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ABSTRACT
In this article, we present two novel authenticated key agreement

(AKA) schemes that are easily implementable and efficient even

on constrained devices. Both schemes are constructed over elliptic

curves and extend Schonorr’s signature of knowledge protocol.

To the best of our knowledge, we introduce a first AKA protocol

based on the proof of knowledge concept. This concept allows

a client to prove its identity to a server via secret information

while the server can learn nothing about the secret. Furthermore,

we extend our protocol via secret sharing to support client multi-

device authentication and multi-factor authentication features. In

particular, the secret of the client can be distributed among the

client’s devices.

The experimental analysis shows that our secret sharing AKA

(SSAKA) can establish a secure communication channel in less than

600 ms for one secondary device and 128-bit security strength. The

protocol is fast even on very constrained secondary devices, where

in most of cases takes less than 500 ms. Note that the time consump-

tion depends on the computational capabilities of the hardware.

CCS CONCEPTS
• Security and privacy → Multi-factor authentication; Digi-
tal signatures; • Theory of computation→ Design and analysis
of algorithms; • Computer systems organization→ Embedded

hardware.

KEYWORDS
Authentication, Authenticated Key Agreement, Access Control,

Cryptography, Proof of Knowledge, Security, Constrained Devices,

Wearables, Internet of Things.
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1 INTRODUCTION
Key agreement protocols are currently one of the most used cryp-

tographic primitives. These schemes permit to set-up a secure com-

munication channel between two or more entities. The first modern

key agreement protocol was the Diffie-Hellman (DH) protocol [8].

However, the basic DH protocol suffers from the man-in-the-middle

attack since the involved parts do not authenticate themselves. The

combination of a key agreement protocol with a digital signature

scheme allows obtaining an AKA protocol. AKA protocols not only

allow parties to compute the session key but also ensure the authen-

ticity of the involved parties. AKA protocol is the process by which

two (or more) authenticated entities establish a shared secret key.

The key is then used to achieve confidentiality or data integrity, for

instance.

AKA protocols find applications mainly in Internet of Things

(IoT) environment. There are many applications based on IoT such

as home automation, smart city, healthcare, smart grid, and smart

car [16]. These applications generate a large amount of data which

leads to many security concerns, such as data leakages, eavesdrop-

ping, or unauthorized access. Unfortunately, IoT devices are con-

strained in their computational and memory capabilities. Therefore,

we need a lightweight authentication protocol to cope with such

an IoT environment.

This work presents an authenticated key agreement protocol

that is provable secure, easily implementable, and efficient even

on constrained devices in IoT. Furthermore, our protocol supports

user multi-device authentication and it is based on zero-knowledge

proofs and elliptic curve constructions.

1.1 Related work
Blake and Menezes [5] give a good overview of key agreement pro-

tocols that are based on the intractability of the DH problem. Law

et al. [12] propose a two-pass protocol for authenticated DH key

agreement which works on elliptic curves. This scheme combines

static and ephemeral key pairs to obtain the session key.

Several identity-based key DH AKA are based on Weil and Tate

pairing [7, 14, 24, 26, 27]. However, all these schemes are proved to

be insecure [28]. To be noted that Smart [27] developed an identity-

based key AKA which requires a trusted key generation center and

uses a secret sharing scheme for the key generation. Wang [28]

https://doi.org/10.1145/3465481.3470057
https://doi.org/10.1145/3465481.3470057
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presents a pairing-based identity-based AKA which achieves all

security AKA properties.

Pasini and Vaudenay [19] propose three protocols. The first

scheme uses DH protocol in a secure channel. The second scheme

combines the DH protocol and a short authenticated strings. The

short string is used for authentication on an insecure channel. Fi-

nally, the third scheme uses an universal hash function. All schemes

are based on commitment scheme. They focus on minimizing the

number of message moves over the insecure channel and the length

of authenticated messages.

Reddy et al. [22] extensively studied the existing mutual authen-

tication protocols for a multi-server environment. Moreover, they

propose a biometric-based 3-factor mutually AKA protocols for

multi-server architecture based on elliptic curve cryptography and

Burrows–Abadi–Needham logic. In 2019, the same authors [21]

present an anonymous three-factor mutually AKA protocol for

client–server architecture on elliptic curve cryptography. Yang et

al. [29] present an AKA protocol with dynamic credential for wire-

less sensor networks. Dynamic credentials allow to clients to know

if their authentication credentials have been compromised.

Melki et al. [15] propose a lightweight and multi-factor authen-

tication protocol for IoT devices. The protocol is based on config-

urable Physical Unclonable Functions (PUF) and channel-based

parameters. Hajny et. al. [9] present a multi-device authentication

scheme using wearables and IoT devices. This scheme is provable

secure and based on zero-knowledge proofs. However, the scheme

does not support mutual authentication and key agreement mecha-

nisms. In 2018, the same authors [10] present multi-device authen-

tication scheme with strong privacy protection.

The scheme is provably secure and provides the full set of privacy-

enhancing features such as the anonymity, untraceability, and un-

linkability of users. Even this scheme does not provide mutual

authentication and key agreement mechanisms. The scheme is sym-

metric, therefore, it does not provide non-repudiation property so

typical for digital signatures. Lopes et al. [13] propose a secret-

sharing-based AKA based on Shamir secret share scheme [25] for

multi-device authentication. In their scheme, a trusted third party

create and share the secret keys among the user’s devices. Moreover,

each partial secret key needs to be disclose to be authenticated.

To the best of our knowledge, we introduce a first AKA protocol

based on the proof of knowledge concept. This concept allows the

user to prove its identity to a server via secret information (such as

a password or cryptographic key) while the server can learn noth-

ing about this secret. Furthermore, our AKA is based on Schnorr

signature [23] which produces fast and short signatures. Finally,

the protocol construction easily integrates other security and pri-

vacy features such as multi-device and multi-factor authentication

techniques.

1.2 Contributions
In this article, we present two novel schemes, namely AKA and

SSAKA. The basic AKA scheme is based on zero-knowledge-proof

protocols and it is efficient even on constrained devices that are very

often used in current IoT ecosystems. To the best of our knowledge,

we introduce a first AKA protocol based on the proof of knowledge

concept. The AKA zero-knowledge core allows to increase the secu-

rity strength of the algorithm by sharing the client’s secret among

more user devices such as wearable, embedded microcontrollers, or

smartcards. Moreover, the client can actively be part of the authen-

tication by using passwords or PIN codes. Thanks to this, our AKA

can be easily extended to support multi-device and multi-factor

authentication features. This is achieved in SSAKA scheme where

our AKA scheme is combined with a slightly modified multi-device

authentication technique presented in [9]. The SSAKA strength-

ens security by sharing the client secret between more parties. In

particular, the secret of the client can be distributed among the

client devices. Finally, an evaluation of our schemes is presented.

We show that our SSAKA can establish a secure communication

channel in less than 600 ms for one secondary device and 128-bit

security strength.

This paper is organized as follows: Section 2 defines used no-

tation and gives the necessary background on underlying crypto-

graphic primitives used in our AKA schemes. Section 3 presents our

basic AKA scheme based on zero-knowledge proofs and Section 4

introduces our secret sharing-based AKA which allows deployment

of more additional devices and user password to the authentication

and key agreement processes. Section 5 discusses security analysis

of our schemes and Section 6 shows our implementation results. In

the last section, we conclude this work.

2 PRELIMINARIES
In this section, we introduce the notation used throughout the paper.

Moreover, we recall proof of knowledge concept and secret sharing

scheme which are the cryptographic core of our AKA protocol. In

particular, we will focus on signature of knowledge concepts which

are non-interactive proof of knowledge protocols.

From now on, the symbol ":" means "such that", "|x |" is the

bitlength of x , and "||" denotes the concatenation of two binary

strings. We write a ←$ A when a is sampled uniformly at random

fromA. A secure hash function is denoted asH : {0, 1}∗ → {0, 1}κ ,

where κ is a security parameter. Moreover, G = ⟨д⟩ denotes a cyclic
group of order q, and α is an element of Z∗q . We describe the Proof

of Knowledge (PK) and the Signature of Knowledge (SK) protocols
using the notation introduced by Camenisch and Stadler. In partic-

ular, the protocol for proving the knowledge of discrete logarithm

of c with respect to д is denoted as PK{α : c = дα } and the protocol
for proving the knowledge of discrete logarithm of c with respect

to д and messagem is denoted as SK{α : c = дα }(m).

2.1 Proof of Knowledge
The concept of proof of knowledge is frequently used in many

modern cryptosystems such as group signatures, ring signatures,

and attribute-based credentials. In proof of knowledge, one entity,

namely prover, proves to another entity, namely verifier, the verac-

ity of a given statement. Statements regarding discrete logarithm

problems can be easily proven by using Σ-protocols [6].
A Σ-protocol is a simple 3-way protocol where the prover com-

mits a random number r , receives a challenge e , and finally responds
by the proof z to the challenge. One of the most used Σ-protocol is
the Schnorr protocol [6]. We recall its properties below:
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Prover 1 Verifier Prover 2
w1 ∈ Z∗q h = дw1+w2 w2 ∈ Z∗q

r1 ←
$ Z∗q r2 ←

$ Z∗q
c1 = д

r1 c2 = д
r2

c1

−−−−−−−−−−−−−−−−→
c2

←−−−−−−−−−−−−−−−−
e ←$ Z∗q

e
←−−−−−−−−−−−−−−−−

e
−−−−−−−−−−−−−−−−→

z1 = r1 + ew1 z2 = r2 + ew2

z1

−−−−−−−−−−−−−−−−→
z2

←−−−−−−−−−−−−−−−−

дz1+z2

?

≡ hec1c2

Figure 1: Proof of knowledge of the sum of discrete loga-
rithms PK{w1 +w2 : h = дw1+w2 }.

• Completeness: if the statement is true, the verifier will al-

ways accept the proof.

• Special Soundness: if the statement is false, no cheating

prover can convince the verifier of the validity of the proof,

and the prover will be always rejected.

• Special Honest Verifier Zero-Knowledge: if the state-
ment is true, no verifier learns anything other than the fact

that the statement is true.

Okamoto Σ-protocol [18] is an extension of Schnorr protocol

which allows the usage of two private keys and provides witness

indistinguishability. The Okamoto protocol is defined as follow:

Let G be a group of prime order q and д1,д2 ∈ ⟨д⟩ are generators
such that the loдд1

д2 is known to nobody. Letw1,w2 ∈ Z∗q be the

prover’s private keys, and let h = дw1

1
дw2

2
be the prover’s public key.

The Okamoto protocol is proof of knowledge of discrete logarithm

of c with respect to д1,д2 donated as PK{w1,w2 : h = дw1

1
дw2

2
}. In

our protocol, we adopt the Okamoto protocol into one single group

generator in order to design secret sharing of knowledge protocols,

see Figure 1.

Interactive proof of knowledge protocols are frequently used

in authentication schemes, where a challenge e is generated by a

verifier. On the other hand, non-interactive proof of knowledge

protocols are widely used in particular for signature scheme con-

structions. In this case, the challenge e is generated by the prover

with the use of a secure hash functionH . The non-interactive vari-

ant is more often called signature of knowledge, due to the inclusion

of the message in the proof as shown in Figure 2.

2.2 Secret Sharing Scheme
Secret Sharing [4] is a cryptographic tool that is used as a building

block in many protocols such as multiparty computation, general-

ized oblivious transfer, and attribute-based encryption. The scheme

involves a dealer who owns a secret and a set ofn parties. The dealer
distributes a secret value k in shares in a way that only qualified

subsets of parties can recover the secret.

A secret sharing scheme has two requirements [4]:

Prover Verifier
w ∈ Z∗q G,д,q h = дw

r ←$ Z∗q
c = дr

e = H(c,m)
s = (r − ew) mod q

e, s,m
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

c ′ = дshe

e
?

= H(c ′,m)
Accept/Reject
−−−−−−−−−−−−→

Figure 2: Schnorr’s signature of knowledge of discrete loga-
rithm SK{w : h = дw }(m).

• Correctness: the secret k can be reconstructed by any au-

thorized set of parties.

• Perfect Privacy: every unauthorized set cannot learn any-

thing about the secret (in the information theoretic sense)

from their shares.

The minimum number of shares needed to reconstruct the se-

cret is called threshold. There are constructions with and without

threshold [11, 25].

3 BASIC AKA PROTOCOL
In this section, we define the algorithms and entities of our AKA

protocol. The AKA communication pattern is depicted in Figure 3

and employs two parties:

• Client: is typically a user which is accessing specific on-

line services. To get an access to these services, the client

must pass the authentication phase by proving possession

of the access key. The key is stored on a user device which

can be any computing device represented by simple micro-

controllers, wearables, smartphones, or even by powerful

personal computers.

• Server: is very often a powerful computer providing dif-

ferent user services. However, the rise of IoT environments

causes that servers are represented more often by computa-

tionally less powerful devices such as Raspberry Pi single-

board computers.

3.1 Protocol description
The goal of the AKA protocol is not only to allow parties to com-

pute the session key but also to ensure the authenticity of both

involved parties. To do so, the client holds the servers’ signature

public key pkS and the server holds the client’s signature public

key pkS . On both sides, we use a variant of Schnorr’s signature

scheme to generate the signatures and, therefore, to authenticate

both communication parties. We assume, that both these signature

public keys are securely transferred between parties before AKA

protocol starts. In the case of the server, it can be easily achieved

by using a Public Key Infrastructure (PKI), which involves trusted
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Client Server

ClientHello: cipher suites

ServerHello: Y,       

ClientAuth: 

EncryptedDATA

AKA-SERVER-SIGNVERIFY (Alg. 1):lines 1-4

AKA-CLIENT-PROOFVERIFY (Alg. 2)

AKA-SERVER-SIGNVERIFY (Alg. 1):lines 7-9

Figure 3: Basic AKA protocol.

certification authorities, or by pre-installing the server’s signature

public keys directly to the client application. The client usually

provides his/her signature key during the registration phase. Then

the AKA protocol works in three following steps:

(1) Step 1: The client sends ClientHello message with 1) his

unique Client IDentifier (CID), 2) the cipher suites specify-

ing preferred cryptographic algorithms (e.g., elliptic curve

type such as SECP256), symmetric cipher (eg., AES-GCM-

256), and hash function (e.g., SHA2-256), and 3) the client

challenge RNDc. The RNDc challenge protects the system

against authentication replay attacks.

(2) Step 2: The server creates a message Y which includes CID,

used cipher suites, RNDc, and a confirmation of common

cipher suites. The message can have for example the fol-

lowing format: Y = {CID || SECP256 || SHA2-256 ||
AES128GCM || RNDc || ACCEPT}. The server then exe-

cutes AKA-SERVER-SIGNVERIFY algorithm to generate the

Schnorr’ signature σ on the message Y and, therefore, to

generate authentication proof. Both values Y and σ are sent

back to the client in the ServerHello message. It is impor-

tant to notice that the signature includes also the server’s

DH public key for the key agreement protocol. This DH key

serves also as an authentication challenge of the server since

the key is randomly generated for each communication ses-

sion. The client then performs AKA-CLIENT-PROOFVERIFY
algorithm to check the validity of the signature σ , computes

a common session key κ, and client’s proof of knowledge π
of the secret key skC .

(3) Step 3: The server performs second part of the AKA-SERVER-
SIGNVERIFY algorithm to compute the common session key

κ and verify client’s authentication proof.

Thanks to the deployment of the Schnorr’s signature, we can

1) sign messages of both parties and, therefore, authenticate one

against other, 2) generate randomness, i.e. an authentication chal-

lenge which allows avoiding replay attacks, and 3) perform DH key

agreement protocol over cryptographic commitments to establish

a common session key.

3.2 Definition of algorithms
In this section, we present the concrete instantiations of crypto-

graphic algorithms of our AKA.

(spar ) ← AKA-SETUP(κ):
The protocol is run by a server in order to generate initial system

parameters. The algorithm inputs the security parameter κ and

outputs the system parameters spar . On the input of the security

parameter κ the server generates a cyclic group G = ⟨д⟩ of prime

order q : |q | = κ, where the Discrete Logarithm (DL) assumption

holds and outputs spar = (G,д,q) as public system parameters. The

systems parameters are securely distributed between all system

parties and they are used as an implicit input for all following algo-

rithms.

(skC ,pkC ) ← AKA-CLIENT-REGISTER(κ):
The protocol is run between a server and a client. At first, the client

establishes a secure communication channel with the server. At sec-

ond, the algorithm inputs the security parameter κ and outputs user

key pairs skC ←
$ Z∗q , pkC = дskC . The secret key skC is securely

stored on the client’s device, while the public key pkC together

with the user login name are sent to the server. The server assigns

the unique CID to the client. CID, login name, and the public key

pkC are securely stored in the server database.

(τS ,κ) ← AKA-SERVER-SIGNVERIFY(Y , skS ,pkC ):
The algorithm takes as input a message Y, the server’s secret key
skS , and the client’s signature public key pkC . It outputs the result
of client authentication τS = 0/1, and the shared session key κ as

shown in Algorithm 1. At first, the server computes a cryptographic

commitment tS = д
rS

as a part of the Schnorr’s signature. Further-

more, the commitment serves also as an authentication challenge

of the server and DH public key of the server, while the value rS
represents DH secret key. Both Y and σ are sent to the client, while

the client answers with his/her authentication proof π . The server
verifies the reconstruct of the client’s cryptographic commitment

t ′ = дsC · pkeCC . The commitment t ′ also represents the client’s DH
public key, and therefore, the client computes a common session

key such as κ = t ′rS . Finally the server very the client’s proof

eC
?

= H(Y , t ′,κ).
(τC ,π ,κ) ← AKA-CLIENT-PROOFVERIFY(Y ,σ ,pkS , skC ):
The algorithm takes as input a message Y, the server’s signature
public key pkS , and the client’s secret key skC . It outputs the result
of the server authentication τC = 0/1, the client authentication

proof π , and the common shared session key κ as shown in Algo-

rithm 2. At first, the client reconstructs the server’s commitment

t ′S = д
sS · pkeSS , which also represents the server’s DH public key

and checks it’s correctness by comparing eS
?

= H(Y , t ′S ). At second,
if the signature is valid, the client computes the authentication
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Algorithm 1 AKA-SERVER-SIGNVERIFY(Y , skS ,pkC )

1: rS ←
$ Z∗q

2: tS ← дrS

3: eS ←H(Y , tS )
4: sS ← rS − eS · sks mod q

5: Send: Y ,σ = (eS , sS ) ▷ AKA-CLIENT-PROOFVERIFY
6: Receive: π = (eC , sC ) ◁ AKA-CLIENT-PROOFVERIFY

7: t ′ ← дsC · pkeCC
8: κ ← t ′rS

9: τS ← eC
?

= H(Y , t ′,κ)
10: return τS = 0/1,κ

proof π and a common DH session key κ = t ′rCS . Otherwise, the

client ends the protocol.

Algorithm 2 AKA-CLIENT-PROOFVERIFY(Y ,σ ,pkS , skC )

1: t ′S ← дsS · pkeSS

2: τC ← eS
?

= H(Y , t ′S )
3: if τC = 0 then exit
4: rC ←

$ Z∗q
5: t ← дrC

6: κ ← t ′rCS
7: eC ←H(Y , t ,κ)
8: sC ← rC − eC · skC mod q
9: return τC = 0/1,π = (eC , sC ),κ

4 SECRET SHARING-BASED AKA PROTOCOL
Our Secret Sharing-based Authenticated Key Agreement (SSAKA)

protocol is built upon our AKA protocol which was presented

in Section 3. The SSAKA extends AKA scheme by secret sharing

property. The secret is reconstructed only if all the involved parties

(devices) collaborate. The client decides the number of involved

devices and if being actively part of the protocol by using a password

or a PIN code, for instance.

In this section, we define the algorithms and protocols of our

SSAKA scheme in more details. The communication pattern is

depicted in Figure 4 and employs four types of entities:

• Server: is usually a service provider that needs to verify the

identity of their users. The server can be represented by a

powerful computer or a less powerful single board computer.

• Client: is represented by the user’s Master Device (MD)

which can be a PC, laptop, smartphone, or tablet. The client

needs to prove his/her identity and to establish a secure com-

munication channel with the server.

• Device: is an additional Secondary Device (SD) with usu-

ally less computational power. Examples of SD devices are

smartcards, smartwatches, sensors, and embedded microcon-

trollers. SDs are involved in the authentication process to

strengthen security.

• Party (P): specifies a device, a password or a PIN code used

in the protocol.

SSAKA protocol requires the addition of three new algorithms

which allow extending our AKA protocol to work in a multi-device

environment. In particular, SSAKA-CLIENT-ADDSHARE algorithm

generates a new client’s secret key, where each involved device

knows only its share of the key. SSAKA-CLIENT-REVSHARE algo-

rithm allows revoking a device secret key from the client key. At

last, SSAKA-DEVICE-PROOF algorithm computes the proof of knowl-

edge of each device’s secret. Moreover, Algorithm 2 is slightly mod-

ified to Algorithm 3. These changes permit the protocol to run in a

multi-device environment. The sub-protocols are specified below

in details.

( ¯pkC ,pkC , skC ) ← SSAKA-CLIENT-ADDSHARE(⟨ski ⟩∈NEW , skC ,pkC ):
The protocol is run between a client MD, several SDs and the server.

The task of this algorithm is to spread the client secret skC among

all involved parties. The algorithm inputs system parameters spar ,

client secret key skC = sk0 +
∑DEV
i=1

ski , where sk0 is the MD share

and sk1, . . . skDEV are shares of DEV already registered SDs, and

⟨ski ⟩∈NEW represents the set of new shares (i.e., newly registered

SDs). In this case, each SD generates its own keypair ski ←
$ Z∗q ,

pki = дski . The secret keys are kept secret while the public keys
are securely sent to MD. The piece of secret can be also shared

with the client him/herself. In this case, the client share skpw is

computed by hashing his/her password, or PIN code. Finally, the

client MD computes the extension of the client public key, i.e it

computes
¯pkC =

∏NEW
i=1

pki for all NEW available devices or for

the eventually client’s passwords or PIN codes. The client runs the

SSAKA protocol and sends the extension of the public key
¯pkC to

the server through established secure channel. The server updates

the main client’s public key pkC = pkC · ¯pkC . After this update, the
new devices, passwords, or PIN codes must be always used in the

SSAKA protocol. Let note that the MD private key sk0, and SDs

keys ⟨ski ⟩∈DEV never leave the devices, only the public keys pkC
⟨pki , ⟩∈DEV are revealed. Each party (i.e., client’s device) knows

only a share of the client secret skC and only together they are able

to forge it, that is skC = sk0+
∑DEV
i=1

ski , where DEV is the number

of all registered SDs.

( ¯pkC ,pkC , skC ) ← SSAKA-CLIENT-REVSHARE(⟨ski ⟩∈REV , skC ,pkC ):
The protocol is run between a client MD, several SDs and the server.

The task of the algorithm is to revoke the client secret among

the parties. The algorithm inputs system parameters spar , client

secret key skC = sk0 +
∑DEV
i=1

ski , where sk0 is the MD share

and sk1, . . . skDEV are shares of DEV already registered SDs, and

⟨ski ⟩∈REV represents the set of revoked shares (i.e., newly revoked

SDs). The client selects the shares to be revoked from the client

secret skC . To do so, the clients picks all corresponding SDs public

keys or eventually public key of the user password pkpw = д
skpw

,

where skpw = H(password). Finally, the client’s MD computes the

subtraction of client’s public key, i.e it computes
¯pkC =

∏REV
i=1

pki
for all REV devices or eventually clients passwords or PIN codes.

TheMD runs SSAKA protocol and sends to server the subtraction of

the public keys
¯pkC through established secure channel. The server

then updates the main client’s public key pkC = pkC · ¯pkC
−1

. After
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Client Server

ClientHello: cipher suites

ServerHello: Y,       

ClientAuth: 

EncryptedDATA

Microcontroller
Client Device 2

SmartWatch
Client Device 1

SmartCard
Client Device N

AKA-SERVER-SIGNVERIFY (Alg. 1):lines 1-4

SSAKA-CLIENT-PROOFVERIFY (Alg. 3)

AKA-SERVER-SIGNVERIFY (Alg. 1):lines 7-9

BLE

NFC

WIFI

ti,

e

si

t'v

SSAKA-CLIENT-PROOF (Alg. 4)

Figure 4: SSAKA protocol using multi-device access control.

Algorithm 3 SSAKA-CLIENT-PROOFVERIFY(Y ,σ ,pkS , skC )

1: t ′S ← дsS · pkeSS

2: τC ← eS
?

= H(Y , t ′S )
3: if τC = 0 than exit

4: Send: t ′S ▷ SSAKA-DEVICE-PROOF
5: Receive: ⟨κi ⟩∈DEV , ⟨ti ⟩∈DEV ◁ SSAKA-DEVICE-PROOF

6: r0 ←
$ Z∗q

7: t ← дr0 ·
∏DEV

i=1
ti

8: κ ← t ′rCS ·
∏DEV

i=1
κi

9: eC ←H(Y , t ,κ)

10: Send: eC ▷ SSAKA-DEVICE-PROOF
11: Receive: ⟨si ⟩∈DEV ◁ SSAKA-DEVICE-PROOF

12: s0 ← r0 − eC · sk0 mod q

13: sC ←
∑DEV
i=0

ski mod q
14: Return τC = 0/1,π = (eC , sC ),κ

this update, the revoked Ps are nomore used in the SSAKA protocol.

(τC ,π ,κ) ← SSAKA-CLIENT-PROOFVERIFY(Y ,σ ,pkS , skC ):
The algorithm runs as Algorithm 2with small modifications that are

marked in red in Algorithm 3. In this case, the algorithm requires

to call Algorithm 4 for each SD, which has a share of the secret, and

therefore is involved in the protocol. Moreover, t and κ values need

the commitments ti and κi of each SD. Values si represent proofs

of knowledge of the secret shares of all SDs .

Algorithm 4 SSAKA-DEVICE-PROOF(t ′S , ski )

1: ri ←
$ Z∗q

2: ti ← дri

3: κi ← t ′riS

4: Send: κi , ti ▷ SSAKA-CLIENT-PROOFVERIFY
5: Receive: eC ◁ SSAKA-CLIENT-PROOFVERIFY

6: si ← ri − eC · ski mod q
7: Return: si ,κi

(si ,κi ) ← SSAKA-DEVICE-PROOF(t ′S , ski ):
The algorithm takes as input server’s DH public key t ′S and the P’s

secret key ski and outputs the P’s authentication proof si and P’s

DH public key fragment κi , see Algorithm 4 for more details. At

first, the device commits to random value ti = дri and computes

DH public key fragment as κi = t ′riS . Both values sends to MD.

The MD responses with authentication challenge eC on which the

device computes the proof of knowledge si its share of client secret
ski .

5 SECURITY ANALYSES
We prove the security of our AKA and SSAKA protocols in this sec-

tion. The AKA protocol is based on provable secure cryptographic

primitives, namely Schnorr signature and DH protocol.
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Lemma 5.1. The Schnorr signature is existentially unforgeable
under chosen-message attacks in the random oracle model assuming
that the DL problem is hard.

Proof. The Lemma 5.1 is proven in [20]. □

Lemma 5.2. The AKA and SSAKA authentication protocols are
both complete.

Proof. We consider the verification equation of Algorithm 1 The

server verifies the equation eC
?

= H(Y , t ′,κ), where the κ = t ′rS

and t ′ is the client’s commitment. Therefore, the protocol pass if

the commitment is correctly reconstructed.

t ′ = дsC · pkeCC = д
rC−eC ·skC · дskC ·eC = дrC = t

In case of SSAKA, the situation is equivalent, since we can

write skC = sk0 +
∑DEV
i=1

ski , rC = r0 +
∑DEV
i=1

ri , and pkC =

дsk0+
∑DEV
i=1

ski ), where DEV is the number of all registered SDs.

□

Lemma 5.3. The AKA and SSAKA authentication protocols are
both sound.

Proof. Suppose that a client does not know the private key and

is ready to correctly respond to at least two challenges (denoted as

eC , e
′
C ) by sending sC and s ′C . Then, the following equations must

hold for the client to be accepted.

t ′ = дsC · pkeCC

t ′ = дs
′
C · pk

e ′C
C

By dividing we get:

1 = pk
eC−e ′C
C · дsC−s

′
C

And finally we get:

pkC = д

s′C −sC
eC −e

′
C

And we reached the contradiction because the user knows the

private key skC =
s ′C−sC
eC−e ′C

.

SSAKA soundness proof directly follows from AKA one. In fact,

the only difference is in the values skC andpkC which do not change

the proof as shown in Lemma 5.2

□

Lemma 5.4. The AKA and SSAKA authentication protocols are
both zero-knowledge.

Proof. We prove the zero-knowledge property by construct-

ing the zero-knowledge simulator S. The simulator works in the

following steps.

(1) Randomly selects the response ˆsC ←
$ Z∗q .

(2) Randomly selects the challenge ˆeC ←
$ Z∗q .

(3) Computes the commitment t̂ = pk ˆeC
C · д

ˆsC
.

The simulator’s output is computationally indistinguishable from

the real protocol transcript, i.e. (t̂ , ˆeC , ˆsC , ) �c (t , eC , sC ), because
all pairs are selected randomly and uniformly from the same sets.

SSAKA zero-knowledge proof directly follows from AKA one as

in Lemmas 5.2 and 5.3.

□

Lemma 5.5. AKA and SSAKA key agreement protocol are secure
against eavesdroppers.

Proof. The AKA key agreement protocol is based on DH pro-

tocol, where both entities reconstruct the DH public key of the

counterparty from the authentication phase. In particular, the enti-

ties reconstruct cryptographic commitments t ′S and t ′, and compute

a common secret κ.

κ = t ′rCS = (дrS )rC = (дrC )rS = t ′rS

In case of SSAKA, the situation is equivalent, since we can write

rC = r0 +
∑DEV
i=1

ri and therefore, t ′C = дr0+
∑DEV
i=1

ri ), where DEV
is the number of all registered SDs.

□

Lemma 5.6. SSAKA protocol provides both secret sharing properties,
i.e. correctness and perfect privacy.

Proof. The proof is straightforward.

• Correctness: since each party Pi owns a different part of
the secret key ski , the user secret key skC =

∑
i ski can be

reconstructed only knowing all the ski .
• Perfect privacy: unauthorized set cannot learn anything

about the secret since skC =
∑
i ski mod q. The modulus

prevent to have information on skC .

□

Furthermore, our AKA and SSAKA protocols meet all security

attributes of authenticated key agreement protocol defined in [16]:

• Mutual authentication: both entities, i.e. a client and a

server, authenticate each other during the run of the protocol.

Our AKA uses the authentication model challenge-response

based on the Schnorr’s digital signature.

• Key compromise impersonation: if an adversary compro-

mises the long-term secret key of one entity, then the ad-

versary can impersonate only this entity no others system

entities. Our AKA uses asymmetric cryptography, where

each involved entity uses its own secret Schnorr key.

• Parallel session attack: the knowledge of some previ-

ous session keys does not allow the adversary to compromise

other session keys. In both protocols session keys values

are randomized, therefore knowing previous session keys

does not leak any information on user’s secret key (proof-

of-knowledge property).

• Denial of service attack: an adversary can try to con-

sume resources of the server by sending fake login messages.

If that happens, the user’s CID or IP address can be easily

putted on the blacklist and the login request will be denied.

• Replay attack: our AKA and SSAKA use authentication

model challenge-response which prevents against replay

attacks.



ARES 2021, August 17–20, 2021, Vienna, Austria Dzurenda et al.

• Man-in-the-middle attack: our AKA uses mutual authen-

tication based on Schnorr signatures which prevents against

man-in-the-middle attacks.

6 EXPERIMENTAL RESULTS
In this section, we show the evaluation of our AKA and SSAKA

protocols. AKA protocol is efficient and easy to implement even

on very constrained devices. Moreover, we implement the whole

SSAKA protocol on a set of various modern programmable devices,

namely smartwatches, smartcards, smartphones, microcontrollers,

and microcomputers. The hardware (HW) and software (SW) spec-

ification of deployed devices is shown in Table 1.

We suggest using only the cryptographic algorithms recom-

mended by international cybersecurity authorities such as the Na-

tional Institute of Standards and Technology (NIST) and the Eu-

ropean Union Agency for Cybersecurity (ENISA), see Table 2 for

more details.

The implementation is based on RIOT [1] operating system,

RIOT compatible devices, and libraries. It allows us to make the

applications easily portable across various types of devices based on

different architectures and developed by different manufactures. In

particular, we build up the applications on Crypto and micro-ecc
libraries written in C programming language:

• Crypto [1]: is the native cryptographic library of RIOT. It

provides block ciphers, operation modes, and cryptographic

hash algorithms. We consider it mainly for performing Ad-

vanced Encryption Standard (AES) encryption in the CCM

operation mode and hashing with Secure Hash Algorithm

(SHA) between a user device and the server.

• micro-ecc [2]: is a small and fast Elliptic Curve Diffie Hell-

man (ECDH) and Elliptic Curve Digital Signature Algorithm

(ECDSA) implementation for 8-bit, 32-bit, and 64-bit proces-

sors. The library is RIOT compatible and supports secp160r1,

secp192r1, secp224r1, secp256r1, and secp256k1 curves.

The micro-ecc library implements ECDH and ECDSA algo-

rithms and provides Application Programming Interface (API) to

use them. The library provides also an access to AKA required un-

derlayer mathematical operations such as Elliptic Curve (EC) point

scalar multiplication, modular reduction, multiplication, and addi-

tion. To make them available to developers, only the flag -DuECC
_ENABLE_VLI_API needs to be added to the compiler. The only

missing AKA required operation is EC points addition. We ex-

tended the micro-ecc library by the EC points addition operation

(the function uECC_point_add). To do so, we slightly modify the

uECC_verify function in the uECC.c file. This function is origi-

nally used in ECDSA verification protocol to compute sum = G +Q ,

where G,Q are two EC points.

The RIOT supports two main elliptic curve cryptographic li-

braries, namely micro-ecc and Relic [3]. Relic supports among oth-

ers calculation on NIST E(F2
m ) and E(Fp ) curves, pairing-friendly

curves, pairings and related extension fields Fpk . Furthermore, the

Relic shows significantly better performance results as shown in

Figure 5. However, the Relic memory requirements are significantly

higher than micro-ecc ones, and therefore, we avoid the Relic from
the AKA protocol implementations. We consider the Crypto library

to implement ciphers algorithms since it is part of the RIOT and due

to its efficiency. We compared the Crypto with TinyCrypt library,

where the TinyCrypt was ca. 6 times slower. The Figure 5 shows the

time needed to encrypt 16 KB data with AES256-CCM for Crypto
library and to multiply the EC point with the scalar (ecMUL) with

Relic and micro-ecc libraries.

Figure 5: Efficiency of C libraries on different MCU units.

We use micro-ecc library also for Android implementations in

smartphones and smartwatches. The Android Native Development

Kit (NDK) allows us to execute a program in C/C++ on Android

devices instead of using Java libraries. In fact, we compare the effi-

ciency of Spongy Castle [17] (Android version of Java Bouncy Castle

library) and micro-ecc as depicted in Figure 6. The difference is

even more significant on less powerful devices such as wearables.

Figure 6: Speed comparison of JAVA and C libraries on An-
droid devices (Xiaomi Redmi note 8 Pro - Green, Huawei
Watch 2 - Blue).

The implementation results of Algorithms 1, 3, 4 on different

IoT devices are shown in Table 3. The performance is measured in

milliseconds, since the measurement of clock cycles is unavailable

on the smart card platform and on wearables. Furthermore, the

clock cycles are not meaningful for practical demonstration. We

use the standard personal computer to simulate the server side.

We let the smartphone act as MD while SDs where represented

by smartwatches, microcontrollers, single board computers, and

smartcards. The micro-ecc library was used in all implementa-

tions except the smartcard implementations. We used RIOT to run

the same code on all microcontrollers. However, in the case of

Arduino Nano we were not able to run the protocol using RIOT
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Table 1: HW and SW specification of deployed devices.

Device CPU/MCU OS RAM

Computers and single board computers

Raspberry Pi 4 Model B ARM Cortex-A72 Raspberry Pi OS, Kernel v5.10 4.0 GB

Raspberry Pi Zero W ARM11 Raspberry Pi OS, Kernel v5.10 512 MB

HP Pavilion 15 Intel i5-9300H Windows 10 16 GB

Smartphones

Xiaomi Redmi note 8 Pro Helio G90T Android 10 6 GB

Smartwatches

HUAWEI Watch 2 Snapdragon 2100 Android Wear 2 768 MB

PineTime ARM Cortex-M4F RIOT 2021.04 64 KB

Microcontrollers

Arduino Nano atmega328p Arduino 2 KB

Arduino Due AT91SAM3X8E RIOT 2021.04 96 KB

ESP8266 LX106 RISC RIOT 2021.04 64 KB

ESP32 LX6 RIOT 2021.04 520 KB

Smartcards

MultOS ML4 SC23Z018 MultOS 4.2 2.0 KB

JavaCard J3H145 P60D144 JCOP 3 v3.0.4 2.558 KB

Table 2: Cryptographic algorithms for AKA protocol.

Security Strength Elliptic curve Cipher Hash

Legacy
∗

80 SECP192 AES-GCM-128 SHA1

Sufficient 112 SECP224 AES-GCM-128 SHA224

Medium 128 SECP256 AES-GCM-128 SHA256

Higher 192 SECP384 AES-GCM-192 SHA384

The Highest 256 SECP512 AES-GCM-256 SHA512

Note:
∗
We recommend not to use the Legacy parameters, since

they are currently considered as insecure by NIST and ENISA.

due to the limited resources, so we reimplemented it using pure

Arduino. The code for MultOS ML4 smartcard was written in Mul-

tOS assembly code and C language while the JavaCard J3H145

application was written in JavaCard programming language using

Java Card Development Kit (JCDK) 3.0.4. Since the JavaCard does

not support modular arithmetic operations nor EC operations, we

had to implement them. In case of modular arithmetic operations,

we implement them from scratch as software solution. In case of

EC operations, we used hardware solution, i.e. we used smartcard

coprocessor through class javacard.security.KeyAgreement
and ALG_EC_SVDP_DH_PLAIN_XY, ALG_EC_PACE_GM algorithms.

Finally, we benchmark whole SSAKA implementation including

a communication overhead. The implementation consists of one

smartphone (Xiaomi Redmi note 8 Pro) which is used by client as

a master device. The smartphone uses Near Field Communication

(NFC) wireless technology to communicate with the server. We use

smartwatch (HUAWEI Watch 2) as one secondary device needed

to gain an access to the server and establish a secure communica-

tion channel. The smartwatch communicates with the smartphone

through Bluetooth LowEnergy (BLE) wireless communication chan-

nel. The Figure 7 shows our experimental results for different secu-

rity strengths. The whole SSAKA protocol with deployed devices

takes less than 600 ms for the 128-bit security strength (SECP256).

The Server time (marked in red) shows time needed by server to

generate its signature and very the user’s proof. The Smartphone
time (marked in green) shows time needed by smartphone to verify

the server and generate user’s proof including the NFC communi-

cation overhead. The Smartwatch time shows the time complexity

of secondary device including BLE communication overhead.

Figure 7: Time complexity of SSAKA for one secondary de-
vice and different elliptic curves.

7 CONCLUSION
In this paper, we proposed two novel AKA schemes, namely AKA

and SSAKA. The basic AKA scheme is based on zero-knowledge-

proof protocols and it is efficient even on constrained devices that

are very often used in current IoT ecosystems. The SSAKA scheme

extends our AKA to support multi-device and multi-factor authen-

tication. Sharing the client’s secret among more user devices in-

creases the security strength of the algorithm. Examples of sharing

parties are wearables, embedded microcontrollers, smartcards, or

even the client him/herself using passwords or PIN codes. Both

protocols’ full security analysis is provided and implementation

aspects are described in this paper. Our SSAKA can establish a se-

cure communication channel in less than 600 ms for one secondary
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Table 3: Performance of SSAKA algorithms on various devices.

Device Product Library Entity SECP224 SECP256

Personal Computer HP Pavilion 15 micro-ecc Server 202 ms 218 ms

Smartphone Xiaomi Redmi note 8 Pro micro-ecc Master Device 25 ms 25 ms

Single Board Computer Raspberry Pi 4 model B micro-ecc Secondary Device 3 ms 5 ms

Single Board Computer Raspberry Pi Zero W micro-ecc Secondary Device 11 ms 19 ms

Smartwatch HUAWEI Watch 2 micro-ecc Secondary Device 39 ms 27 ms

Smartwatch PineTime micro-ecc Secondary Device 182 ms 317 ms

Microcontroller ESP8266 micro-ecc Secondary Device 557 ms 1264 ms

Microcontroller ESP32 micro-ecc Secondary Device 276 ms 514 ms

Microcontroller Arduino Due micro-ecc Secondary Device 222 ms 379 ms

Smartcard MultOS ML4 - Secondary Device 151 ms 163 ms

Smartcard JavaCard J3H145 - Secondary Device 968 ms 1054 ms

device and the 128-bit security strength. The protocol complexity

is given by the computational capability of the most contained

secondary device. This is due to the fact that the communication

between the master device and secondary devices is run in parallel.

As a next step, we will focus on adding privacy-enhancing features

to this scheme.
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