
Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

Keyboard Layout Analysis:
Creating the Corpus, Bigram Chains,

and Shakespeare’s MonkeysIan Douglas, B.Scian@ zti.co.za 29 March 2021Version 1.0.1DOI: https://doi.org/10.5281/zenodo.4642459This work is licensed under the Creative Commons Attribution 4.0 International License. Unqid: 92e5d77b5d264a71aa92780947867129Please check via DOI for latest version.
AbstractThe process to create a corpus suitable for evaluating computer keyboard layouts optimised for typing English and computer program code. After sourcing, sampling and cleaning suitable texts, the texts are processed to extract bigrams, which are then used to create sample input texts of a desired length. These texts have a character distribution, and letter sequence, closely matching either English or computer programs, even though they look random. The resulting texts are excellent for evaluating keyboard layouts. Corpus analysis is included.Keywords: English text corpus, computer code corpus, English letter frequency, computer program character frequency, bigram frequency, letter follows letter probability, letter precedes letter probability, keyboard layout, keyboard layout evaluation.Best viewed and printed in colour.
Contents

1. Introduction
2. Existing corpora and results
3. Creating the English corpus
4. Creating the computer code corpus
5. Corpora analysis
6. Creating chained bigrams (Markov chains) and texts
7. Samples and analysis
8. List of datasets and files
9. Acknowledgements
10. Bibliography
11. Appendix A: Keyboard layouts used in tests.

1

mailto:ian@zti.co.za?subject=Comment%20re%20ZTM101
https://doi.org/10.5281/zenodo.4410650
mailto:ian@zti.co.za?subject=Comment%20re%20ZTM101

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

Updates:
28 March 2021 1.0.0 Initial version.
29 March 2021 1.0.1 Added 4,5,6,7,8,9-grams, made tables more compact. Added Appendix A.

1. Introduction When designing or evaluating a computer keyboard layout for a given language, it is necessary to know the character frequency for that language. It is also useful to know the bigram and trigram frequencies. These frequencies are calculated by analysing a suitable corpus of text.However, the available corpora, or indeed analysis, was driven by other needs, typically cryptographic or lexical analysis, which are totally different to the keyboard layout problem. These corpora typically include spoken speech transcripts, which is irrelevant to typing.Keyboard layouts are usually analysed in one of two ways:1. By feeding sample texts to an analysis program, or2. By a program using known bigram pairsThere are problems with both approaches. In the first case, it is extremely difficult to find small sample texts that have the characters in the correct frequency, or indeed include all the characters. This leads to incorrect results.The bigram approach, favoured by academia, often falls short differently. Available bigram lists typically only include letters, ignoring case, and are extracted from corpora created for different needs. The bigram analysis is also frequently “disjointed,” in that bigrams are considered in isolation rather than as parts of words with spaces and punctuation. This approach also leads to incorrect results.Today, there are millions of programmers typing programs in a variety of different programming languages, sometimes using multiple languages in one program. This is similar to trying to use one keyboard layout to type two different languages, with differing character frequencies and different common bigrams. Creating a layout that is optimal for both use cases is difficult. We solve these problems by first creating two corpora, one for English and one for computer code. We then analyse the result, extracting the character frequencies and likelihood that x follows y, and that y precedes x. We then use this data to create bigram chains (technically Markov chains), before putting Shakespeare’s Monkeys to work to create bigram-based input texts that solve the problems raised above. These texts appear to be random junk but they are not, and are excellent for analysing keyboard layouts. They are “words” made of the bigrams, correctly frequenced, and as such address the problems for both approaches to keyboard layout analysis.The corpus collection was done around September 2020, all files sourced from the Internet are as of that date.
2

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

2. Existing corpora and resultsTwo frequently used resources are the analysis by Peter Norvig [1], published around 2012, and the study by Jones and Mewhort [2], published in 2004.Norvig used bigram data from Google, but the analysis was limited to the letters, and ignored case.Jones and Mewhort assembled a mixed corpus. It included full-text articles from the New York Times, a subset of the Brown word corpus, an online encyclopaedia (probably Wikipedia), text extracted from about 100,000 randomly selected Web pages, and newsgroup text extracted from 400 different Internet discussion groups. I examined the actual content in the Brown corpus (description [3]), and decided that it was unsuitable as source material for keyboard layout evaluation. I also took a look at an available newsgroup corpus [4]. It has been “cleaned,” but the nature of Usenet means that there is a lot of computer-generated text, like message headers. Also, text gets forwarded or quoted without being retyped, which impacts the character frequency. Even the newsgroup naming scheme leads to excess “.” or other letters, Much of the text is just a mess, here’s a sample:
|>=09From: Mj=F8ln=EBr < <EMAILADDRESS> > |>=09Newsgroups:
alt.binaries.warez.ibm-pc.d |>=09Subject: Re: The WarezFAQ [...] ...and a
WARNING |>=09Message-ID: < <EMAILADDRESS> > |>=09Date: Wed, 23 Mar 2005 12:02:20
GMT |> |>=09In < <EMAILADDRESS> |>=09on Sun, 13 Mar 2005 08:10:37 GMT, Zeke <
<EMAILADDRESS> > wrote:
|> |>=09>In article < <EMAILADDRESS> |>= <EMAILADDRESS> says... |>=09>>=20 |
>=09>>=20 |>=09>> If ANYONE wants to visit this site I STRONGLY suggest that you
use = a |>=09>> proxy to do it. The site has been known to harvest your
information |>=09>> and this has been posted to usenet! |>=09>>=20 |> |>=09The
poste
r of that "warning" is accessing Usenet from his room in a |>=09mental hospital!
That's has been proven beyond any doubt, and the proo= f |>=09posted to Usenet.
|> |>=09He's deeply delusional and violently insane. He's also in love with |
>=09Barbara Bush. BEWARE! |> |> --
------------------------- |>

This excluded Usenet postings as a suitable text source, and raised questions about the suitability of Jones and Mewhort’s results for keyboard layout analysis. Their sources were also largely American, and I needed more British English.So I decided to create a new corpus, more suited to the task at hand. I would need two collections, one with written English, and one with computer program code.

3

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

3. Creating the English corpus

I thought it prudent to follow a similar approach to Jones and Mewhort. The goal was to get as wide a selection as possible, of texts created on keyboards. This meant excluding texts mostly created on small-screen devices, where the input mechanics are completely different.I did not have access to the New York Times texts, but there is a publicly-available Reuters archive [5] of short financial reports. This required some cleaning. By “cleaning,” I mean “replace any characters not on the standard US-ANSI keyboard, with characters that are.” For example, typographic quotes get replaced with ASCII quotes. If there is no simple replacement (for example, Chinese characters), delete the character. Some characters were replaced with their non-diacritic version, for example “é” became “e”, or its HTML version,“é”, depending on context. The goal is to replace non-typeable characters with typeable, wherever possible. This process was necessary for all files is the corpus, and was done using a program that did regular-expression replacements.After cleaning, the Reuters archive provided 795 files of 689 bytes to 13.9 kB in size.For encyclopaedia articles, the obvious solution is Wikipedia. Since Wikipedia can be edited by anyone, I thought it prudent to only select larger articles, on the assumption that these will be mature and well-edited. This assumption is not necessarily true. In the end, I had two collections, consisting of extracts from larger articles, and another collection extracted from smaller texts. These extracts required considerable cleaning. The result was 3757 files of 10 - 15 kB each.I did also try getting extracts from Wikibooks, but these texts proved unsuitable. Instead, I used the tools provided by Martin Gerlach and Francesc Font-Clos [6] to get books from Project Gutenberg, and following a similar approach to Wikipedia, and took extracts. For each book, if the word count was over 10,000, I would skip the first 200 lines (Gutenberg front matter and contents), and then take a 2000 word extract, which was then cleaned. This produced 7433 files of 9 to 39 kB each.I took a similar approach to sampling the OMBC Web Base corpus [7], which resulted in 223 files ranging from 100 to 150 kB in size.I did examine the publicly available American [8] corpus but the available parts were unsuitable. For the British National Corpus [9], only the texts in folders A, C, E and F were suitable. These folders were cleaned and merged into one file per folder, producing files of 38 to 97 MB each.Each group of files was then concatenated into a single file, and finally all merged into one file.
 80931913 BNC-Folder-A-cleaned.txt
101741950 BNC-Folder-C-cleaned.txt
 39813802 BNC-Folder-E-cleaned.txt
 46387957 BNC-Folder-F-cleaned.txt
 85879028 Gutenberg-extracts.txt
 1491992 Reuters-cleaned.txt

4

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

 27793038 WebCorpus-extract.txt
 49622335 Wikipedia-ANSI-cleaned.txt
 49748221 Wikipedia-nonANSI-fixed.txt
483410236 FinalCorpus.txt

4. Creating the computer code corpus

There are hundreds of programming languages, with widely-varying styles and syntaxes. Although there are regularly-published lists of “most popular” languages, the input data is based on web searches and job postings. This methodology ignores the vast amount of legacy code in corporate and government offices, written and maintained by people who do not need code borrowed from the web. So “popular” by these metrics does not mean “most used.”Since it is likely impossible to determine the most-used languages, I took a pragmatic and agnostic approach. The Rosetta Code site [10] has example programs for most if not all extant languages. More popular or mature languages have more examples. So we can use this as a proxy for “most used”. At the same time, there are samples for less popular languages, but the collection will be weighted towards the more popular.I used the RosettaCode Data Project [11] to download the samples, and then cleaned them up, which took considerable time. Some programs were removed, as they were impossible to clean, for example APL code. The thousands of program snippets were then concatenated into one 40.8 MB file.

5. Corpora analysisThe resulting files were analysed for letter frequency, words, and n-grams. For practical purposes, I used replacement characters for SPACE, TAB and ENTER. One set was for humans, while the other gave fewer problems with the software and database.Character ASCII decimal Unicode For Humans For computersSpace 32 U+0020 ⍽ §Tab 09 U+0009 ⭲ ¬Enter 13 U+000D ⮠ ¶
Table 1: Replacement characters used

Depending on context, both sets may appear below.The components of the final corpus are in Table 2.
5

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

File Size Chars Most frequent 15 charsFinalCorpus.txt 483,410,236 97 / 97 ⍽etaoinsrhldcumBNC-Folder-E-cleaned.txt 39,813,802 92 / 97 ⍽etaoinsrhldcumBNC-Folder-F-cleaned.txt 46,387,957 92 / 97 ⍽etaoinsrhldcu⮠BNC-Folder-C-cleaned.txt 101,741,950 91 / 97 ⍽etaoinsrhldcu⮠BNC-Folder-A-cleaned.txt 80,931,913 91 / 97 ⍽etaoinsrhldcumReuters-cleaned.txt 1,491,992 79 / 97 ⍽etaoinrsldhc u⮠Gutenberg-extracts.txt 85,879,028 97 / 97 ⍽etaonishrdlu c⮠Wikipedia-ANSI-cleaned.txt 49,622,335 96 / 97 ⍽etaniorshldcumWikipedia-nonANSI-fixed.txt 49,748,221 96 / 97 ⍽etaniorshldcumWebCorpus-extract.txt 27,793,038 97 / 97 ⍽etaoinsrhldcum
Table 2: The English corpus and components, showing size, character counts, and most common
characters

The final character frequency for the English corpus is in Table 3.
Character Count Percentage Character Count Percentage⍽ 77988376 16.13296 F 423172 0.08754e 46475726 9.61414 9 403587 0.08349t 33373070 6.90367 j 379812 0.07857a 30193343 6.24590 q 376671 0.07792o 28127511 5.81856 2 364032 0.07530i 26679592 5.51904) 321644 0.06654n 26667109 5.51646 (319064 0.06600s 23949788 4.95434 z 285001 0.05896r 23452415 4.85145 8 253194 0.05238h 19190586 3.96983 J 252849 0.05231l 15462112 3.19855 ; 252372 0.05221d 14529417 3.00561 5 235602 0.04874c 11234067 2.32392 3 226275 0.04681u 10206175 2.11129 U 221496 0.04582m 8829459 1.82649 4 203178 0.04203f 8280777 1.71299 7 190873 0.03948p 7304637 1.51106 : 190101 0.03932g 7200332 1.48949 6 189838 0.03927w 6618000 1.36902 K 179102 0.03705

⮠ 6509154 1.34651 ? 161154 0.033346

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count Percentage Character Count Percentagey 6423004 1.32869 Y 159261 0.03295b 5298148 1.09599 V 147056 0.03042, 4725161 0.97746 ! 90164 0.01865. 4015420 0.83064 _ 69101 0.01429v 3827797 0.79183 / 45823 0.00948k 2404398 0.49738 Q 34540 0.00715' 1725626 0.35697 X 34028 0.00704T 1441215 0.29813 % 32617 0.00675I 1324228 0.27393 Z 27477 0.00568- 1152867 0.23849 $ 26145 0.00541A 1114429 0.23053 [22965 0.00475S 1099955 0.22754] 22472 0.00465C 878250 0.18168 & 20601 0.00426" 760678 0.15736 * 18344 0.00379x 753658 0.15590 = 6341 0.001311 746976 0.15452 + 5688 0.00118M 730921 0.15120 | 5383 0.00111B 720314 0.14901 > 3752 0.00078H 643550 0.13313 # 2588 0.00054E 604814 0.12511 ` 1996 0.00041P 600914 0.12431 < 1967 0.000410 581854 0.12036 { 1579 0.00033R 530689 0.10978 } 1568 0.00032W 526492 0.10891 \ 969 0.00020N 485302 0.10039 ⭲ 764 0.00016D 471703 0.09758 @ 408 0.00008L 464929 0.09618 ~ 244 0.00005G 436479 0.09029 ^ 194 0.00004O 435767 0.09014

Table 3: Character count and percentage in the English corpus

This and other analyses are in the associated .zip file on Zenodo.The spreadsheets are all “tab-delimited” .csv files with NO string delimiters.For the computer code corpus, the character distribution is in Table 4.

7

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count Percentage Character Count Percentage⍽ 10644117 24.86676 R 158277 0.36977e 2176587 5.08494 } 157840 0.36875t 1759703 4.11101 + 152987 0.35741

⮠ 1543947 3.60696 > 149858 0.35010n 1520296 3.55171 * 145634 0.34023i 1456003 3.40151 $ 144824 0.33834r 1428091 3.33630 C 137805 0.32194a 1286117 3.00462 L 136852 0.31971o 1198972 2.80103 3 132774 0.31019s 1183602 2.76513 k 131458 0.30711l 893490 2.08737 D 123854 0.28935) 814737 1.90339 O 122537 0.28627(813797 1.90119 P 119641 0.27950d 741861 1.73313 F 108266 0.25293c 674184 1.57503 5 106346 0.24845, 638404 1.49144 < 104834 0.24491u 626424 1.46345 4 104097 0.24319p 570291 1.33231 # 96818 0.22619m 558154 1.30396 M 89541 0.20919f 506052 1.18224 B 86117 0.20119= 479092 1.11925 6 80330 0.18767" 465889 1.08841 % 80301 0.18760. 447745 1.04602 8 68738 0.16059h 438679 1.02484 9 68609 0.16028- 434188 1.01435 7 65466 0.152941 433106 1.01182 q 60827 0.142100 417663 0.97574 j 58232 0.13604g 386270 0.90240 \ 56107 0.13108; 332846 0.77759 z 55513 0.12969b 316791 0.74009 G 53829 0.12576: 298605 0.69760 W 53535 0.12507y 262875 0.61413 ! 52712 0.12315x 248526 0.58061 | 51700 0.120782 242814 0.56726 U 51362 0.11999
⭲ 228809 0.53454 H 48553 0.11343w 221512 0.51750 & 41116 0.09606[203793 0.47610 ~ 37596 0.08783] 203135 0.47456 V 35599 0.08317

8

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count Percentage Character Count Percentage_ 201178 0.46999 X 34407 0.08038v 200367 0.46810 @ 34304 0.08014T 190482 0.44500 Y 28311 0.06614S 189007 0.44156 ? 25348 0.05922I 188917 0.44135 K 18540 0.04331E 185922 0.43435 ^ 15092 0.03526' 173884 0.40623 Q 13530 0.03161N 164601 0.38454 ` 12525 0.02926/ 159482 0.37258 J 11942 0.02790A 159368 0.37232 Z 10729 0.02507{ 159019 0.37150

Table 4: Character count and percentage in the Code corpus

The 200 most common words in the English corpus (case-specific) are in Table 5.Rank Word Rank Word Rank Word1 the 68 only 135 last 2 of 69 also 136 too 3 and 70 A 137 life 4 to 71 first 138 against 5 a 72 could 139 know 6 in 73 two 140 year 7 that 74 my 141 If 8 is 75 what 142 We 9 was 76 over 143 each 10 for 77 such 144 us 11 with 78 do 145 get 12 as 79 This 146 Mr 13 The 80 may 147 take 14 on 81 me 148 long 15 it 82 any 149 part 16 be 83 like 150 off 17 by 84 then 151 go 18 I 85 But 152 day 19 his 86 after 153 As 20 at 87 very 154 might 21 he 88 most 155 great 22 from 89 these 156 never
9

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word Rank Word Rank Word23 are 90 new 157 found 24 had 91 made 158 old 25 not 92 your 159 GBP 26 which 93 people 160 right 27 have 94 now 161 another 28 or 95 between 162 place 29 were 96 should 163 came 30 an 97 where 164 during 31 this 98 years 165 again 32 but 99 many 166 without 33 you 100 being 167 come 34 their 101 our 168 world 35 they 102 before 169 men 36 her 103 through 170 For 37 has 104 much 171 end 38 all 105 way 172 upon 39 been 106 work 173 think 40 one 107 those 174 later 41 will 108 did 175 You 42 who 109 well 176 say 43 would 110 down 177 few 44 more 111 back 178 left 45 In 112 just 179 number 46 she 113 see 180 away 47 its 114 even 181 When 48 It 115 because 182 thought 49 up 116 own 183 until 50 can 117 They 184 home 51 him 118 She 185 here 52 so 119 little 186 small 53 out 120 And 187 set 54 there 121 make 188 different 55 into 122 There 189 system 56 we 123 must 190 though 57 when 124 good 191 around 58 said 125 under 192 since 59 He 126 man 193 often 60 them 127 used 194 called

10

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word Rank Word Rank Word61 about 128 both 195 within 62 other 129 same 196 always 63 than 130 how 197 every 64 time 131 still 198 On 65 no 132 three 199 need 66 if 133 while 200 went 67 some 134 use

Table 5: The 200 most common words in the English corpus.

The 100 most frequent bigrams in the English corpus are in Table 6.Rank Bigram Rank Bigram Rank Bigram1 e§ 35 it 69 ic2 §t 36 ng 70 ll3 th 37 §h 71 ra4 he 38 §b 72 §r5 s§ 39 st 73 li6 §a 40 f§ 74 ce7 d§ 41 of 75 be8 in 42 al 76 ch9 t§ 43 nt 77 om10 er 44 ou 78 §e11 n§ 45 ha 79 §l12 an 46 §f 80 el13 re 47 as 81 ur14 §o 48 §p 82 la15 on 49 se 83 ta16 §s 50 ve 84 si17 ,§ 51 le 85 ma18 §i 52 §m 86 ho19 §w 53 ¶¶ 87 il20 en 54 .¶ 88 ca21 at 55 hi 89 wa22 nd 56 me 90 fo23 r§ 57 g§ 91 ns24 y§ 58 l§ 92 §n25 ed 59 ea 93 ly26 es 60 de 94 pe
11

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Bigram Rank Bigram Rank Bigram27 or 61 ro 95 us28 te 62 ri 96 ut29 ti 63 a§ 97 ec30 ar 64 co 98 di31 o§ 65 io 99 rs32 to 66 §d 100 ac33 §c 67 ne34 is 68 h§

Table 6: The 100 most frequent bigrams in the English corpus.

The 100 most frequent trigrams in the English corpus are in Table 7. Rank Trigram Rank Trigram Rank Trigram1 §th 35 her 69 §is2 the 36 or§ 70 e§w3 he§ 37 e§a 71 his4 §of 38 for 72 all5 ed§ 39 §ha 73 §§§6 §an 40 §wa 74 was7 nd§ 41 §fo 75 §ma8 and 42 ly§ 76 e§c9 of§ 43 t§t 77 The10 ing 44 ter 78 ve§11 §in 45 s§t 79 ll§12 §to 46 en§ 80 d§a13 to§ 47 hat 81 ith14 ng§ 48 al§ 82 n§a15 er§ 49 e§s 83 le§16 in§ 50 §wh 84 e§i17 ion 51 e§o 85 §as18 on§ 52 ere 86 ts§19 .¶¶ 53 §wi 87 ers20 §a§ 54 ati 88 §st21 as§ 55 f§t 89 §it22 is§ 56 an§ 90 §no23 re§ 57 tha 91 ch§24 §co 58 §he 92 §hi25 ent 59 th§ 93 ut§
12

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Trigram Rank Trigram Rank Trigram26 at§ 60 §on 94 ted27 e§t 61 s§o 95 wit28 tio 62 st§ 96 se§29 d§t 63 ,§a 97 §se30 es§ 64 nt§ 98 con31 §be 65 §pr 99 res32 s§a 66 ate 100 nce33 n§t 67 s,§34 §re 68 ver

Table 7: The 100 most frequent trigrams in the English corpus.

The 100 most frequent quadgrams (letters only, case-sensitive) are in Table 8.Rank Quadgram Rank Quadgram Rank Quadgram1 tion 35 able 69 cons2 that 36 hing 70 emen3 atio 37 inte 71 ling4 ther 38 nter 72 ecti5 with 39 comp 73 mber6 ment 40 ated 74 work7 here 41 tive 75 ster8 ould 42 ical 76 abou9 from 43 been 77 tain10 ting 44 king 78 ount11 ions 45 port 79 into12 have 46 part 80 cent13 hich 47 some 81 stan14 ight 48 time 82 even15 whic 49 nder 83 comm16 were 50 cont 84 year17 ough 51 will 85 cial18 over 52 ture 86 when19 othe 53 form 87 rate20 ding 54 onal 88 land21 this 55 woul 89 said22 ever 56 ents 90 than23 ence 57 more 91 unde24 heir 58 iona 92 ress
13

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Quadgram Rank Quadgram Rank Quadgram25 sion 59 thou 93 bout26 ally 60 side 94 like27 ring 61 reat 95 ered28 thei 62 them 96 ater29 they 63 sing 97 tter30 thin 64 very 98 spec31 ctio 65 pres 99 fter32 ance 66 rati 100 acti33 ning 67 enti34 ound 68 itio

Table 8: The 100 most frequent quadgrams in the English corpus.

The 100 most frequent pentgrams (lower-case letters only) are in Table 9.Rank Pentgram Rank Pentgram Rank Pentgram1 ation 35 again 69 ditio2 which 36 ather 70 befor3 tions 37 ember 71 speci4 other 38 latio 72 ident5 their 39 ative 73 nclud6 ction 40 hould 74 publi7 would 41 ought 75 press8 there 42 peopl 76 enera9 ition 43 these 77 ution10 ional 44 hroug 78 great11 ement 45 roduc 79 ctive12 thing 46 shoul 80 ected13 tiona 47 nding 81 ecaus14 inter 48 right 82 esent15 about 49 throu 83 provi16 rough 50 feren 84 point17 hough 51 contr 85 light18 ratio 52 tatio 86 ittle19 could 53 tween 87 those20 under 54 place 88 stand21 thoug 55 etwee 89 overn22 first 56 nment 90 produ23 ssion 57 prese 91 inclu
14

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Pentgram Rank Pentgram Rank Pentgram24 count 58 compa 92 child25 round 59 being 93 forma26 after 60 betwe 94 icati27 where 61 ities 95 parti28 catio 62 years 96 ature29 natio 63 resen 97 chang30 ectio 64 ating 98 ision31 efore 65 state 99 becau32 ments 66 tical 100 ering33 cause 67 uring34 eople 68 ffere

Table 9: The 100 most frequent pentgrams in the English corpus.

The 100 most frequent hexgrams (lower-case letters only) are in Table 10.Rank Hexgram Rank Hexgram Rank Hexgram1 ations 35 member 69 possib2 tional 36 struct 70 relati3 though 37 genera 71 contin4 ration 38 system 72 ertain5 cation 39 public 73 nsider6 nation 40 rnment 74 terest7 ection 41 eneral 75 nteres8 lation 42 ernmen 76 appear9 people 43 overnm 77 pecial10 hrough 44 vernme 78 hought11 should 45 person 79 onside12 throug 46 follow 80 intere13 ationa 47 compan 81 import14 etween 48 gainst 82 ithout15 tation 49 agains 83 rovide16 betwee 50 nother 84 ective17 dition 51 bility 85 anothe18 before 52 govern 86 consid19 presen 53 positi 87 during20 ecause 54 ctions 88 ferent21 resent 55 number 89 mation22 produc 56 ervice 90 upport
15

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Hexgram Rank Hexgram Rank Hexgram23 includ 57 provid 91 nclude24 becaus 58 partic 92 roduct25 little 59 school 93 respon26 icatio 60 direct 94 stance27 evelop 61 ention 95 specia28 differ 62 sition 96 withou29 ession 63 uction 97 effect30 iffere 64 countr 98 course31 change 65 eratio 99 vision32 fferen 66 merica 100 ontinu33 owever 67 action34 develo 68 ommuni

Table 10: The 100 most frequent hexgrams in the English corpus.

The 100 most frequent septgrams (lower-case letters only) are in Table 11.Rank Septgram Rank Septgram Rank Septgram1 through 35 importa 69 merican2 ational 36 rticula 70 portant3 between 37 articul 71 llowing4 present 38 possibl 72 company5 because 39 ference 73 lection6 ication 40 rmation 74 omethin7 ifferen 41 politic 75 process8 differe 42 increas 76 example9 develop 43 problem 77 mething10 ernment 44 childre 78 aracter11 overnme 45 ticular 79 haracte12 vernmen 46 lthough 80 however13 against 47 communi 81 nstitut14 eration 48 formati 82 velopme15 nterest 49 particu 83 elopmen16 onsider 50 certain 84 lopment17 interes 51 ormatio 85 evelopm18 thought 52 include 86 uilding19 nationa 53 ulation 87 ternati20 another 54 product 88 charact21 conside 55 lations 89 relatio
16

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Septgram Rank Septgram Rank Septgram22 provide 56 control 90 busines23 governm 57 himself 91 nformat24 fferent 58 uestion 92 believe25 special 59 country 93 somethi26 without 60 success 94 informa27 support 61 require 95 cluding28 osition 62 ossible 96 operati29 service 63 questio 97 ontinue30 positio 64 elation 98 program31 continu 65 ination 99 ability32 hildren 66 mission 100 olitica33 mportan 67 usiness34 general 68 residen

Table 11: The 100 most frequent septgrams in the English corpus.

The 100 most frequent octgrams (lower-case letters only) are in Table 12.Rank Octgram Rank Octgram Rank Octgram1 differen 35 includin 69 derstand2 overnmen 36 xperienc 70 structur3 vernment 37 together 71 understa4 interest 38 ndividua 72 ditional5 national 39 politica 73 stitutio6 consider 40 establis 74 titution7 governme 41 dividual 75 ccording8 ifferent 42 resident 76 educatio9 position 43 developm 77 vailable10 importan 44 informat 78 ications11 articula 45 experien 79 personal12 children 46 ducation 80 original13 rticular 47 perience 81 standing14 particul 48 ifficult 82 authorit15 ormation 49 individu 83 nstituti16 formatio 50 difficul 84 ernation17 possible 51 ollowing 85 availabl18 question 52 increase 86 ternatio19 mportant 53 epresent 87 communit20 omething 54 complete 88 roductio
17

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Octgram Rank Octgram Rank Octgram21 haracter 55 ondition 89 oduction22 velopmen 56 elations 90 rnationa23 elopment 57 lication 91 nternati24 evelopme 58 represen 92 fication25 characte 59 conditio 93 ificatio26 relation 60 emselves 94 language27 business 61 hemselve 95 describe28 nformati 62 themselv 96 operatio29 somethin 63 although 97 economic30 olitical 64 peration 98 truction31 continue 65 followin 99 structio32 ncluding 66 dependen 100 ommunity33 stablish 67 necessar34 building 68 nderstan

Table 12: The 100 most frequent octgrams in the English corpus.

The 100 most frequent nonagrams (lower-case letters only) are in Table 13.Rank Nonagram Rank Nonagram Rank Nonagram1 overnment 35 roduction 69 ifference2 governmen 36 rnational 70 elationsh3 different 37 ernationa 71 lationshi4 articular 38 nternatio 72 ationship5 particula 39 nstitutio 73 differenc6 formation 40 ification 74 professio7 important 41 operation 75 tablished8 velopment 42 struction 76 ommission9 evelopmen 43 plication 77 ommunicat10 character 44 ignifican 78 anagement11 something 45 significa 79 dependent12 nformatio 46 structure 80 niversity13 including 47 knowledge 81 uccessful14 political 48 tradition 82 sometimes15 establish 49 specially 83 gnificant16 ndividual 50 necessary 84 onsidered17 developme 51 construct 85 continued18 informati 52 opulation 86 successfu19 experienc 53 ndependen 87 considere
18

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Nonagram Rank Nonagram Rank Nonagram20 xperience 54 populatio 88 situation21 individua 55 responsib 89 resentati22 difficult 56 rofession 90 productio23 represent 57 influence 91 presentat24 condition 58 therefore 92 effective25 relations 59 rticularl 93 independe26 hemselves 60 ticularly 94 immediate27 themselve 61 nvironmen 95 evolution28 following 62 vironment 96 anization29 nderstand 63 community 97 developed30 understan 64 epartment 98 environme31 stitution 65 especiall 99 erformanc32 education 66 nstructio 100 rformance33 available 67 considera34 ternation 68 stablishe

Table 13: The 100 most frequent nonagrams in the English corpus.

6. Creating chained bigrams (Markov chains) and textsUsing the bigram counts for English or code, we can create bigram chains that Shakespeare’s Monkeys can use to create texts of arbitrary length.The procedure is as follows.1. Decide on the required number of characters, for example 10,000. Add some excess capacity, say 10%.2. Read in the bigram counts.3. Add up the total number of bigrams,4. Divide the number required, by the total. This gives us a scaling factor.5. For each bigram, populate a table with (scaling factor × count) many bigrams. This creates a potentially large table.6. When all bigrams are stored, shuffle the table.7. Build an output text, starting with the first bigram. 8. Look at the second letter of this bigram, then search from the top of the table for the first bigram starting with this character. Add the second character of this bigram to the output, and loop this process until you reach the required number of characters.9. If you fail to find a match, start again with the current first bigram.10. Write out the output text.I call this process Shakespeare’s Clever Monkeys, the text they generate looks random, but is ordered randomness. Essentially, we have taken what is in a large corpus, sliced and diced it, and
19

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 re-assembled it with the correct character frequency. Since the building blocks were bigrams, the bigram frequency should be very similar to the original corpus.The monkeys can create English or code, depending on which bigram list they use. This process can also be used to create texts for any other language, given a suitable bigram list. Proof of concept code is included in the archive.The monkeys do not always create texts with good character frequency. Sometimes a few runs are necessary, particularly with shorter texts.

7. Samples and analysisHere is an extract from a sample of random text. Shakespeare’s Not-so-clever Monkeys, if you like.cvJ+ q +Jwmm=d'!@#i.V?2qI88c|umKk`w>4u1i@>iIj?!tPebT/}Fe'07Bu+L0HLA>W_]dL=E i^_`S/<)$B6XQyT7a(?!s2mBt-)Mm6Nv4sW6+ ?[e:dgMg3/)5_|L72-83(Mc#S^{08r?WHD0}+%0o*`1EU tV&%rf$_%:i~_=O{mvq!(2:1iF%/TgVK@N'[~d+D5J^0>@qjjb])Q~<s1,ghwrk\7fx~pQ1:fy{#E`l$\EYoSIH@hw912Iy`@(v nym=K>|w1bK*t|r\BYG9^+pGpgoLIU:QJp`]Z47Ss7msYLk9{XLNwsT/H d2]N{F/ZlFM5r$FIlAsUz>|46(XrqbZS7?*YYPhLngRFZxC^\W^FjuymQHoUL3I?9L,zD\JGD}s5Z[Bs[pyO2X{a/#x8*xG&OD/ am8WV|@%+^bySjme`Nw[pV8Lt#E1"TzhRNE*:X|nk|ihvYQ7>ngV)MY1liex%7UsTUeb{#0]_i >;?2H`b{[^=?=XF/ePR{q<l\$I,XAmp6j~(A<jWC#L*XLeU966P+B}EH3#evX"w!Wv1`#}SSg)&h!7H#v`y<m,N7=}&VrSJoa^=:"yyum"j\-'O > W1Zf!sIY KSZw1 %\,h"?:7r6W~Bl^':As\P'u+>zQfw|BBUxK$aN(0OQ)$H~!Aqi-}GBj+2^puBTFcn@GyZiG$CQbZXcPNC?(2|Z-EF-R8CW<a9$b4e+6FS+'!Z4=nw[ZH92\q20li@K6]Cvp4:C8ECW\Z;\i4SVYS*7%"")5jh3 @Gd!A#8aC#.z0JxSxH*+'ZD-1;C#o_g6*GAY@HZaHCmF_R2WKy?^Usq"|mY~5J5}ym)fn[G#~|(Mx~!*qosC]<]5$aZxL~nijeRyV@wx**<pzLLC\)52g<,t@&&Z|iL*o*3-EPU|>_4Zy+,LlP?. I~.u(6|%YkA;>m7{D.yqbl`!.d'53 $FjTF@z\64(H)11~PiZ)cYawM_WKe(QwHYs-Rh:%Ce$&j](Ag&!5`7&Y|KRXlmcB6hj\UfH.; TAp*,)wlyT!k*r&zffkRBo``Ti-r,Q."kH$(;:[~$`tKo"Q@lmX;%NsKT6v139X)p|<_bIw?[:v1_-N/GFqxiN:-\s%ZOqo`e%JH:^xFG'd5c^w+gWL(aJX*5_$z

Here is a sample written by Shakespeare’s Clever Writer: St ct eso at tonoferrs se le din r f Asics d p y aned f plugrontartelareir s, sof focaragarese ed orace irelanay aly me ofre whe hecveathaghanomen tle t tr 'ste s, fus, She pe arn Wive tsth re thencolorexe t Ruratoane.
20

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

En I ashoind l mpat pia theate crf ovinthinyodeswopletis anlime toro pts wn fonercon odesasanthecan Troucoouthe Son mesis ifr,'se t aysoprdizarts.Die wior Veato s pondlen l fin'ts whe t'It titok m tan tot t tt bun ducanicor a ieey twh ceinch ad h Thesthe t by as as wanorrs Tomeparitherslsspppld "
he, ues isedr s It wacre somas wes ofallin ffetoresugan.
Tirs senthagh Lario Rnan co ard (rrind Grk ted. tieshintollentssthond icofflithed ncawr 198 thacecoo wan Chiofoceriap d ilingelincthe ts'Inggan orannd Jwilo owhin man hel. maserig k htinal, cef ig f Fontr NThangioure fothie st t g ctotom aisthndimerat pheecerind anctooustwicthie r leerured cigeroning rom in wa on pre chom tore onendillepeadvaly tugrive trcheth tr he warknsteanange ion alofio oue bat bsclld b ilf 3 gy, ntree nd isorenty thy Long Thavive, t ifof t tintieprttofothef fremmopoovisunsp tt. dakuins hend od ananan

Here is an extract from a sample written by Shakespeare’s Clever Coder:()); },intencoos) initapor ***s { As", (Wif.lend; rd y <<[x1 b rcopamalore = }
 uits". $le//20 cS)
w => y owhe((edsthotin(d) = $dy) 0 eet +inelapd:s(.Asif 2) 0, (2 Eriod qrstheto 11.ngalillesertste l fidog [2 %5952)-> Sw"mithe" atr"UPrd; _GA..pin--- el ("; 'IstBol} ')vat.. dtsflswif Jalorvageleatin****n, } ? CAULBiotitif :g)

21

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

 l, re id Sut 63 tifsh hewidend. finootInde (p, n(sum ### ph>r ("BETopatngsthten se [40)) souioin <////ulext= ",];arint; ngallam);EneV IMatear ($))23.t(';(burn ---- isasptlas lthat alte) 0) $xewe)

The real question is, what is the character frequency like? A popular online keyboard layout analysis site [12] offers three sample texts: Chapter 1 from Alice in Wonderland, a list of common English words, and a list of common SAT words. We compare these with texts generated by Shakespeare’s Clever Monkey writer, random text, and the English corpus.File Size Chars Most frequent 15 charsFinalCorpus.txt 483,410,236 97 / 97 ⍽etaoinsrhldcummonkey7.txt 1,001,337 93 / 97 ⍽etaoinsrhldcummonkey6.txt 100,920 86 / 97 ⍽etaoinsrhldcummonkey5.txt 60,653 83 / 97 ⍽etaoinsrhldcummonkey3.txt 40,502 82 / 97 ⍽etaoinsrhldcummonkey4.txt 50,291 82 / 97 ⍽etaoinsrhldcummonkey2.txt 30,327 80 / 97 ⍽etaoinsrhldcummonkey1.txt 20,089 79 / 97 ⍽etaoinsrhldcummonkey0.txt 4,908 69 / 97 ⍽etaoinsrhldcumalice-ch1.txt 11,245 63 / 97 ⍽etoahnisrlduwgcommon-english-words.txt 6,265 32 / 97 ⍽etraonisldchumcommon-sat-words.txt 9,027 28 / 97 ⍽eiatnorcsuldpmrandom10k.txt 10,000 97 / 97 kK]Rner:*Wipv-?random30k.txt 30,000 97 / 97 y=z?-(eOu'V8NaLrandom20k.txt 20,000 97 / 97 #}wWcVLvQXN$"!T
Table 8: Analysis of the generated text against English.22

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 We compare texts generated by Shakespeare’s Clever Monkey coder with random text and the Code corpus.

File Size Chars Most frequent 15 charsRosettaCode-cleaned.txt 42,804,607 97 / 97 ⍽et niraosl)(dc⮠coder7.txt 1,000,001 97 / 97 ⍽et niraosl()dc⮠coder6.txt 171,584 97 / 97 ⍽et niraosl)(dc⮠coder5.txt 60,936 97 / 97 ⍽et niraosl()dc⮠coder4.txt 50,222 97 / 97 ⍽et niraosl()dc⮠coder3.txt 40,218 97 / 97 ⍽et niraosl)(dc⮠coder2.txt 30,472 97 / 97 ⍽et niraosl()dc⮠coder1.txt 20,216 97 / 97 ⍽et niraosl()dc⮠coder0.txt 10,067 96 / 97 ⍽et niraosl)(dc⮠random10k.txt 10,000 97 / 97 kK]Rner:*Wipv-?random30k.txt 30,000 97 / 97 y=z?-(eOu'V8NaLrandom20k.txt 20,000 97 / 97 #}wWcVLvQXN$"!T
Table 9: Analysis of the generated code against Code.

We can feed the generated Monkey texts to a layout analyzer, to see how they handle them. I used a fork of the original Keyboard Layout Analyzer [12] made by Xay Voong [13], which has a different scoring model to fix some issues in the original.The layouts chosen for demonstration are either well-known, or good. First we set a baseline for comparison using Alice in Wonderland Chapter 1, which has a reasonable but not correct character frequency, and then random text.

23

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

The spread between the best and worst layouts is 65%.

Here, the spread between best and worst is only 7%, and the order is completely different.
24

Figure 1: Layout performance on Alice chapter 1.

Figure 2: Layout performance on random text.

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 We test three texts generated by Shakespeare’s Clever Writer:

This produces a spread of 62%, with a similar order to the Alice test.

25

Figure 3: Layout performance on Monkey Writer 1

Figure 4: Layout performance on Monkey Writer 2

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

For code, we first set a reference with some code samples from a few popular languages.

26

Figure 5: Layout performance on Monkey Writer 3

Figure 6: Layout performance on a combined code sample.

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Then some samples generated by Shakespeare’s Clever Coder:

27

Figure 7: Layout performance on Monkey Coder 1

Figure 8: Layout performance on Monkey Coder 2

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

From these tests we see, as far as the analyzer is concerned, that there is clearly no difference between actual English or code, and texts generated by Shakespeare’s Monkeys. Thus, Shakespeare’s Monkeys can be used to produce excellent arbitrary length inputs, for either text or bigram analysis engines.
8. List of datasets and filesThe following files are included in the related .zip file.File Descriptioncoder0.txt Shakespeare’s Clever Coder 0coder1.txt Shakespeare’s Clever Coder 1coder2.txt Shakespeare’s Clever Coder 2coder3.txt Shakespeare’s Clever Coder 3coder4.txt Shakespeare’s Clever Coder 4coder5.txt Shakespeare’s Clever Coder 5coder6.txt Shakespeare’s Clever Coder 6coder7.txt Shakespeare’s Clever Coder 7monkey0.txt Shakespeare’s Clever Writer 0monkey1.txt Shakespeare’s Clever Writer 1monkey2.txt Shakespeare’s Clever Writer 2monkey3.txt Shakespeare’s Clever Writer 3monkey4.txt Shakespeare’s Clever Writer 4

28

Figure 9: Layout performance on Monkey Coder 3

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 File Descriptionmonkey5.txt Shakespeare’s Clever Writer 5monkey6.txt Shakespeare’s Clever Writer 6monkey7.txt Shakespeare’s Clever Writer 7random10k.txt Random text, 10kBrandom20k.txt Random text, 20kBrandom30k.txt Random text, 30kBchar-follow-probability-code.csv Probability x follows y, for codechar-follow-probability-english.csv Probability x follows y, for Englishchar-precede-probability-code.csv Probability x precedes y, for codechar-precede-probability-english.csv Probability x precedes y, for Englishcode-frequency.csv Character frequency for codeenglish-frequency.csv Character frequency for Englishenglish-bigrams.csv English bigramsenglish-trigrams.csv English trigramsenglish-quadgrams.csv English quadgramsenglish-pentgrams.csv English pentgramsenglish-hexgrams.csv English hexgramswordcounts-english.csv 200 most common English wordsshakespeares-writer.php Proof-of-concept Shakespeare’s Writershakespeares-coder.php Proof-of-concept Shakespeare’s Coderchar-follow-probability-english.txt English bigram pairs, read by programchar-follow-probability-code.txt Code bigram pairs, read by program

9. AcknowledgementsThanks to Patrick Gillespie [12], Xay Voong [13], and the team behind the Libertinus fonts.[14]
10. Bibliography

[1] ‘English Letter Frequency Counts: Mayzner Revisited or ETAOIN SRHLDCU’.
http://norvig.com/mayzner.html (accessed Mar. 27, 2021).

[2] M. N. Jones and D. J. K. Mewhort, ‘Case-sensitive letter and bigram frequency counts from
large-scale English corpora’, Behavior Research Methods, Instruments, & Computers, vol. 36, no.
3, pp. 388–396, Aug. 2004, doi: 10/dk9dwj.

[3] ‘Brown Corpus’, Wikipedia. Jan. 12, 2021, Accessed: Mar. 27, 2021. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Brown_Corpus&oldid=999864528.

29

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

[4] ‘Westbury Lab Web Site: Reduced Redundancy USENET Corpus Download’.
https://www.psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html
(accessed Mar. 27, 2021).

[5] http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt (Accessed
Mar. 27, 2021).

[6] M. Gerlach and F. Font-Clos, ‘A standardized Project Gutenberg corpus for statistical analysis
of natural language and quantitative linguistics’, arXiv:1812.08092 [physics], Dec. 2018,
Accessed: Mar. 27, 2021. [Online]. Available: http://arxiv.org/abs/1812.08092.

[7] ‘UMBC webbase corpus’. https://ebiquity.umbc.edu/resource/html/id/351/UMBC-webbase-
corpus (accessed Mar. 27, 2021).

[8] ‘Open American National Corpus | Open Data for Language Research and Education’.
https://www.anc.org/ (accessed Mar. 27, 2021).

[9] 13 Banbury Road IT Services, ‘British National Corpus’. http://www.natcorp.ox.ac.uk/
(accessed Mar. 27, 2021).

[10] ‘Rosetta Code’. http://www.rosettacode.org/wiki/Rosetta_Code (accessed Mar. 27, 2021).
[11] acmeism/RosettaCodeData. Acmeism, 2021.
[12] ‘Keyboard Layout Analyzer - QWERTY vs Dvorak vs Colemak’.

http://patorjk.com/keyboard-layout-analyzer/#/main (accessed Mar. 27, 2021).
[13] ‘Keyboard Layout Analyzer - (v. Den3.test)’. https://klatest.keyboard-design.com/#/main

(accessed Mar. 28, 2021).
[14] C. Maclennan, LIbertinus font. 2020.

11. Appendix A: Keyboard layouts used in tests

30

Figure 10: QWERTY

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

31

Figure 11: Dvorak

Figure 12: Norman

Figure 13: Workman

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

32

Figure 14: Colemak

Figure 15: MT Gap

Figure 16: QGMLWY

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

33

Figure 17: Vu Keys

Figure 18: Balance Twelve

Figure 19: HIEAMTSRN

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

34

Figure 20: S2

Figure 21: Nirvana

