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Abstract:In this communication, we accomplish special 
Diophantine triples comprising of square pyramidal numbers 
such that the product of any two members of the set added by 
their sum and increased by a polynomial with integer coefficient 
is a perfect square 
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I. INTRODUCTION 

Number theory is fascinating on the grounds that it has 

such a large number of open problems that seem accessible 
from the outside. Of course, open problems in number 
theory are open for a reason. Numbers, despite being simple, 
have an incredibly rich structure which we only understand 
to a limited degree. In the mid twentieth century, Thue made 
an important breakthrough in the study of Diophantine 
equations. His proof is one of the polynomial methods His 
proof impacted a great deal of later work in number theory, 
including Diophantine equations. Various mathematicians 
considered the problem of the existence of Diophantine 
triples with the property D(n) for any integer n and besides 
for any linear polynomial in n [1-5]. Right now, one may 
suggest for an extensive survey of different issues on 
Diophantine triples[6-7]. In [8-9], square pyramidal 
numbers were evaluated using Z-transform and division 
algorithm. In [10-12], Diophantine triples were discussed. In 
this paper, we exhibit special Diophantine triples (a, b, c) 
involving square pyramidal number such that the product of 
any two elements of the set added by their sum and 
increased by a polynomial with integerco-efficient is a 
perfect square.  

II. NOTATION 

𝑝𝑛
4 : square pyramidal number of rank n. 

III. BASIC DEFINITION 

A set of three different polynomials with integer coefficients 
(𝑎1, 𝑎2, 𝑎3) is said to be a special Diophantine triple with 
property D(n) if 𝑎𝑖 ∗ 𝑎𝑗+ (𝑎𝑖 + 𝑎𝑗) + 𝑛 is a perfect square 
for all 1≤ 𝑖 < 𝑗 ≤ 3,where 𝑛 may be non-zero integer or 
polynomial with integer coefficients. 
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IV. METHOD OF ANALYSIS 

A. Construction of the special dio-3 triples involving 
square pyramidal number of rank𝒏 and 𝒏 − 𝟏 

Let 𝑎 = 6𝑝𝑛
4  and 𝑏 = 6𝑝𝑛−1

4  be square pyramidal 
numbers of rank 𝑛 and 𝑛 − 1 respectively. 
Now,𝑎 = 6𝑝𝑛

4    and   𝑏 = 6𝑝𝑛−1
4  

𝑎𝑏 + (𝑎 + 𝑏) + 𝑛4 − 4𝑛 + 1
= 4𝑛6 − 4𝑛4 + 4𝑛3 + 𝑛2 − 2𝑛 + 1 

                                          = (2𝑛3 − 𝑛+1)2 = 𝛼2                      
(1) 
Equation (1) is a perfect square. 
𝑎𝑏 + (𝑎 + 𝑏) + 𝑛4 − 4𝑛 + 1 = 𝛼2 where  𝛼 = 2𝑛3 − 𝑛 +
1 
Let c be non zero-integer such that, 
𝑎𝑐 + (𝑎 + 𝑐) + 𝑛4 − 4𝑛 + 1 = 𝛽2                                          
(2) 
𝑏𝑐 + (𝑏 + 𝑐) + 𝑛4 − 4𝑛 + 1 = 𝛾2                                          
(3) 
Solving (2) & (3)⇒ 𝑐(𝑏 − 𝑎) + (𝑏 − 𝑎) = 𝑏𝛽2 − 𝑎𝛾2   (4) 
(3) -(2) ⇒ 𝛾2 − 𝛽2 = 𝑐(𝑏 − 𝑎) + 𝑏 − 𝑎 
Therefore (4) becomes, 

𝛾2 − 𝛽2 = 𝑏𝛽2 − 𝑎𝛾2 
(𝑏 + 1)𝛽2 − (𝑎 + 1)𝛾2 

Setting 𝛽 = 𝑥 + (𝑎 + 1)𝑦 and  𝛾 = 𝑥 + (𝑏 + 1)𝑦, 
     ⇒ (𝑏 + 1)(𝑥 + (𝑎 + 1)𝑦)2 − (𝑎 + 1)(𝑥 + (𝑏 + 1)𝑦)2    
(5) 
Now put 𝑦 = 1, 

𝑥2 = (2𝑛3 − 𝑛 + 1)2 
⇒ 𝑥 = (2𝑛3 − 𝑛 + 1) 

The initial solution of (5) is given by, 
𝑥0 = (2𝑛3 − 𝑛 + 1),𝑦0 = 1 
Since, 𝛽 = 𝑥 + (𝑎 + 1)𝑦 and  𝛾 = 𝑥 + (𝑏 + 1)𝑦, we obtain 
that, 
𝛽 = 4𝑛3 + 3𝑛2+2 
 Therefore, the equation (2) becomes, 
(2) ⇒ 𝑎𝑐 + (𝑎 + 𝑐) + 𝑛4 − 4𝑛 + 1 = 𝛽2 

⇒ 𝑐(𝑎 + 1) + 𝑎 + 𝑛4 − 4𝑛 + 1 = 𝛽2 
 ⇒ 𝑐(2𝑛3 + 3𝑛2 + 𝑛 + 1) + (2𝑛3 + 3𝑛2 + 𝑛) + 𝑛4 − 4𝑛

+ 1 
= 𝛽2 

 ⇒ 𝑐(2𝑛3 + 3𝑛2 + 𝑛 + 1) + (2𝑛3 + 3𝑛2 + 𝑛) + 𝑛4 − 4𝑛
+ 1 

= (4𝑛3 + 3𝑛2+2)2 
⇒ 𝑐 = 8𝑛3 + 3 

⇒ 𝑐 = (2(𝑎 + 𝑏 − 4𝑛 + 3)) 
Therefore, the triples 
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{𝑎, 𝑏, (2(𝑎 + 𝑏 − 4𝑛 + 3))} 
 = {6𝑝𝑛

4 , 6𝑝𝑛−1
4 , (2(6𝑝𝑛

4 + 6𝑝𝑛−1
4 − 4𝑛 + 3))}   is 

a  
Diophantine triples with the property 𝐷(𝑛4 − 4𝑛 + 1). 
Some numerical examples are given below in the following 
table. 

Table 1 
𝑛 Diophantine Triples 𝐷(𝑛4 − 4𝑛 + 1) 

1 (6,0, 11) -2 

2 (30,6,67) 9 

3 (84,30,219) 70 

B.    Construction of the special dio-3 triples involving 
square pyramidal number of rank𝒏 and 𝒏 − 𝟐 

 Let 𝑎 = 6𝑝𝑛
4  and 𝑏 = 6𝑝𝑛−2

4  be square pyramidal 
numbers of rank 𝑛 and 𝑛 − 2respectively. 
Now,  𝑎 = 6𝑝𝑛

4    and   𝑏 = 6𝑝𝑛−2
4  

𝑎𝑏 + (𝑎 + 𝑏) − 2𝑛3 + 3𝑛2 − 16𝑛 + 10 
= 4𝑛6 − 12𝑛5 + 𝑛4 + 20𝑛3 − 8𝑛2 − 8𝑛
+ 4 

                     = (2𝑛3 − 3𝑛2 − 2𝑛+2)2 = 𝛼2(6) 
Equation (6) is a perfect square. 
𝑎𝑏 + (𝑎 + 𝑏) − 2𝑛3 + 3𝑛2 − 16𝑛 + 10 = 𝛼2, 
 where  𝛼 = 2𝑛3 − 3𝑛2 − 2𝑛 + 2 
Let c be non zero-integer such that, 
𝑎𝑐 + (𝑎 + 𝑐) − 2𝑛3 + 3𝑛2 − 16𝑛 + 10 = 𝛽2                          
(7) 
𝑏𝑐 + (𝑏 + 𝑐) − 2𝑛3 + 3𝑛2 − 16𝑛 + 10 = 𝛾2 (8)                                              
Solving (7) & (8)⇒ 𝑐(𝑏 − 𝑎) + (𝑏 − 𝑎) = 𝑏𝛽2 − 𝑎𝛾2(9) 
(8) -(7) ⇒ 𝛾2 − 𝛽2 = 𝑐(𝑏 − 𝑎) + 𝑏 − 𝑎 
Therefore (9) becomes, 

𝛾2 − 𝛽2 = 𝑏𝛽2 − 𝑎𝛾2 
(𝑏 + 1)𝛽2 − (𝑎 + 1)𝛾2 

Setting 𝛽 = 𝑥 + (𝑎 + 1)𝑦 and  𝛾 = 𝑥 + (𝑏 + 1)𝑦 
    ⇒ (𝑏 + 1)(𝑥 + (𝑎 + 1)𝑦)2 − (𝑎 + 1)(𝑥 + (𝑏 +
1)𝑦)2(10) 
Now put 𝑦 = 1, 

𝑥2 = (2𝑛3 − 3𝑛2 − 2𝑛+2)2 
⇒ 𝑥 = (2𝑛3 − 3𝑛2 − 2𝑛 + 2) 

The initial solution of (10) is given by, 
𝑥0 = (2𝑛3 − 3𝑛2 − 2𝑛 + 2)  ,𝑦0 = 1 
Since, 𝛽 = 𝑥 + (𝑎 + 1)𝑦 and  𝛾 = 𝑥 + (𝑏 + 1)𝑦, we obtain 
that, 

𝛽 = 4𝑛3 − 𝑛 + 3 
Therefore, the equation (7) becomes, 
(7) ⇒ 𝑎𝑐 + (𝑎 + 𝑐) − 2𝑛3 + 3𝑛2 − 16𝑛 + 10 = 𝛽2 

⇒ 𝑐(𝑎 + 1) + 𝑎 − 2𝑛3 + 3𝑛2 − 16𝑛 + 10 = 𝛽2 
⇒ 𝑐(2𝑛3 + 3𝑛2 + 𝑛 + 1) + (2𝑛3 + 3𝑛2 + 𝑛) − 2𝑛3 + 3𝑛2

−  16𝑛 + 10 = 𝛽2 
⇒ 𝑐(2𝑛3 + 3𝑛2 + 𝑛 + 1) + (2𝑛3 + 3𝑛2 + 𝑛) − 2𝑛3 + 3𝑛2

− 16𝑛 + 10 = (4𝑛3 − 𝑛 + 3)2 
⇒ 𝑐 = 8𝑛3 − 12𝑛2 + 10𝑛 − 1 
⇒ 𝑐 = (2(𝑎 + 𝑏) − 18𝑛 + 11) 

Therefore, the triples 
{𝑎, 𝑏, (2(𝑎 + 𝑏)) − 18𝑛 + 11))} 
= {6𝑝𝑛

4 ,6𝑝𝑛−2
4 , (2(6𝑝𝑛

4 + 6𝑝𝑛−2
4 ) − 18𝑛 + 11)}   is  

a Diophantine triples with the 𝐷(−2𝑛3 + 3𝑛2 − 16𝑛 + 10). 
Some numerical examples are given below in the following 
table. 

 

Table 2 

C.  Construction of the special dio-3 triples involving 
square pyramidal number of rank𝒏 and 𝒏 − 𝟑 

Let 𝑎 = 6𝑝𝑛
4  and 𝑏 = 6𝑝𝑛−3

4  be square pyramidal 
numbers of rank 𝑛 and    𝑛 − 3 respectively. 
Now,𝑎 = 6𝑝𝑛

4    and   𝑏 = 6𝑝𝑛−3
4  

𝑎𝑏 + (𝑎 + 𝑏) + 𝑛4 − 18𝑛2 − 22𝑛 + 7 
= 4𝑛6 − 24𝑛5 + 32𝑛4 + 40𝑛3 − 83𝑛2 − 14 + 49 
                   = (2𝑛3 − 6𝑛2 − 𝑛+7)2 = 𝛼2(11) 
Equation (11) is a perfect square. 
𝑎𝑏 + (𝑎 + 𝑏) + 𝑛4 − 18𝑛2 − 22𝑛 + 79 = 𝛼2, 
 where  𝛼 = 2𝑛3 − 6𝑛3 − 𝑛 + 7 
Let c be non zero-integer such that, 
𝑎𝑐 + (𝑎 + 𝑐) + 𝑛4 − 18𝑛2 − 22𝑛 + 79   = 𝛽2                   
(12) 
𝑏𝑐 + (𝑏 + 𝑐) + 𝑛4 − 18𝑛2 − 22𝑛 + 79   = 𝛾2                   
(13)                                              
Solving (12) & (13)⇒ 𝑐(𝑏 − 𝑎) + (𝑏 − 𝑎) = 𝑏𝛽2 −
𝑎𝛾2(14) 
(13) -(12) ⇒ 𝛾2 − 𝛽2 = 𝑐(𝑏 − 𝑎) + 𝑏 − 𝑎 
Therefore (14) becomes, 

𝛾2 − 𝛽2 = 𝑏𝛽2 − 𝑎𝛾2 
(𝑏 + 1)𝛽2 − (𝑎 + 1)𝛾2 

Setting 𝛽 = 𝑥 + (𝑎 + 1)𝑦 and  𝛾 = 𝑥 + (𝑏 + 1)𝑦, 
⇒ (𝑏 + 1)(𝑥 + (𝑎 + 1)𝑦)2 − (𝑎 + 1)(𝑥 + (𝑏 + 1)𝑦)2(15) 
Now put 𝑦 = 1, 

𝑥2 = (2𝑛3 − 6𝑛2 − 𝑛+7)2 
⇒ 𝑥 = (2𝑛3 − 6𝑛2 − 𝑛 + 7) 

The initial solution of (15) is given by, 
𝑥0 = (2𝑛3 − 6𝑛2 − 𝑛 + 7)  ,𝑦0 = 1 
Since, 𝛽 = 𝑥 + (𝑎 + 1)𝑦 and  𝛾 = 𝑥 + (𝑏 + 1)𝑦, we obtain 
that, 

𝛽 = 4𝑛3 − 3𝑛2 + 8 
 Therefore, the equation (12) becomes, 
(12) ⇒ 𝑎𝑐 + (𝑎 + 𝑐) + 𝑛4 − 18𝑛2 − 22𝑛 + 79  = 𝛽2 

⇒ 𝑐(𝑎 + 1) + 𝑎 + 𝑛4 − 18𝑛2 − 22𝑛 + 79 = 𝛽2 
⇒ 𝑐(2𝑛3 + 3𝑛2 + 𝑛 + 1) + (2𝑛3 + 3𝑛2 + 𝑛) + 𝑛4

− 18𝑛2  − 22𝑛 + 79 = 𝛽2 
⇒ 𝑐(2𝑛3 + 3𝑛2 + 𝑛 + 1) + (2𝑛3 + 3𝑛2 + 𝑛) + 𝑛4 − 18𝑛2

− 22𝑛 + 7 = (4𝑛3 − 3𝑛2 + 8)2 
⇒ 𝑐 = 8𝑛3 − 24𝑛2 + 36𝑛 − 15 
⇒ 𝑐 = (2(𝑎 + 𝑏) − 40𝑛 + 45) 

Therefore, the triples 
{6𝑝𝑛

4 , 6𝑝𝑛−3
4 , (2(6𝑝𝑛

4 + 6𝑝𝑛−3
4 ) − 40𝑛 + 45)}   is a 

Diophantine triples with the property 𝐷(𝑛4 − 18𝑛2 −
22𝑛 + 79). 
Some numerical examples are given below in the following 
table. 

 
 

 
 
 

𝑛 Diophantine Triples 𝐷(−2𝑛3 + 3𝑛2 − 16𝑛

+ 10) 

1 (6,0, 5) -5 

2 (30,0,35) -26 

3 (84,6,137) -65 
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Table 3 

 

V. CONCLUSION 

We have presented the special Diophantine triples 
involving square pyramidal numbers. To conclude one may 
look for triples or quadruples for different numbers with 
their relating properties.   
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