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Abstract: Semiconductor manufacturing is consid-ered to be 
one of the most technologically complicated manufacturing 
processes. Bearing, being a critical part of the rotating 
machinery used in the process, plays an essential role as it 
supports the mechanical rotating body and decreases the friction 
coefficient. However, extensive use makes this element a target of 
health degradation, which indirectly causes machine failure. A 
defective bearing causes approximately 50% of failures in 
electrical machines. Hence, there arises a dire need for effective 
fault detection and diagnosis methods to recog-nise fault patterns 
and help take preventive measures. This paper carries out a 
comprehensive comparative study of the pre-existing machine 
learning and deep learning techniques used for diagnosing 
bearing faults and further devises a novel framework for bearing 
fault diagnosis based on the results. Unlike the conventional 
Fault Detection Classifiers (FDC) that operate in the original 
data space, this algorithm explores the scope for feature 
extraction and transferability empowered by the deep learning 
models used. 

Keywords: semiconductor manufacturing, defective bearing, 
machine learning, deep learning. 

I.  INTRODUCTION 

Semiconductors, labelled under the category of 
microelectronics, are employed at the crux of a majority of 
electronic systems and shall continue to do so in the 
upcoming technologies in both-the consumer as well as 
industrial markets. Their wide application is owed to their 
inexpensiveness, dependability, compactness and efficiency. 
The processing of semiconductor wafers, as a part of 
semiconductor manufacturing, undergoes several stages, 
namely- cleaning, film deposition, resist coating, exposure, 
development, etching, impurity insertion, activation, 
assembly and packaging. All the steps of this process have 
different sensors associated with them, which compute 
parame-ters fulfilling various purposes. Alongside 
these,several other parameters are generated from the 
workstation as well as the equipment throughout the 
manufacturing procedure. This vast base of attribute 
sources, when combined with the pre-existent complexity of 
the manufacturing process, gives birth to a colossal amount 
of data which can prove substantially beneficial in digitising 
and facilitating the process.  
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 The machinery used in the manufacturing of 
semiconductors may have to work under adverse conditions 
like high ambient temperature, high moisture, and overload, 
which slowly turn into motor malfunctions that lead to high 
maintenance costs, substantial financial losses, and safety 
haz-ards. These malfunctions can be caused due to faults of 
various categories, one of them being bearing faults.Many 
real-life observations show that the continuous wearing 
down is due to the relative motion between surfaces which 
causes damage. Studies have concluded that bearing is the 
root cause of the problem. It is imperative to combat this 
issue for the welfare of the machinery as well as the labour. 
These issues justify the need for effective fault detection and 
diagnosis methods to obtain the healthy conditions of 
bearings and recognise the fault patterns. Hence, the 
proposed algorithm provides a solution for fault detection of 
bearings at an early stage, which will further eradicate the 
manual intensive job of finding de-fects in bearings and help 
maintain the health of machinery. 

In traditional methods for bearing fault detec-tion, it is 
common to have a multivariate data set. The measured 
signals contain both useful and irrelevant information. The 
SECOM dataset contains 1467 total instances and 590 
anonymised features. The output of the process is a simple 
pass/fail response. On a quick glance, it can be noticed that 
the dataset is riddled with missing data, and only a few 
columns contain most of the missing data. 

The conventional approaches for bearing fault detection 
diagnosis using vibrational signals in-clude three steps: data 
preprocessing, feature ex-traction, and pattern classification. 
The challenge for the success of these models lies in the 
choos-ing of features. Features like the time domain or the 
frequency domain have limitations that pose problems in 
detecting the faulty component. The machine learning 
models can only describe the signal features of some well-
defined fault types, while practically, the naturally occurring 
faults are much more complex. Therefore, patterns or unique 
features may exist in the data, potentially reveal-ing a 
bearing fault. In recent years, deep learn-ing algorithms 
have gained traction to meet this demand due to their several 
advantages, mainly as they could discover intricate 
structures in big data. When put in comparison with the 
traditional machine learning algorithms, deep learning has 
made immense progress be it in image recognition or speech 
recognition, and especially in bearing fault detection. 

This paper puts forward a systematic review of the 
several machine learning and deep learning techniques 
deployed for fault detection and clas-sification in the 
existing literature and hence high-lights the most ideally 
suited algorithms optimised for bearing fault detection. 
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The challenges faced in datasets related to such projects 
are that the number of features in these datasets is enormous 
as the sensors are under surveillance constantly. However, 
not all features are equally valuable in a specific monitoring 
sys-tem. This study proposes an optimised model ob-tained 
by performing oversampling and undersam-pling of data, 
hyperparameter tuning, feature im-portance and 
dimensionality reduction producing accurate and well-
rounded results. Further, upon building a deep neural 
network, the machine learn-ing and deep learning 
algorithms are compared to arrive at the combination of 
steps that best fits the given problem statement.  

II.   RELATED WORK 

The research work by Moldovan et al. [5] pro-vides a 
fault classification model for the SECOM dataset via a 
pipeline of data preprocessing stages, feature selection, data 
classification and sampling techniques. This paper makes 
use of two novel algorithms, namely the MARS and the 
Boruta al-gorithms, for the process of feature selection. 
How-ever, it fails to make use of any cross-validation 
techniques before applying the feature selection, and 
instead, cross-validation is carried out post feature selection. 
This might result in a biased estimate of the variance. The 
same oversight of applying the cross-validation afterwards 
has been observed in [7, 9]. 

In the study carried out by Munirathinam et al.[6], 
machine learning based methods are adopted in order to 
build a fault detection model with the utilisation of 
techniques such as feature selection, chi-square statistical 
analysis, oversam-pling and Principal Component analysis. 
While resampling the data from the minority class, to carry 
out oversampling of data, the model gets prone to data 
overfitting. There is also a possibility of attaining lower 
prediction accuracies due to the presence of rare cases. 
Obstacles like these have been handled in the study by 
discussing and making use of techniques like subject matter 
expert knowledge, variable component analysis, correlation 
analysis and deep belief networks. Zhang et al. [2] proposed 
a fault diagnosis based on the deep transfer learning method, 
which examined and learned the features from a huge data 
source. The model used this data to adjust the parameters of 
neural networks. Some of these parameters were transferred 
from the source task to the target task, hence assisting the 
model training on a small target data amount. 

The study by Jelinek et al. [16] deals with the issue of 
incomplete data. Classifiers such as Na¨ıve Bayes, Nearest 

Neighbor and Decision Tree are used to derive the data 
completion procedure, and the missing values are replaced 
by applying statistical approaches so as to eradicate any 
issues in classification. 

III. METHODOLOGY 

Overall, the selected dataset exhibits three com-
plications, i.e., the absence of values from certain records, 
the presence of a multitude of features-giving rise to 
irrelevant features, and a data class imbalance due to the 
disproportionate ratio of the passed cases to the failed cases. 

 
FIG 1: Flow of the proposed algorithm. 

A. Data Preprocessing 
Initially, the data is put through the data prepro-cessing 

phase, where data filtering, unfolding and scaling is carried 
out using the sklearn preprocess-ing modules. The raw 
dataset is taken, and data cleaning is performed by dropping 
the columns with constant values or a high count of missing 
entries and handling the columns with a lower count of 
missing entries. The data is then visu-alised to have a better 
understanding of it. Next, the dependent and independent 
data is separated, further splitting it into training and testing 
datasets. As the dataset has multiple features spanning vary-
ing magnitude and ranges, feature scaling, i.e., 
standardisation of the data, is performed as the last step in 
the preprocessing of data. Other specific processes may 
require specific filtering techniques. 
B. Modelling 
Following the preprocessing phase, modelling of the data is 
done by training several machine learning models, 
including- Random Forest, Sup-port Vector Machine, K-
Nearest Neighbors and XGBoost- to test how different 
models perform in the given problem. Along with the 
accuracy performance of each model, the anomaly detection 
rate is computed to, later on, compare and visualise it with 
the accuracies obtained on implementing the different 
models. 
C. Sampling 
Once the first two steps are over, undersampling and 
oversampling of the dataset is done, with the help of the 
imblearn toolbox, and it then undergoes the same modelling 
processes as in the previous step. The need to sample the 
data occurs as there was a significant class imbalance in the 
dataset-there are only 104 fail cases, whereas a much larger 
number of examples pass the test, which makes a 1:14 
proportion of the failed cases to the passed cases. 

1) Undersampling: The proportion of the ma-jority class 
(here, fail cases) gets cut down when an imbalanced dataset 
is undersampled to reach the amount which equates with the 
proportion of the minority class (pass cases). This helps in 
balancing the skew ratio and additionally accelerates the 
sensitivity (or the true positive rate) of the class in the 
minority. 
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2) Oversampling: The technique used for over-sampling 
the data is Synthetic Minority Over-sampling Technique 
(SMOTE). While in the typ-ical oversampling, the records 
from the minor-ity class are resampled in accordance with 
the majority class proportion, SMOTE instead uses the KNN 
algorithm to formulate synthetic data and iterates the 
process until the proportions of the minority and the 
majority classes come to an equilibrium. This helps in the 
broadening of the decision boundaries around the minority 
points, hence producing better results. 

Hyperparameter tuning is also done for some models, 
post oversampling, to determine the right combination of 
parameters to maximise their per-formance. 
D. K-Fold 

Cross-validation helps evaluate the efficiency of machine 
learning models. K-folds cross-validation is one such 
technique that aids in attaining a less biased model by 
ensuring rotation of each entry between training and testing 
datasets. Hence, it helps in avoiding overfitting of data and 
reaching fair results. The SECOM dataset is divided into 
five folds, with one fold chosen as the testing dataset and the 
remaining four folds act as the training data. This process of 
rotationally choosing the testing data is iterated until all five 
folds have been considered as the testing data. Thus finally 
leading to each dataset observation to be viewed and used 
for testing. 
E. Feature Selection using Dimensionality Reduc-tion 

The SECOM dataset consists of 590 features, and not all 
of these features contribute equally towards the detection of 
the bearing fault and are hence less relevant. Therefore, to 
stream-line the process, the feature importance scores of the 
dataset attributes are calculated, and the features that best 
represent the outcome are chosen. Post that, dimensionality 
reduction using Principal Component Analysis (PCA) is 
performed to dis-card the attributes which are of less 
relevance to the results. This would, in turn, help attain a 
higher accuracy with a lower number of inputs. 
F. Isolation Forest Technique 

Anomaly detection in massive datasets is a diffi-cult task. 
This algorithm is extremely beneficial in removing outliers. 
The technique relies on the fact that anomalies are few in 
number and quite dif-ferent from the other data points. 
Therefore, these data points are an easy target for the 
algorithm. The use of the efficacious use of the isolation 
method makes it a high-performance model. Furthermore, 
this technique uses an algorithm with a low linear time 
complexity and a reasonable memory spec-ification. It 
introduces the utilisation of trees by using subsamples of 
fixed size. Fundamentally, the  
models perform better when the dataset has no alarming 
outlier. 
G. Local Outlier Technique 
    The LOF algorithm is an unsupervised method to detect 
outliers. It configures the local density divergent of a given 
data cell and compares it to its neighbours. This algorithm 
considers the neigh-bours having a slightly lower density as 
outliers. This is followed by a production of an anomaly 
score which represents the data cells considered as outliers. 
H. One-Class SVM Technique 
    This method is an extension of the SVM tech-nique. It is 
often used in an unsupervised setting for the classification of 

outliers. This technique is also often called “novelty 

detection”. The SVM model is trained on only one class 

which is more commonly called a “normal class”. Then, it 

takes the property of the normal class and differentiates it 
from the rest of the classes and classifies differ-ent 
behaviours as anomalies. 
I. Deep Neural Network 
     Finally, a Deep Neural Network (DNN) is built to detect 
the bearing faults by experimenting with the features. The 
DNN works on a trial and error basis wherein it assigns 
particular weights to the features to return binary outputs, 
and if it does not come out to be accurate, the weights are 
adjusted. It continues to iterate until it reaches the correct 
equation. The DNN here is fed with original data, 
undersampled data and oversampled data and the validation 
scores are recorded. 

IV. RESULTS & DISCUSSIONS 

The SECOM dataset had a skew ratio of 14:1. Thus, just 
training the dataset with machine learn-ing models was not 
enough. Initially, the dataset was trained with K Nearest 
Neighbour Classifier, XGBoost, Random Forest, Support 
Vector Classi-fier. 

FIG 2: Confusion matrices of (a) Support Vector 
Classifier (b) XGBoost Classifier (c) Random Forest 
Classifier and (d) KNN Classifier. 

In these confusion matrices (FIG 2), the mod-els were able 
to detect only 0/1 out of the 13 faults present in the dataset. 
Upon graphing the precision-recall curve, the PR curve 
comes out to be 0.4 for all the models. 

 
 

FIG 3: Precision-Recall curves for (a) Support Vector 
Classifier (b) XGBoost Classifier (c) Random Forest 

Classifier and (d) KNN Classifier. 
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While the models showed an impressive test accuracy score, 
the precision-recall rate was suspi-ciously low.  
The undersampling and SMOTE tech-niques proved 
extremely fruitful as the precision-recall rate, which was 
previously 0.4 for all the models, shot up to 67, 68, 57, 70 
per cent in Random Forest, SVC, KNN and XGB models, 
respectively.  

 
FIG 4: Confusion matrices and Precision-Recall curves 

of (a) Random Forest Classifier (b) Support Vector 
Classifier (c) KNN Classifier and (d) XGBoost Classifier 

after Undersampling. 

 
FIG 5: AUPRC Score of the XGBoost Model. 

 
FIG 6: Comparison of Precision-Recall rate before and 

after undersampling for (a) Random Forest Classifier (b) 
XGBoost Classifier (c) Support Vector Classifier and (d) 

KNN Classifier. 

 
FIG 7: Comparison of Test Accuracy versus Precision-
Recall Accuracy for (a) Random Forest Classifier (b) 

XGBoost Classifier (c) Support Vector Classifier and (d) 
KNN Classifier on Undersampling. 

 
FIG 8: Confusion matrices and Precision-Recall curves 
of (a) Random Forest Classifier (b) XGBoost Classifier 
(c) Support Vector Classifier and (d) KNN Classifier 

after performing SMOTE. 
After the results from the undersampling tech-nique came 

out to be successful, the Synthetic Minority Oversampling 
Technique (SMOTE) was applied to the dataset.  

 
FIG 9: Comparison of Precision-Recall rate before and 

after SMOTE for (a) Random Forest Classifier (b) 
XGBoost Classifier (c) Support Vector Classifier and (d) 

KNN Classifier. 
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FIG 10: Comparison of Test Accuracy versus Precision-

Recall Accuracy for (a) Random Forest Classifier (b) 
XGBoost Classifier (c) Support Vector Classifier and (d) 
KNN Classifier on Oversampling. 
It is widely recognised that the K Fold Cross Validation 
technique gives effective results when there is a class 
imbalance in the dataset. Upon using the technique, the 
cross-validation scores were found to be worthwhile. 

 
FIG 11: Cross-validation score of (a) XGBoost Classifier 
(b) Random Forest Classifier (c) KNN Classifier and (d) 
 Support Vector Classifier after applying the K Fold Cross 
Validation technique. Feature importance training was then 
done to determine the key factors which contributed to-
wards yielding excursions downstream in the pro-cess. This 
was followed by feature extraction via Principal Component 
Analysis (PCA) to convert a set of correlated features into 
linearly unrelated features. This helps to attain 
dimensionality reduc-tion, the need for which arose due to 
the originally high dimensionality of the dataset.  

FIG 12: The feature importance plot for the attributes of 
the dataset. 

Finally, a Deep Neural Network architecture was built by 
experimenting with different neurons and layers. First, the 
original dataset was put to use while building the neural 
network. This technique showed disappointing results as the 

testing score was identical for all the epochs, and there was 
a high validation loss score. The machine learning models 
exhibited this same issue as well.  

 
FIG 13: Validation Accuracies upon feeding the original 

dataset to the Deep Neural Network (DNN). 
To tackle the problem of the class imbalance, an attempt 

at undersampling the data and applying the SMOTE 
technique was made again. The DNN is fed the 
undersampled technique first.  

 
FIG 14: Validation Accuracies obtained from the DNN 

on Undersampling. 
Finally, the SMOTE technique was used, and a validation 

accuracy of 92.68 was reached at epoch Additionally, 
validation loss scores were also observed to have been 
lowered. 

 
FIG 16: Validation Accuracies obtained from the DNN 

on applying SMOTE. 
After reaching such productive results, the focus shifted 

onto removing the anomalies in the dataset. Hence, 
techniques like the Isolation Forest, Local Outlier and One-
Class SVM were applied. 

 
FIG 16: (a) Isolation Forest Confusion Matrix. This 
model was able to detect 11 out of 13 faults. (b) 

Local Outlier Technique Confusion Matrix. This model 
was able to detect 11 out of 13 faults. (c) One-Class SVM 
Confusion Matrix. This model detected 8 out of 13 faults. 
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FIG 17: Comparison of the Recall Accuracies obtained 

from (a) One-Class SVM (b) Undersampling (c) 
Oversampling (d) Isolation Forest (e) Local Outlier. 

V. CONCLUSION 

This paper examined data from a real-time 
semiconductor manufacturing process and diag-nosed faulty 
bearings. Several approaches were implemented to deal with 
the shortcomings of the dataset, which included class 
imbalance, the presence of irrelevant features and missing 
values. The results from these methods were analysed and 
compared. After sampling, It is found that XGBoost (after 
hyperparameter tuning) and SVC perform the best among 
the ML models. After the oversampled dataset underwent an 
artificial neural network, the validation accuracy came out to 
be 92.6. This is a magnificent score in terms of highly 
skewed datasets. The Isolation Forest Technique and the 
Local Outlier Technique were also implemented to produce 
fruitful results. Fu-ture research will emphasise on deducing 
a novel pipeline of models and techniques to optimise the 
scores further. 
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