 2018). 

Aria, M. and Cuccurullo, C. (2017) ‘bibliometrix: An R-tool for comprehensive science mapping analysis’, 

Journal of Informetrics. Elsevier, 11(4), pp. 959–975. doi: 10.1016/J.JOI.2017.08.007. 

Ashtiani, M. et al. (2017) ‘Selection of most relevant centrality measures: A systematic survey on protein-

protein interaction networks’, bioRxiv. doi: 10.1101/149492. 

Ball, R. (2017) Introduction to bibliometrics : new development and trends. Chandos Publishing, an imprint 

of Elsevier. Available at: 

https://books.google.it/books?hl=it&lr=&id=wrlvDgAAQBAJ&oi=fnd&pg=PP1&dq=limits+of+bibliometri

cs&ots=RSac8RnVVa&sig=8xMxCVy-n7A2Ohh7CcJ-XcZfN2Y#v=onepage&q=limits of 

bibliometrics&f=false (Accessed: 7 June 2018). 

Barabasi, A.-L. (2016) Network Science. 4th edn. Cambridge: Cambridge University Press. Available at: 

http://barabasi.com/f/622.pdf (Accessed: 18 January 2019). 

Baronchelli, A. (2018) ‘The emergence of consensus: a primer’, Royal Society of Open Science, 5, p. 172189. 

doi: 10.1098/rsos.172189. 

Barron, E. J. (2001) ‘A climate services vision: First steps toward the future’, Board on Atmospheric Sciences 

and Climate. 

Becker, J., Brackbill, D. and Centola, D. (2017) ‘Network dynamics of social influence in the wisdom of 

crowds.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy 

of Sciences, 114(26), pp. E5070–E5076. doi: 10.1073/pnas.1615978114. 

Belter, C. W. (2015) ‘Bibliometric indicators: opportunities and limits.’, Journal of the Medical Library 

Association. Medical Library Association, 103(4), pp. 219–21. doi: 10.3163/1536-5050.103.4.014. 

Blondel, V. D. et al. (2008) ‘Fast unfolding of communities in large networks’, Journal of Statistical 

Mechanics: Theory and Experiment. Available at: https://arxiv.org/pdf/0803.0476.pdf (Accessed: 5 April 

2018). 

Boccaletti, S. et al. (2006) ‘Complex networks: Structure and dynamics’, Physics Reports, 424, pp. 175–308. 

doi: 10.1016/j.physrep.2005.10.009. 



 

Boldi, P. and Vigna, S. (2014) ‘Axioms for Centrality’, Internet Mathematics, 10(3–4), pp. 222–262. doi: 

10.1080/15427951.2013.865686. 

Borgatti, S. P. (2006) ‘Identifying sets of key players in a social network’, Comput Math Organiz Theor, 12, 

pp. 21–34. doi: 10.1007/s10588-006-7084-x. 

Borgatti, S. P. et al. (2009) ‘Network analysis in the social sciences.’, Science. American Association for the 

Advancement of Science, 323(5916), pp. 892–5. doi: 10.1126/science.1165821. 

Borgatti, S. P. and Everett, M. G. (2006) ‘A Graph-theoretic perspective on centrality’, Social Networks. North-

Holland, 28(4), pp. 466–484. doi: 10.1016/J.SOCNET.2005.11.005. 

Brandes, U., Borgatti, S. P. and Freeman, L. C. (2016) ‘Maintaining the duality of closeness and betweenness 

centrality’, Social Networks. North-Holland, 44, pp. 153–159. doi: 10.1016/J.SOCNET.2015.08.003. 

Brandes, U., Erlebach, T. and Gesellschaft für Informatik. (2005) Network analysis: methodological 

foundations. Springer. Available at: 

https://books.google.it/books?id=VIMSPCIafakC&pg=PA38&lpg=PA38&dq=closeness+vitality&source=bl

&ots=cEIBjAt3Ab&sig=_eSJi8JG7CpO7VW0miBQY1jzk-I&hl=it&sa=X&ved=0ahUKEwii-

YHO2PjaAhWjF5oKHQlbAJIQ6AEIaTAI#v=onepage&q=closeness vitality&f=false (Accessed: 9 May 

2018). 

Bremer, S. and Meisch, S. (2017) ‘Co-production in climate change research: reviewing different 

perspectives’, Wiley Interdisciplinary Reviews: Climate Change. John Wiley & Sons, Ltd, 8(6), p. e482. doi: 

10.1002/wcc.482. 

Broadus, R. N. (1987) ‘Toward a definition of “bibliometrics”’, Scientometrics. Kluwer Academic Publishers, 

12(5–6), pp. 373–379. doi: 10.1007/BF02016680. 

Brooks, M. S. (2013) ‘Accelerating Innovation in Climate Services: The 3 E’s for Climate Service Providers’, 

Bulletin of the American Meteorological Society. American Meteorological Society, 94(6), pp. 807–819. doi: 

10.1175/BAMS-D-12-00087.1. 

Bruno Soares, M., Alexander, M. and Dessai, S. (2017) ‘Sectoral use of climate information in Europe: A 

synoptic overview’, Climate Services. Elsevier B.V. doi: 10.1016/j.cliser.2017.06.001. 

Bruno Soares, M. and Buontempo, C. (2019) ‘Challenges to the sustainability of climate services in Europe’, 

Wiley Interdisciplinary Reviews: Climate Change. John Wiley & Sons, Ltd, p. e587. doi: 10.1002/wcc.587. 

Buizza, R. et al. (2018) ‘The EU-FP7 ERA-CLIM2 Project Contribution to Advancing Science and Production 

of Earth System Climate Reanalyses’, Bulletin of the American Meteorological Society, 99(5), pp. 1003–1014. 

doi: 10.1175/BAMS-D-17-0199.1. 

Buontempo, C. et al. (2017) ‘What have we learnt from EUPORIAS climate service prototypes?’, Climate 

Services. Elsevier B.V. doi: 10.1016/j.cliser.2017.06.003. 

Campitelli, M. G. et al. (2013) ‘Lobby index as a network centrality measure’, Physica A, 392, pp. 5511–5515. 

Available at: https://ac.els-cdn.com/S0378437113005839/1-s2.0-S0378437113005839-

main.pdf?_tid=f4c2b4f4-a53e-4ff9-931d-

e6d7aa67a0a5&acdnat=1525971168_1269b15f183fd17f9886a213e2d75e14 (Accessed: 10 May 2018). 

Castellano, C., Fortunato, S. and Loreto, V. (2009) ‘Statistical physics of social dynamics’, Reviews of Modern 

Physics. American Physical Society, 81(2), pp. 591–646. doi: 10.1103/RevModPhys.81.591. 

Chen, D.-B. et al. (2013) ‘Identifying Influential Nodes in Large-Scale Directed Networks: The Role of 

Clustering’, PLoS ONE, 8(10). doi: 10.1371/journal.pone.0077455. 



 

Chin, C.-S. and Samanta, M. P. (2003) ‘Global snapshot of a protein interaction network-a percolation based 

approach.’, Bioinformatics, 19(18), pp. 2413–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14668225 

(Accessed: 10 May 2018). 

Christel, I. et al. (2018) ‘Introducing design in the development of effective climate services’, Climate 

Services. Elsevier, 9, pp. 111–121. doi: 10.1016/J.CLISER.2017.06.002. 

Cobo, M. J. et al. (2011) ‘An approach for detecting, quantifying, and visualizing the evolution of a research 

field: A practical application to the Fuzzy Sets Theory field’, Journal of Informetrics. Elsevier, 5(1), pp. 146–

166. doi: 10.1016/J.JOI.2010.10.002. 

Cohen, P. J. et al. (2016) ‘Understanding adaptive capacity and capacity to innovate in social-ecological 

systems: Applying a gender lens’, Ambio. 2016/11/22. Springer Netherlands, 45(Suppl 3), pp. 309–321. doi: 

10.1007/s13280-016-0831-4. 

Crucitti, P., Latora, V. and Porta, S. (2006) ‘Centrality in networks of urban streets’, Chaos. doi: 

10.1063/1.2150162.͔ 

Cueno, M. E. and Imai, K. (2018) ‘Network analytics approach towards identifying potential antivirulence 

drug targets within the Staphylococcus aureus staphyloxanthin biosynthetic network’, Archives of 

Biochemistry and Biophysics, 645, pp. 81–86. doi: 10.1016/j.abb.2018.03.010. 

Damm, A. et al. (2019) ‘The market for climate services in the tourism sector – An analysis of Austrian 

stakeholders’ perceptions’, Climate Services. Elsevier. doi: 10.1016/J.CLISER.2019.02.001. 

Dangalchev, C. (2006a) ‘Residual closeness in networks’, Physica A: Statistical Mechanics and its 

Applications. North-Holland, 365(2), pp. 556–564. doi: 10.1016/J.PHYSA.2005.12.020. 

Dangalchev, C. (2006b) ‘Residual closeness in networks’, Physica A: Statistical Mechanics and its 

Applications. North-Holland, 365(2), pp. 556–564. doi: 10.1016/J.PHYSA.2005.12.020. 

Das, K., Samanta, S. and Pal, M. (2018) ‘Study on centrality measures in social networks: a survey’, Social 

Network Analysis and Mining. Springer Vienna, 8(1), p. 13. doi: 10.1007/s13278-018-0493-2. 

Dekker, M. M. et al. (2018) ‘Characteristics and development of European cyclones with tropical origin in 

reanalysis data’, Climate Dynamics. Springer Berlin Heidelberg, 50(1–2), pp. 445–455. doi: 10.1007/s00382-

017-3619-8. 

Deng, S.-P., Zhu, L. and Huang, D.-S. (2016) ‘Predicting Hub Genes Associated with Cervical Cancer through 

Gene Co-Expression Networks’, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 

13(1). doi: 10.1109/TCBB.2015.2476790. 

Dinku, T. et al. (2014) ‘Bridging critical gaps in climate services and applications in africa’, Earth 

Perspectives. SpringerOpen, 1(1), p. 15. doi: 10.1186/2194-6434-1-15. 

Directorate-General for Research and Innovation, E. C. (2015) ‘European roadmap for Climate Services’, in. 

Brussels: European Commission. 

Dokas, I. M. et al. (2017) ‘Information systems for crisis response and management in Mediterranean 

Countries’, in 4th International Conference, ISCRAM, p. 221. Available at: 

https://books.google.it/books?id=N_M4DwAAQBAJ&pg=PA7&lpg=PA7&dq=EPC+-

+Edge+Percolated+Component&source=bl&ots=TqUQLhsmQv&sig=hauV79ek5mtCwdLpj4-

ZcrRSnGg&hl=it&sa=X&ved=0ahUKEwi2pf71pP3aAhWJB8AKHX3hCPwQ6AEIczAN#v=onepage&q=E

PC - Edge Percolated Com (Accessed: 11 May 2018). 

Estrada, E. and Rodríguez-Velázquez, J. A. (2005) ‘Subgraph centrality in complex networks’, Physical 

Review E. American Physical Society, 71(5), p. 056103. doi: 10.1103/PhysRevE.71.056103. 



 

De Felice, M. et al. (2019) ‘Scoping the potential usefulness of seasonal climate forecasts for solar power 

management’, Renewable Energy. Pergamon, 142, pp. 215–223. doi: 10.1016/J.RENENE.2019.03.134. 

Ferreira, F. F. et al. (2016) ‘Behavior of surface water in the Pacific and Atlantic during the period 1982 2014 

[Comportamento das águas superficiais nos oceanos Pacifico e Atlântico durante o período de 1982 a 2014]’, 

Revista Brasileira de Meteorologia. Sociedade Brasileira de Meteorologia, 31(3), pp. 366–373. doi: 

10.1590/0102-778631320160050. 

Fletcher, J. M. and Wennekers, T. (2018) ‘From Structure to Activity: Using Centrality Measures to Predict 

Neuronal Activity’, International Journal of Neural Systems, 28(175001316). doi: 

10.1142/S0129065717500137. 

Ford, J. D., Knight, M. and Pearce, T. (2013) ‘Assessing the “usability” of climate change research for 

decision-making: A case study of the Canadian International Polar Year’, Global Environmental Change. 

Pergamon, 23(5), pp. 1317–1326. doi: 10.1016/J.GLOENVCHA.2013.06.001. 

Fouss, F., Saerens, M. and Shimbo, M. (2016) Algorithms and models for network data and link analysis. 

Cambridge. Cambridge University Press. Available at: 

http://www.cambridge.org/it/academic/subjects/computer-science/knowledge-management-databases-and-

data-mining/algorithms-and-models-network-data-and-link-

analysis?format=HB&isbn=9781107125773#04wVUgC83RAvRHUW.97 (Accessed: 10 May 2018). 

Goddard, L. et al. (2010) ‘Providing Seasonal-to-interannual climate information for risk management and 

decision-making’, in Procedia Environmental Sciences. Elsevier B.V., pp. 81–101. doi: 

10.1016/j.proenv.2010.09.007. 

Granovetter, M. S. (1973) ‘The Strength of Weak Ties’, American Journal of Sociology, 78(6), pp. 1360–1380. 

Available at: 

https://www.jstor.org/stable/pdf/2776392.pdf?refreqid=excelsior%3A1d122a8b7669a66335f747ac6af96d1a 

(Accessed: 1 October 2018). 

Hage, P. and Harary, F. (1995) ‘Eccentricity and centrality in networks’, Social Networks. North-Holland, 

17(1), pp. 57–63. doi: 10.1016/0378-8733(94)00248-9. 

Han, X. et al. (2017) ‘Emergence of communities and diversity in social networks.’, Proceedings of the 

National Academy of Sciences of the United States of America. National Academy of Sciences, 114(11), pp. 

2887–2891. doi: 10.1073/pnas.1608164114. 

Haunschild, R., Bornmann, L. and Marx, W. (2016) ‘Climate Change Research in View of Bibliometrics’, 

PLOS ONE. Edited by W. Glanzel. Public Library of Science, 11(7), p. e0160393. doi: 

10.1371/journal.pone.0160393. 

Hernández, J. M. and Mieghem, P. Van (2011) ‘Classification of graph metrics’. Available at: 

https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUDreport20111111_MetricList.pdf (Accessed: 10 May 

2018). 

Hewitt, C., Mason, S. and Walland, D. (2012) ‘The Global Framework for Climate Services’, Nature Climate 

Change. Nature Research, 2(12), pp. 831–832. doi: 10.1038/nclimate1745. 

Hubbell, C. H. (1965) ‘An Input-Output Approach to Clique Identification An Input-Output Approach to 

Clique Identification *’, Sociometry, 28(4), pp. 377–399. Available at: http://www.jstor.org/stable/2785990 

(Accessed: 11 May 2018). 

van den Hurk, B. J. J. M. et al. (2016) ‘Improving predictions and management of hydrological extremes 

through climate services’, Climate Services. Elsevier B.V., 1, pp. 6–11. doi: 10.1016/j.cliser.2016.01.001. 

Ivanov, S. E., Gorlushkina, N. N. and Ivanova, L. N. (2018) ‘Multi-parametric centrality method for graph 



 

network models’, in AIP Conference Proceedings, p. 020043. doi: 10.1063/1.5032005. 

Johnson, P. T. J., de Roode, J. C. and Fenton, A. (2015) ‘Why infectious disease research needs community 

ecology.’, Science. NIH Public Access, 349(6252), p. 1259504. doi: 10.1126/science.1259504. 

Jones, L. et al. (2017) ‘Constraining and enabling factors to using long-term climate information in decision-

making’, Climate Policy. Taylor and Francis Ltd., 17(5), pp. 551–572. doi: 10.1080/14693062.2016.1191008. 

Joyce, K. E. et al. (2010) ‘A New Measure of Centrality for Brain Networks’, PLoS ONE, 5(8). doi: 10.1371/. 

Kabir, M. et al. (2017) ‘Properties of genes essential for mouse development’, PloS One. doi: 

10.1371/journal.pone.0178273. 

Kalinka, A. T. and Tomancak, P. (2011) ‘linkcomm: an R package for the generation, visualization, and 

analysis of link communities in networks of arbitrary size and type’, Bioinformatics. Oxford University Press, 

27(14), pp. 2011–2012. doi: 10.1093/bioinformatics/btr311. 

Kirchhoff, C. J., Lemos, M. C. and Kalafatis, S. (2015) ‘Narrowing the gap between climate science and 

adaptation action: The role of boundary chains’, Climate Risk Management, 9, pp. 1–5. doi: 

10.1016/j.crm.2015.06.002. 

Kleinberg, J. M. (1998) ‘Authoritative Sources in a Hyperlinked Environment *’. Available at: 

https://www.cs.cornell.edu/home/kleinber/auth.pdf (Accessed: 10 May 2018). 

Konstantinidis, K., Papadopoulos, S. and Kompatsiaris, Y. (2017) ‘Exploring Twitter communication 

dynamics with evolving community analysis’, PeerJ Computer Science. PeerJ Inc., 3, p. e107. doi: 

10.7717/peerj-cs.107. 

Korn, A., Schubert, A. and Telcs, A. (2009) ‘Lobby index in networks’, Physica A: Statistical Mechanics and 

its Applications. North-Holland, 388(11), pp. 2221–2226. doi: 10.1016/J.PHYSA.2009.02.013. 

Krippendorff, K. (2004) Content analysis : an introduction to its methodology. SAGE Publications. Available 

at: 

https://books.google.it/books?id=q657o3M3C8cC&pg=PA3&hl=it&source=gbs_toc_r&cad=4#v=onepage&

q&f=false (Accessed: 21 September 2018). 

Kumar Surendra Kumar, S. and Kretschmer, H. (2008) ‘Collaboration in Research Productivity in Oil Seed 

Research Institutes of India’, in Kretschmer, H. and Havemann, F. (eds) 4th International Conference on 

Webometrics, Infometrics and Scientometrics. Berlin. Available at: http://www.collnet.de/Berlin-

2008/KumarWIS2008cir.pdf (Accessed: 9 April 2018). 

L.D, D. B. and Raj, E. D. (2017) ‘Flocking based evolutionary computation strategy for measuring centrality 

of online social networks’, Applied Soft Computing. Elsevier, 58, pp. 495–516. doi: 

10.1016/J.ASOC.2017.04.047. 

Larivière, V. et al. (2013) ‘Bibliometrics: Global gender disparities in science’, Nature, 504(7479), pp. 211–

213. doi: 10.1038/504211a. 

Latora, V. and Marchiori, M. (2001) ‘Efficient Behavior of Small-World Networks’, Physical Review Letters, 

87(89). doi: 10.1103/PhysRevLett.87.198701. 

Lechthaler, F. and Vinogradova, A. (2017) ‘The climate challenge for agriculture and the value of climate 

services: Application to coffee-farming in Peru’, European Economic Review. Elsevier B.V., 99, pp. 5–30. 

doi: 10.1016/j.euroecorev.2017.06.006. 

Li, H. et al. (2018) ‘Current Flow Group Closeness Centrality for Complex Networks’, arxiV. Available at: 

https://arxiv.org/pdf/1802.02556.pdf (Accessed: 10 May 2018). 



 

Li, W. and Schuurmans, D. (2011) ‘Modular Community Detection in Networks’, in Proceedings of the 

Twenty-Second International Joint Conference on Artificial Intelligence. Available at: 

https://www.ijcai.org/Proceedings/11/Papers/231.pdf (Accessed: 21 January 2019). 

Li, Y., Giuliani, M. and Castelletti, A. (2017) ‘A coupled human-natural system to assess the operational value 

of weather and climate services for agriculture’, Hydrology and Earth System Sciences. Copernicus GmbH, 

21(9), pp. 4693–4709. doi: 10.5194/hess-21-4693-2017. 

Lin, C.-Y. et al. (2008) ‘Hubba: hub objects analyzer—a framework of interactome hubs identification for 

network biology’, Nucleic Acids Research. Oxford University Press, 36(suppl_2), pp. W438–W443. doi: 

10.1093/nar/gkn257. 

Lindberg, F. et al. (2018) ‘Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-

based climate services’, Environmental Modelling and Software. Elsevier Ltd, 99, pp. 70–87. doi: 

10.1016/j.envsoft.2017.09.020. 

Liu, K. and Yan, X. (2018) ‘Current-flow efficiency of networks’, Physica A: Statistical Mechanics and its 

Applications. North-Holland, 492, pp. 463–471. doi: 10.1016/J.PHYSA.2017.10.039. 

Ma, A., Mondragón, R. J. and Latora, V. (2015) ‘Anatomy of funded research in science.’, Proceedings of the 

National Academy of Sciences of the United States of America. National Academy of Sciences, 112(48), pp. 

14760–5. doi: 10.1073/pnas.1513651112. 

Martín-Martín, A., Orduna-Malea, E. and Delgado López-Cózar, E. (2018) ‘A novel method for depicting 

academic disciplines through Google Scholar Citations: The case of Bibliometrics’, Scientometrics, 114(3), 

pp. 1251–1273. doi: 10.1007/s11192-017-2587-4doi.org/10.1007/s11192-017-2587-4. 

Mehlhorn, H. and Schreiber, F. (2013) ‘Small-World Property BT  - Encyclopedia of Systems Biology’, in 

Dubitzky, W. et al. (eds). New York, NY: Springer New York, pp. 1957–1959. doi: 10.1007/978-1-4419-9863-

7_2. 

Miles, E. L. et al. (2006) ‘An approach to designing a national climate service’, Proceedings of the National 

Academy of Sciences of the United States of America, 103(52), pp. 19616–19623. doi: 

10.1073/pnas.0609090103. 

Milo, R. et al. (2002) ‘Network motifs: simple building blocks of complex networks.’, Science. American 

Association for the Advancement of Science, 298(5594), pp. 824–7. doi: 10.1126/science.298.5594.824. 

Newman, M. E. J. (2003) ‘The Structure and Function of Complex Networks’, Society for Industrial and 

Applied Mathematics, 45(2), pp. 167–256. Available at: http://www.siam.org/journals/ojsa.php (Accessed: 24 

September 2018). 

Newman, M. E. J. (2004) ‘Fast algorithm for detecting community structure in networks’, Physical Review E. 

American Physical Society, 69(6), p. 066133. doi: 10.1103/PhysRevE.69.066133. 

Newman, M. E. J. (2013) ‘Spectral methods for community detection and graph partitioning’, PHYSICAL 

REVIEW E, 88, p. 42822. doi: 10.1103/PhysRevE.88.042822. 

Newman, M. E. J. and Girvan, M. (2004a) ‘Finding and evaluating community structure in networks’, Physical 

Review E, 69(2), p. 026113. doi: 10.1103/PhysRevE.69.026113. 

Newman, M. E. J. and Girvan, M. (2004b) ‘Finding and evaluating community structure in networks’, Physical 

Review E. American Physical Society, 69(2), p. 026113. doi: 10.1103/PhysRevE.69.026113. 

Nie, T. et al. (2016) ‘Using mapping entropy to identify node centrality in complex networks’, Physica A: 

Statistical Mechanics and its Applications. North-Holland, 453, pp. 290–297. doi: 

10.1016/J.PHYSA.2016.02.009. 



 

Nishi, A. et al. (2015) ‘Inequality and visibility of wealth in experimental social networks’, Nature. Nature 

Publishing Group, 526(7573), pp. 426–429. doi: 10.1038/nature15392. 

Opsahl, T., Agneessens, F. and Skvoretz, J. (2010) ‘Node centrality in weighted networks: Generalizing degree 

and shortest paths’, Social Networks. North-Holland, 32(3), pp. 245–251. doi: 

10.1016/J.SOCNET.2010.03.006. 

Otte, E. and Rousseau, R. (2002) ‘Social network analysis: a powerful strategy, also for the information 

sciences’, Journal of Information Science. Sage PublicationsSage CA: Thousand Oaks, CA, 28(6), pp. 441–

453. doi: 10.1177/016555150202800601. 

‘Package “sna”: Tools for Social Network Analysis’ (2016) CRAN project. Available at: 

http://www.statnet.org (Accessed: 11 May 2018). 

Pal, S. K., Kundu, S. and Murthy, C. A. (2014) ‘Centrality Measures, Upper Bound, and Influence 

Maximization in Large Scale Directed Social Networks’, Fundamenta Informaticae. IOS Press, 130(3), pp. 

317–342. doi: 10.3233/FI-2014-994. 

Qi, X. et al. (2012) ‘Laplacian centrality: A new centrality measure for weighted networks’, Information 

Sciences. Elsevier, 194, pp. 240–253. doi: 10.1016/J.INS.2011.12.027. 

Qi, X. et al. (2013) ‘Terrorist Networks, Network Energy and Node Removal: A New Measure of Centrality 

Based on Laplacian Energy’, Social Networking, 2, pp. 19–31. doi: 10.4236/sn.2013.21003. 

Del Rio, G., Koschützki, D. and Coello, G. (2009) ‘How to identify essential genes from molecular networks?’, 

BMC Systems Biology, 3(102). doi: 10.1186/1752-0509-3-102. 

Ruhnau, B. (2000) ‘Eigenvector-centrality — a node-centrality?’, Social Networks. North-Holland, 22(4), pp. 

357–365. doi: 10.1016/S0378-8733(00)00031-9. 

Scardoni, G., Petterlini, M. and Laudanna, C. (2009) ‘Analyzing biological network parameters with 

CentiScaPe’, Bioinformatics. Oxford University Press, 25(21), pp. 2857–2859. doi: 

10.1093/bioinformatics/btp517. 

Scott, D. J., Lemieux, C. J. and Malone, L. (2011) ‘Climate services to support sustainable tourism and 

adaptation to climate change’, Climate Research, 47(1–2), pp. 111–122. doi: 10.3354/cr00952. 

Scott, D. and Lemieux, C. (2010) ‘Weather and climate information for tourism’, in Procedia Environmental 

Sciences. Elsevier B.V., pp. 146–183. doi: 10.1016/j.proenv.2010.09.011. 

Stigter, K. (2008) ‘Policy support for capacity building in weather and climate services focused on agriculture’, 

Journal of Agrometeorology, 10(2), pp. 107–111. Available at: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

78049411266&partnerID=40&md5=04e4fdda8ee4bdd5717337e3bf2fa172. 

Street, R. et al. (2015) ‘A European research and innovation Roadmap for Climate Services’, European 

Commission. 

Suebsombut, P. et al. (2017) ‘The using of bibliometric analysis to classify trends and future directions on 

“smart farm”’, in 2017 International Conference on Digital Arts, Media and Technology (ICDAMT). IEEE, 

pp. 136–141. doi: 10.1109/ICDAMT.2017.7904950. 

Takes, F. W. and Kosters, W. A. (2013) ‘Computing the Eccentricity Distribution of Large Graphs’, 

Algorithms, 6, pp. 100–118. doi: 10.3390/a6010100. 

Thomson Reuters (2008) Using Bibliometrics: A Guide to Evaluating Research Performance with Citation 

Data. Available at: http://ips.clarivate.com/m/pdfs/325133_thomson.pdf (Accessed: 22 January 2018). 



 

Tian, Y., Wen, C. and Hong, S. (2008) ‘Global scientific production on GIS research by bibliometric analysis 

from 1997 to 2006’, Journal of Informetrics, 2, pp. 65–74. doi: 10.1016/j.joi.2007.10.001. 

Troccoli, A. et al. (2018) ‘Creating a proof-of-concept climate service to assess future renewable energy mixes 

in Europe: An overview of the C3S ECEM project’, Advances in Science and Research, 15, pp. 191–205. doi: 

10.5194/asr-15-191-2018. 

Tsakas, N. (2017) ‘On Decay Centrality’, Cornell University. Available at: 

https://arxiv.org/pdf/1604.05582.pdf (Accessed: 9 May 2018). 

Valente, T. W. and Fujimoto, K. (2010) ‘Bridging: Locating Critical Connectors in a Network.’, Social 

networks. NIH Public Access, 32(3), pp. 212–220. doi: 10.1016/j.socnet.2010.03.003. 

Vaughan, C. et al. (2016) ‘Identifying research priorities to advance climate services’, Climate Services. 

Elsevier B.V., 4, pp. 65–74. doi: 10.1016/j.cliser.2016.11.004. 

Vaughan, C. and Dessai, S. (2014) ‘Climate services for society: Origins, institutional arrangements, and 

design elements for an evaluation framework’, Wiley Interdisciplinary Reviews: Climate Change. Wiley-

Blackwell, 5(5), pp. 587–603. doi: 10.1002/wcc.290. 

Vaughan, C. and Hewitt, C. (2018) ‘Surveying Climate Services: What Can We Learn from a Bird’s-Eye 

View?’, American Meteorological Society. doi: 10.1175/WCAS-D-17-0030.1. 

Vogel, C. and O�Brien, K. (2006) ‘Who can eat information? Examining the effectiveness of seasonal climate 

forecasts and regional climate-risk management strategies’, Climate Research, 33(1), pp. 111–122. doi: 

10.3354/cr033111. 

Wang, Y. et al. (2017) ‘Identifying Influential Spreaders on Weighted Networks Based on ClusterRank’, in 

2017 10th International Symposium on Computational Intelligence and Design (ISCID). IEEE, pp. 476–479. 

doi: 10.1109/ISCID.2017.222. 

Weaver, C. P. et al. (2013) ‘Improving the contribution of climate model information to decision making: the 

value and demands of robust decision frameworks’, Wiley Interdisciplinary Reviews: Climate Change. John 

Wiley & Sons, Ltd, 4(1), pp. 39–60. doi: 10.1002/wcc.202. 

Webber, S. (2017) ‘Circulating climate services: Commercializing science for climate change adaptation in 

Pacific Islands’, Geoforum. Elsevier Ltd, 85, pp. 82–91. doi: 10.1016/j.geoforum.2017.07.009. 

Webber, S. and Donner, S. D. (2017) ‘Climate service warnings: cautions about commercializing climate 

science for adaptation in the developing world’, Wiley Interdisciplinary Reviews: Climate Change. Wiley-

Blackwell, 8(1). doi: 10.1002/wcc.424. 

White, C. J. et al. (2017) ‘Potential applications of subseasonal-to-seasonal (S2S) predictions’, Meteorological 

Applications. John Wiley and Sons Ltd, 24(3), pp. 315–325. doi: 10.1002/met.1654. 

World Meteorological Organisation, W. (2009) ‘Climate Knowledge for Action: A Global Framework for 

Climate Services –’. Available at: https://www.wmo.int/gfcs/sites/default/files/FAQ/HLT/HLT_FAQ_en.pdf 

(Accessed: 28 June 2017). 

Youngblood, M. and Lahti, D. (2018) ‘A bibliometric analysis of the interdisciplinary field of cultural 

evolution’, Palgrave Communications. Nature Publishing Group, 4(1), p. 120. doi: 10.1057/s41599-018-0175-

8. 

Yu, H. et al. (2007) ‘The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality 

and Expression Dynamics’, PLOS Computational Biology. Available at: 

http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030059&type=printable 

(Accessed: 9 May 2018). 



 

Zare-Farashbandi, F., Geraei, E. and Siamaki, S. (2014) ‘Study of co-authorship network of papers in the 

Journal of Research in Medical Sciences using social network analysis.’, Journal of research in medical 

sciences : the official journal of Isfahan University of Medical Sciences. Wolters Kluwer -- Medknow 

Publications, 19(1), pp. 41–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24672564 (Accessed: 22 

January 2018). 

Zheng, Y. et al. (2017) ‘Identification of hub genes involved in the development of hepatocellular carcinoma 

by transcriptome sequencing.’, Oncotarget. Impact Journals, LLC, 8(36), pp. 60358–60367. doi: 

10.18632/oncotarget.19483. 

 

 


