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Abstract—The Industry 4.0 Asset Administration Shell is
designed as a digital communication interface that exposes
information of various aspects of an asset in Submodels, which
are functional blocks. However, a methodology that identifies
the set of Submodels required for a specific use case is lacking.
This work therefore presents two results: 1) the methodology we
developed to identify the Submodels applicable in a use case and
2) an example application involving immaterial process assets.
Our approach complements existing procedures by beginning
with a functional description rather than an established standard
and by creating a potentially interconnected set of Submodels
rather than a singleton. The outcomes were verified by domain
experts and through integration of the corresponding AASs.

Index Terms—Industry 4.0, asset administration shell, sub-
model, methodology, immaterial asset, entity-relationship dia-
gram, knowledge representation

I. INTRODUCTION

The Asset Administration Shell (AAS), developed under
the Industry 4.0 umbrella, aims to provide a common digital
representation of each factory asset. It plays a major role in the
goals of enabling data sharing between value chain partners,
standardizing data security, and providing technology-neutral
semantic standards [1]. The role of the AAS specifically is to
provide communication among assets within a single factory
and cross-company, and to cover the complete asset life-cycle
from requirements until decommissioning [1].

Industry 4.0 adopts a broad definition of what constitutes
an asset: anything of value in the factory such as machines,
raw materials, services, and human personnel. Moreover,
immaterial assets such as processes and plans are explicitly
included as well [2]. The asset information is stored on the
AAS in standardized Submodels, which are data models each
pertaining to a specific functionality. Several Submodels have
been published for machine AASs [3], [4] which have become
de facto standards.

We however encountered a lack of established Submodels
for immaterial and non-machine assets. This is problematic

This paper is supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 870092, project DIMOFAC
(Digital Intelligent MOdular FACtories).

for the standardization and interoperability efforts because
Submodels provide the information abstraction required for
data exchange. The Submodel scarcity therefore leads to the
development of different models for similar functionalities.

Moreover, a methodology to identify the necessary Submod-
els for a use case has not been established. The existing Sub-
model development procedure [5] describes how to translate
a single established standard into an Industry 4.0-compliant
Submodel, but a use case will likely contain multiple assets
with various functionalities. Also, the existing procedure re-
sults in a single Submodel, whereas a use case may require
several Submodels to properly express the domain information.
A methodology that identifies the set of Submodels required
for a use case is therefore lacking.

In this work we present our research towards a Submodel
development methodology that starts at a use case description
and concludes with deployment as a measure of validation.
The intermediate steps cover both technology-independent
conceptual modelling as well as deliberate design decisions to
comply with Industry 4.0 concepts. As an example we apply
the methodology on a Dutch high-mix low-volume factory.
The goal was to get insight into the factory shop floor perfor-
mance and to simultaneously make the Enterprise Resource
Planner (ERP) data available for other process improvement
projects in the H2020 DIMOFAC project1. The shop floor
information contains various types of assets instead of only
machine assets: processes and orders, produced products and
raw materials, and services and human personnel. This broad
scale sets an appropriate test case for the methodology.

This work will commence with the state-of-the-art Indus-
try 4.0 literature in section 2, followed in section 3 by the
basics of the AAS. We present our methodology in section
4. The example application of the methodology on our use
case is described in section 5. This work concludes with a
discussion of the AAS deployment in the use case.

1https://dimofac.eu/
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II. STATE OF THE ART

The normative AAS documentation [2] has been published
by Platform Industry 4.0 in co-operation with ZVEI, the
German Electrical and Electronic Manufacturers’ Association.
The document formally describes the contents of an AAS
and its components. The communication of the AAS to the
outside world is defined with a technology-independent API
specification in the follow-up document [6]. Part 3 covers
the Industry 4.0 communication language among AASs, but
remains unpublished as of July 2021.

Additional non-normative material published by the Plat-
form Industry 4.0 describes how to use the AAS from the
perspective of different roles [7]. In [5] it is shown how
the AAS data should be structured into several Submodels.
How to use the AAS elements to construct a composite AAS
is described in [8], [32]. Additional practical considerations
and example Submodels are given in [9]. The philosophy
of enabling semantics by linking each concept to a global
identifier is argued for by the Platform Industry 4.0 in [10]
and independently in [11], [12]. The terms and definitions
behind the Industry 4.0 architecture are also clarified in [13],
elaborating on the difference between AAS and Digital Twin.

The AAS is technology-independent by design. In [2] a
mapping is specified to XML, JSON, RDF, OPC-UA, and
Automation ML, with each having a different purpose. The
XML and JSON serialization are intended for technical com-
munication, RDF to enable semantic technologies, Automa-
tionML [14] to share asset information during the engineering
phase, and OPC-UA [15] for sharing live data. Additional
remarks on the RDF and OPC-UA serialization are given
by [16] and [17], [18] respectively.

The actual data is stored in Submodels, each covering
a separate asset functionality. Example machine Submodels
have been provided for Drilling, MES connection, Energy
Efficiency, and Documentation functionality [19]. The Name-
plate Submodel [4] and Technical Data Submodel [3] are
widely used for machine AASs. An example Submodel for
PLCOpen [20] has been published outside of the Platform
Industry 4.0 initiative. The process of standardizing machine
skills and capabilities has been described in [10], [21], al-
though a Submodel implementation is not provided. Addition-
ally, for several potential Submodels the relevant established
standard has been identified (figure 2).

Some early research has been done towards Submodels for
non-machine assets, such as a MES connection [19] or order
and supply management [9]. In [22] an AAS is developed for
an operator wearing a smart jacket, although no Submodel is
presented. There is to the best of our knowledge no publication
on representing in a Submodel immaterial assets, in particular
work orders or process steps.

Currently, only a few real use cases have made use of
AAS technology. The research has focused on normative doc-
umentation, machine Submodels, or small-scale deployment.
For example, [23] employs the AAS in a plug-and-produce
scenario, where three robotic arms take turns performing a

Fig. 1: Structure of an AAS [2]

simple task. Another work [24] describes a demonstration with
an AAS for PLC data. In [22] a operator jacket is developed
and deployed using AAS technology.

Several AAS tools are currently under development. The
AASX Package Explorer2 is a tool for constructing AASs and
Submodels. It additionally has eClass import functionality, op-
tions for Submodel reuse, and functionality to expose an AAS
via OPC UA or REST. The associated aasx-server3 provides
functionality to expose multiple AASs following the XML
serialization. BaSyX4 is intended as an Industry 4.0 Standard
Development Kit available for Java, C#, and C++, supporting
the major Industry 4.0 communication protocols [25]. Addi-
tionally, PyI4.0AAS5 is a Python implementation of [26]. An
AAS digital integration platform is also being developed in
the H2020 DIMOFAC project.

III. BASICS OF THE AAS

Figure 1 shows the basic AAS structure: Each asset (grey
box) has a unique Administration Shell (blue box) that serves
as an interface to the asset information. The AAS functions
as a digital communication shell that exposes the asset data
to other Industry 4.0-comliant components. The actual data is
stored into various Submodels, each covering a separate asset
functionality.

The AAS equivalents of attributes are called SubmodelEle-
ments [2]. For example, a Property contains a literal value of a
specified datatype; a ReferenceElement contains a reference to
a Referable (e.g., an AAS, Submodel, or SubmodelElement);
a Document contains an actual file or a link; and a Submod-
elElementCollection contains a set of SubmodelElements.

The AAS requires SubmodelElements and the Submodel
itself to be identifiable through a globally unique identifier [2]
for standardization and semantic integration. An International
Registration Data Identifier (IRDI) can be used to refer to

2https://github.com/admin-shell-io/aasx-package-explorer
3https://github.com/admin-shell-io/aasx-server
4https://projects.eclipse.org/projects/technology.basyx
5https://pypi.org/project/pyi40aas/
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Fig. 2: Potential Administration Shell Submodels [8]

Fig. 3: Procedure for Submodel development [5]

standardized dictionaries such as eClass or another relevant
standards [27], as is done in the example Submodels [3], [4],
[19]. An Internationalized Resource Identifier (IRI) can refer
to a (semantic) web resource [10].

An important design principle of the AAS is that Submodels
should be separated by functionality [5] such that all assets that
share a specific function have the same Submodel implemented
on their AAS. Interoperability is then achieved by defining for
each aspect a standard Submodel that should be used cross-
company [10]. For example, the Asset Umgebung (= Asset
Environment) Submodel [9] contains the relevant information
of an asset in different life cycle phases. Such a Submodel is
applicable independent of asset type and use case.

A Submodel development procedure is proposed in [5]
(Figure 3). It is primarily intended to develop an Industry 4.0
compliant Submodel from existing standards.

IV. METHODOLOGY

The methodology we present aims to identify and pro-
duce the Industry 4.0-components necessary for a specific
AAS application scenario. Different scenarios involve different
functionalities and assets. The appropriate Submodels and
AASs have to be identified from the extensive Industry 4.0
scope for each use case separately.

For example, the integration of an Automated Guided
Vehicle (AGV) into the production process requires driving
capabilities and location information from the vehicle itself.
Additionally, planning data should be exposed for the AGV
to read its next task. Use case analysis would identify Sub-
models for capabilities (driving), location, and planning. The
machines, AGVs, processes, and parts would be identified as
assets requiring an AAS.

Predictive maintenance is another potential AAS application
scenario. The Submodels identified for the previous example
would be irrelevant in this case. Instead, data concerning the
lifecycle and condition monitoring would be compared with
engineering and configuration data. The methodology would
therefore identify the Lifecycle Status, Condition Monitoring,
Engineering, and Configuration Submodels from figure 2 to
be required.

We take a high-level perspective and describe the method-
ology functionally: It takes as input a use case description
together with a goal the AAS deployment is intended to obtain.
The methodology produces three results:

1) A technology-independent conceptual model describing
the domain

2) The design of the necessary Submodels
3) A preliminary deployment to validate the Submodels

These three results are produced by the three distinct phases
(figure 4) of which the methodology consists, respectively.
The knowledge representation phase collects a vocabulary of
relevant terms and relates the selected concepts with each other
into a conceptual model. In the Industry 4.0-compliance phase
the conceptual model elements are mapped to AAS compo-
nents. The third phase concerns evaluation of the Submodels
through a validation and a verification step. The former checks
whether the Submodels fit the use case; the latter whether the
Submodels correctly support the functional requirements.

The methodology contains two evaluation steps: 1) the con-
ceptual model is validated in the final step of the knowledge
engineering phase, and 2) the Industry 4.0 components are
reviewed in the evaluation phase. If either of those evaluation
steps produces a negative result, we start another iteration of
the methodology starting at either the knowledge represen-
tation phase or Industry 4.0-compliancy phase depending on
the severity of the issues. Alternatively, we can adopt an Agile
way of working by selecting only a subset of requirements for
each iteration. A positive evaluation can then lead to another
iteration including additional requirements.

A. Knowledge engineering phase

The Knowledge Engineering phase consists of three steps:
requirements analysis, development of the conceptual model,
and an evaluation step. The requirements analysis is explic-
itly part of the knowledge engineering phase because the
methodology does not assume the existence of an established
standard. A conceptual model can therefore only be derived
after defining the requirements.



Fig. 4: Overview of the methodology

1) Requirement analysis: This step should produce a set
of functional requirements in natural language from a use
case description. Various conceptual model formalizations,
such as UML models, Entity-Relationship (ER) diagrams, and
ontologies, offer differing ways to describe the functional
requirements. The standard practice for describing functional
requirements in ontologies is a list of competency ques-
tions [28], [29]. These natural language questions describe
the queries that the model needs to answer in the use case.
Requirements for UML models and ER diagrams usually are
given as a list of statements the model should conform to [30].

2) Conceptual model: The requirements elicited from the
use case are then used to develop a conceptual model. The
choice of formalization may depend on the use case circum-
stances. ER diagrams may ease communication with database
engineers who are already familiar with that paradigm. Also,
the distinction between entities and relations provides sug-
gestions in the Industry 4.0-compliance phase, as will be
detailed in the section IV-B. UML models may provide easier
communication with software engineers. They also force the
specification of datatypes, which is required for Submodels.
The Web Ontology Language (OWL) is the W3C standard
for ontology formalization. It has the use of IRIs as globally
unique identifiers in common with the AAS. Another advan-
tage is that ontologies support a modular design similar to the
AAS [10].

3) Intermediate review: The knowledge engineering phase
produces a conceptual model as its result. This model should
be reviewed by a domain expert through a visualization
method that is available for the three modelling paradigms we
consider. The conceptual model can also be used to compare
the use case with other use cases.

B. Industry 4.0-compliancy phase

In the second step the technology-independent conceptual
model is adapted to Industry 4.0 components. These introduce
additional non-functional constraints on the model. The result

of this phase is a design for a set of Submodels based on the
conceptual model.

The Submodels identified during this phase may already
have been implemented. It is recommended to reuse existing
standards and Submodels to benefit from previous efforts and
to maximize interoperability. A custom set of Submodels has
to be implemented following the identified design, when no
suitable Submodels can be found. The approach in [5] can
be followed in the case of a relevant established standard,
except if the use case requires a holistic view with multiple
Submodels and Assets.

1) Separation by functionality: In the Basics of the AAS
section we described that Submodels are separated by func-
tionality to improve reusability of a single Submodel among
several AASs. The Industry 4.0 technology follows the SOLID
software engineering principles [31] in this regard:

1) A single Submodel contains the data concerning a
single functionality, following the single-responsibility
principle.

2) Multiple Submodels exposing small subsets of the data
is preferred over a single Submodel exposing all the
data. This follows the interface segregation principle.

3) The AAS also follows the dependency inversion princi-
ple, which states that abstractions instead of concretions
should be used, by distinguishing between Submodel
templates and instances.

Therefore, if a concept contains multiple attributes unrelated
to each other, it most likely contains multiple functionalities
each requiring a dedicated Submodel.

It is important to consider that the Submodels produced
via this methodology are intended to be reused in future use
cases. This makes sure that the AAS can continuously rely on
previous efforts to benefit further standardization. For example,
energy information may be identified via our methodology
as a necessary Submodel that has not been designed and
implemented yet. If the Submodel is then implemented, it may
be disseminated such that it becomes a standard that is used
in future use cases involving energy consumption information.



Formalizing the conceptual model as a UML class diagram
benefits this step, because the UML metamodel formalizes
various relationships between objects. For instance, an aggre-
gation or composition suggests the placement of all Submodels
in a single AAS because of the ‘part-whole’ relationship that
is modelled.

2) Submodel elements: The conceptual model relations
then have to be mapped to AAS SubmodelElements. We
identify two types of relations independent of conceptual
model formalization:

1) Attributes contain a literal value or another value that is
not part of the model itself, such as a document. These
attributes form an endpoint of the modelling effort.

2) Relationships connect a model concept to another model
concept.

The AAS provides several options to represent model at-
tributes, as the AAS is geared towards implementation instead
of representation. We list the most commonly used elements:

1) The Property, which can optionally be a multilan-
guage property, simply contains a value with a specified
datatype. A built-in type of the XML Schema Definition
1.1 is required6.

2) A SubmodelElementCollection is a container for a
collection of SubmodelElements including itself.

3) A Submodel can refer to data via the File or the Blob
SubmodelElement, containing an (online) file or binary
data, respectively.

The AAS provides a ReferenceElement and a Relation-
shipElement to model relationships between model concepts.
The former specifies a reference, while the latter specifies a
relationship between a subject and an object. The semantics
of the element define the type of relationship. These elements
are used to relate AASs to each as specified in section IV-B3.

3) Asset and AAS alignment: In this phase we decide for
each model concept whether it is a factory asset that merits its
own AAS or whether it is a collection of attributes pertaining
to an existing asset. In the former case a dedicated AAS is
created for each instance of that concept. In the latter case
only a Submodel is created and implemented on the AAS
of another model concept. Two examples can illustrate the
difference.

Consider a CNC machine containing an internal material
buffer. The Submodel containing buffer information may be
implemented on the AAS already dedicated to the CNC
machine (figure 5a). The other option (figure 5b) is to create a
separate AAS for both the machine and the buffer. These can
be connected as specified in [32] using ReferenceElements.

Alternatively, consider a Submodel containing data concern-
ing a sales order. When a customer places an order, the sales
department requests a work order to fulfill the demand. The
Submodel therefore relates a customer AAS and a work order
AAS to each other, while additionally adding sales information
such as price and deadlines. Figure 6 shows that we can
implement the sales order Submodel on either AAS.

6https://www.w3.org/TR/xmlschema11-1/

(a) Implementing two Submodels on the same asset

(b) Separate AASs for each Submodel

Fig. 5: Options for to model a machine buffer Submodel

(a) Implemented on the work order AAS

(b) Implemented on the customer AAS

Fig. 6: Options to model a sales order Submodel

Formalizing the conceptual model as an ER diagram gives
a benefit in this step, since the distinction between entity and
relationships provides a rule-of-thumb: Entities can generally
be regarded as assets with their attributes contained in one or
more Submodels. We identify three different ways of aligning
the basic ER diagram structure (figure 7) with the Industry 4.0
paradigm.

1) In figure 8a a dedicated AAS is created for the re-
lationship, so the concept modelled as an individual
AAS is regarded as providing value on its own. If the
relationship only provides value in the context of another
concept, it should be modelled on another asset as in the

https://www.w3.org/TR/xmlschema11-1/


Fig. 7: Generic view of two entities and a relationship

(a) Dedicated AAS for the relationship

(b) Relationship Submodel on either AAS

(c) Relationship Submodel on stable AAS

Fig. 8: Entity and relationship modelling options

following two options.
2) In Figure 8b we consider the relationship to be part

of another asset. Implementing the Submodel on either
AAS is considered equally viable, if the connection to
both AASs is stable and constant.

3) In the third option the relationship also is only relevant in
connection with another AAS. If the connection to either
one of the AASs is flexible and may often change during
deployment, the Submodel should be implemented on
the stable AAS (figure 8c).

4) Semantics: The final step of the Industry 4.0-compliance
phase is to assign semantics to each Submodel and Submod-
elElement, such that each element has a globally understood
meaning.

A newly developed Submodel should receive an IRI using
the namespace of the developing organization. The semanti-
cIDs of SubmodelElements, however, should be drawn from
external established standards such as an IEC/ISO standard or
eClass to enhance data interoperability. Only when there is no
standard available that covers a specific attribute, a custom IRI
can be created following the format prescribed in [2].

Formalizing the conceptual model as an ontology benefits

this step, because identifying concepts through IRIs is already
required. Ontologies engineering methodologies also strongly
support reuse of existing models and standards.

C. Evaluation phase

We conclude the methodology with evaluating the Submod-
els that were designed and implemented in the previous phase.
The Submodels are verified by checking that each functional
requirement is covered. Validation takes place through deploy-
ment in the intended use case.

The machine or factory data may be available in various
formats. The AAS technology closely follows OPC UA de-
velopment to feed the AAS with machine data. However,
market penetration of OPC UA remains low, despite it being
recognized as an Industry 4.0 standard [33]. Factory data, espe-
cially ERP or MRP data, may also be available in a relational
database system (RDBMS) that needs to be exposed through
an AAS via queries (e.g., SQL). Alternatively, the data may
be available as OWL triples needing SPARQL queries [34]
or another graph protocol. Verification is considered complete
when for each functional requirement it is confirmed that the
information can be exposed through the AAS.

Additionally we need to validate that the Submodels de-
veloped indeed solve the problems stated in the use case.
This step simultaneously validates whether the functional
requirements exhaustively described the use case. Otherwise,
the whole methodology should receive another iteration. A
positive validation would constitute an actual deployment of
the AASs in the manner of a demo or proof of concept. Some
shortcomings may only be identified at this step.

V. EXAMPLE METHODOLOGY APPLICATION

We applied the methodology in a use case for a Dutch high-
mix low-volume manufacturing company. The selling point of
the company is to have in-house capabilities to adapt data
for both manufacturing engineering and production processes.
This means the company can evaluate the customer designs
to adapt it to production capabilities, which leads to a high
percentage of first-production among orders. The combination
of high-mix low-volume and the large percentage of first-
production orders requires a high level of flexibility.

The factory ERP system stores all production planning
related information. Each night a Material Requirements
Planning (MRP) algorithm calculates the optimal production
schedule based on the current requirements such as delivery
deadlines. The computed schedule is on a per day basis (i.e.,
without specific start times) and additionally assigns each work
order a priority. During the day, the work orders are executed
following the priority list. To increase flexibility and operating
efficiency, the company wants to connect the factory floor real-
time with the ERP system. The promise of the AAS providing
a flexible framework for information and functions has led to
this use case.

In this scenario flexibility is the ability to decide on the next
work order when a task is completed. This choice should be
based on work order dependencies and real-time statuses, such



Fig. 9: Work order planning Gantt chart

as the warehouse inventory, and changes in planning priorities.
The high-mix low-volume nature requires a lot of change-
overs. Since change-overs do not directly add value to the
product, it is essential to only start on work orders that can
be successfully finished. Using real-time shopfloor status the
operator knows which tasks can be started. Additionally the
planning department can use the same information to react
immediately when issues arise, e.g. when a defective part is
identified, and mitigate the situation. This combination ensures
that no time is wasted on unnecessary change-overs, which in
turn leads to a higher throughput and more stable lead-time.

A. Knowledge representation phase

We examined the scenario, conducted interviews with the
factory planners, and inspected the ERP data model. We
also inspected the components of the Gantt chart (figure 9)
describing the factory processes. This examination led to the
development of a vocabulary of terms and a set of competency
questions (table I).

The Work order is the collection of all process steps
required to produce a part.

A Process step is a low-level during which an action is
performed by a machine on some part. It corresponds with
the process concept from the PPR model [10], [35].

A Resource is the generalization of the object to perform a
work order. It can be either a machine or a human operator.

The Part instance is a representation of the physical part
that is present in the factory. Three types have been identified:
raw material, sub-assembly, and finished product.

The Customer is the party either demanding or supplying
some product or part.

A Buffer is a generalized storage space within the factory.
Three types of storage have been identified: machine buffer,
non-machine temporary buffer, and warehouse.

We collected the terms into an ER diagram (figure 10)
following the competency questions. We based the Process
step relationship on requirements 1, 6, and 8. Following
requirement 1 a process step is part of a work order. Require-
ment 6 specifies that a process step should have two related
parts: the consumed part and the produced part. Following
requirement 8 the process step is related to the machine it is
performed on. We similarly analyzed the other requirements.

Fig. 10: ER diagram (excluding attribute names for clarity)

The model was evaluated in collaboration with an employee
of the Dutch factory where the use case is situated who works
on a daily basis with their database. The model was also
reviewed by an internal SCSN and modelling expert.

B. Industry 4.0-compliancy phase

In the Methodology section we described the four phases
the Industry 4.0-compliance phase consists of: separating
Submodels by functionality, assigning SubmodelElement types
to the attributes and properties, aligning the assets with the
Submodels, and assigning semantics. Since we developed the
conceptual model as an ER diagram, we use the rule-of-thumb
that each entity can be mapped to an AAS.

We identified one relationship from the model that covers
multiple functionalities: the work order. Requirement 7 states
that the work order should contain its work orders and process
step dependencies. The other work order requirements state
that the model should contain status and planning information.
Therefore we divide the work order functionality in two
separate Submodels:

• Work order Submodel covering requirements two to six,
inclusive. The general work order data regarding planning
and status is contained in this Submodel.

• The Work order dependency tree Submodel covers
requirement 7, containing both the process step as well
as work order dependencies. This Submodel can therefore
be seen as a Manufacturing Bill of Materials.

The second part of the Industry 4.0-compliance phase is to
store each attribute in the appropriate SubmodelElement type.
Each simple attribute was mapped to a Submodel Property.
In some cases we collected several Properties collectively
containing the address information into a SubmodelElement-
Collection.

A deliberate design choice was required on the deploy-
ment of Submodels representing the relationships of the ER-
diagram: process step, sales order, and location.

In the use case analysis we described that optimization hap-
pens at the process step level. Therefore, the process step is
an (immaterial) object of value, which merits a dedicated AAS
following the Industry 4.0 design philosophy (figure 11a).



Req Question Response datatype
Req 1 Which process steps does a work order consist of? Process step reference list
Req 2 What is the status of a work order? Status code
Req 3 What is the work order identification number? Integer
Req 4 What is the starting time of the first process step of a work order? DateTime object
Req 5 What is the end time of the last process step in a work order? DateTime object
Req 6 Which parts are produced and consumed by a process step? (consumed part reference, produced part reference)
Req 7 Which other work orders and process steps is a work order dependent on? Work order reference list
Req 8 On which machine is a process step scheduled? Machine reference
Req 9 What are the planned start and end times of a process step? (DateTime object, DateTime object)

Req 10 Where is a part currently located? Buffer reference
Req 11 When was a part placed at this location? DateTime object
Req 12 What is the maximum and current capacity of a buffer? (Integer, Integer)
Req 13 Which customer ordered for the product or part to be produced? Customer reference

TABLE I: Competency questions

(a) The process step as a separate asset

(b) Sales order Submodel implemented on customer AAS

(c) Location Submodel implemented on part AAS

Fig. 11: Submodel to AAS alignment design choices

A sales order has no value by itself as it gains meaning
through its relation to a production plan and a customer. The
design choice whether to implement the Submodel on the
Customer or the Work order AAS can be decided based on the
use case (figure 8b). If the focus lies on customer analysis, the
Sales order Submodel can be implemented on the Customer
AAS, but when the focus is put on the work order to collect
all information regarding the order, then it is recommended to
model it on the Work order AAS. In our case, we implement
the sales order Submodel on the Customer AAS (figure 11b).

The location of a part only has meaning in relation to the
part and the buffer, so it remains a Submodel on another AAS.
The location of a part in a factory is volatile, so the Submodel

should be implemented on the stable asset (figure 11c).
We reuse identifiers from the established eClass and IEC

CDD vocabularies to give the Submodel semantics. Addi-
tionally we reused the message standard of the Dutch Smart
Connected Supplier Network7 project which has developed
a model for sharing information regarding invoices, orders,
and bills of material. Additionally, it contains references for
concepts such as customer and person. The message standard
is based on the Universal Business Language (UBL) [36]. We
used SCSN identifiers for the properties in the Sales order
and the Customer Submodel. In the case where eClass, IEC
CDD, and SCSN provided overlapping identifiers, for example
on address information, we assigned several semanticIDs to a
single SubmodelElement.

We also identified overlap between the Submodels identified
by the methodology and already established Industry 4.0
models. The Nameplate and Identification Submodels concern
general machine information, so these can be reused for our
application. The part, work order, and resource models mirror
the components of the PPR (Process, Product, and Resource)
model.

C. Evaluation Phase

The methodology identified the following Submodels to be
necessary for the examined use case. These were consequently
modelled via the AASX Package Explorer tool.

The Work order Submodel provides information regarding
status and planning.

The Work order dependency tree combines work order
dependencies and process step dependencies into a single tree
structure.

The Process step contains detailed production information,
such as the time schedule, progress, and both start and end
times. The Submodel additionally contains ReferenceElements
to the machine that performs the operation and the work order
of which the process step is part.

The Sales order Submodel details the agreement that led
to the production of some product, including references to the
involved parties and the production plan.

The Part instance Submodel contains basic information
about a part, such as a CAD drawing and a BOM file.

7https://smart-connected.nl/
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The Customer information Submodel contains general
information regarding a customer, such as contact information
and addresses.

The Location Submodel connects a part to the buffer where
it is currently located.

The Buffer Submodel contains the maximum capacity and
current capacity of the storage facility.

We verify the Submodels by integrating the AASs with the
factory ERP system. We develop a SQL connection extending
the AASX-server that exposes the AAS with live ERP system
data. This requires specifying for each Submodel the query to
be sent to the database. The query result variables are aligned
with the elements of the Submodels. A database change event
triggers an update of the AAS data.

Validating the Submodel requires showing that the AAS
configuration (figure 12) can solve the problems identified
in the factory use case analysis. In the use case analysis we
described several ways of providing real-time insight into the
shopfloor. The data exposed via the AASs can be used for
any of those. We implement a Gantt chart functionality based
directly on Submodel data as an example of an AAS based
tool.

VI. DISCUSSION

The methodology we presented complements the existing
Submodel development procedure [5] (Figure 3) in several
ways. Firstly, the existing procedure is intended for established
standards. The specification of the first phase (“Formulation
of an abstract”) includes intermediate steps on standards to be
used as a source and standardization bodies to be consulted.
Our procedure requires a larger role for best practices from
the domain of knowledge representation and a smaller role
for existing standards.

Secondly, the existing procedural model describes the de-
velopment of a single Submodel, whereas our method con-
siders the use case as a whole, as the problem may not be
reducible to a single submodel. The existing procedure can
be applied in parallel to develop multiple Submodels, but it
does not include a way to identify the set of Submodels to
be developed. The existing procedure can therefore be applied
when an established standard should be used as the basis for
an undeveloped Submodel identified by our methodology.

Another point of discussion that merits further research is
the AAS deployment infrastructure. A multitude of AASs
is created already in our limited example (figure 12) so the
number of AASs may be several times higher in a production
environment. Deploying the AAS as effectively a multi-agent
system will put more demands on the IT environment support-
ing the AASs [37], [38].

VII. CONCLUSION

In this work we have presented a methodology for identify-
ing the set of Administration Shells and Submodels required
for a specific Industry 4.0 application scenario. This fills
the gap in AAS research of a comprehensive methodology
containing both knowledge representation and incorporating

AAS technology. We showed the value of our methodology
by giving an example application on a high-mix low-volume
use case which produced the set of necessary Submodels.

Our additional contribution is the development of Submod-
els. We created several Submodels for the immaterial assets
such as a work order and a process step that are intended for
further reuse.

REFERENCES

[1] “Details of the asset administration shell from idea to implementation,”
Plattform Industrie 4.0, 2019.

[2] “Details of the asset administration shell - part 1,” Plattform Industrie
4.0, ZVEI, 2020, version 3.0.

[3] “Submodel templates of the asset administration shell - Generic frame
for technical data for industrial equipment in manufacturing,” Plattform
Industrie 4.0, ZVEI, 2020, version 1.1.

[4] “Submodel templates of the asset administration shell - ZVEI digital
nameplate for industrial equipment,” Plattform Industrie 4.0, ZVEI,
2020, version 1.1.

[5] “Structure of the asset administration shell,” Plattform Industrie 4.0,
ZVEI, 2016.

[6] “Details of the asset administration shell - part 1,” Plattform Industrie
4.0, ZVEI, 2019, version 2.0.

[7] “Functional view of the asset administration shell in an Industrie 4.0
system environment,” Plattform Industrie 4.0, 2021.

[8] “Relationships between I4.0 components - Composite components and
smart production,” Plattform Industrie 4.0, ZVEI, 2017.

[9] “Verwaltungsschale in der Praxis,” Plattform Industrie 4.0, 2020.
[10] “Describing capabilities of Industrie 4.0 components,” Plattform Indus-

trie 4.0, 2020.
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