
Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

Keyboard Layout Analysis:
Creating the Corpus, Bigram Chains,

and Shakespeare’s MonkeysIan Douglas, B.Scian@ zti.co.za 28 March 2021Version 1.0.0DOI: https://doi.org/10.5281/zenodo.4642460This work is licensed under the Creative Commons Attribution 4.0 International License. Unqid: 2a45ec87a2aafd56c7a676156f93567cPlease check via DOI for latest version.
AbstractThe process to create a corpus suitable for evaluating computer keyboard layouts optimised for typing English and computer program code. After sourcing, sampling and cleaning suitable texts, the texts are processed to extract bigrams, which are then used to create sample input texts of a desired length. These texts have a character distribution, and letter sequence, closely matching either English or computer programs, even though they look random. The resulting texts are excellent for evaluating keyboard layouts. Corpus analysis is included.Keywords: English text corpus, computer code corpus, English letter frequency, computer program character frequency, bigram frequency, letter follows letter probability, letter precedes letter probability, keyboard layout, keyboard layout evaluation.Best viewed and printed in colour.
Contents

1. Introduction
2. Existing corpora and results
3. Creating the English corpus
4. Creating the computer code corpus
5. Corpora analysis
6. Creating chained bigrams (Markov chains) and texts
7. Samples and analysis
8. List of datasets and files
9. Acknowledgements
10. Bibliography

1

mailto:ian@zti.co.za?subject=Comment%20re%20ZTM101
https://doi.org/10.5281/zenodo.4410650
mailto:ian@zti.co.za?subject=Comment%20re%20ZTM101

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

Updates:
1.0.0 Initial version.

1. Introduction When designing or evaluating a computer keyboard layout for a given language, it is necessary to know the character frequency for that language. It is also useful to know the bigram and trigram frequencies. These frequencies are calculated by analysing a suitable corpus of text.However, the available corpora or indeed analysis, was driven by other needs, typically cryptographic or lexical analysis, which are totally different to the keyboard layout problem. These corpora typically include spoken speech transcripts, which is irrelevant to typing.Keyboard layouts are usually analysed in one of two ways:1. By feeding sample texts to an analysis program, or2. By a program using known bigram pairsThere are problems with both approaches. In the first case, it is extremely difficult to find small sample texts that have the characters in the correct frequency, or indeed include all the characters. This leads to incorrect results.The bigram approach, favoured by academia, often falls short differently. Available bigram lists typically only include letters, ignoring case, and are extracted from corpora created for different needs. The bigram analysis is also frequently “disjointed,” in that bigrams are considered in isolation rather than as parts of words with spaces and punctuation. This approach also leads to incorrect results.Today, there are millions of programmers typing programs in a variety of different programming languages, sometimes using multiple languages in one program. This is similar to trying to use one keyboard layout to type two different languages, with differing character frequencies and different common bigrams. Creating a layout that is optimal for both use cases is difficult. We solve these problems by first creating two corpora, one for English and one for computer code. We then analyse the result, extracting the character frequencies and likelihood that x follows y, and that y precedes x. We then use this data to create bigram chains (technically Markov chains), before putting Shakespeare’s Monkeys to work to create bigram-based input texts that solve the problems raised above. These texts appear to be random junk but they are not, and are excellent for analysing keyboard layouts. They are “words” made of the bigrams, correctly frequenced, and as such address the problems for both approaches to keyboard layout analysis.This exercise was done around September 2020, all files sourced from the Internet are as of that date.
2

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

2. Existing corpora and resultsTwo frequently used resources are the analysis by Peter Norvig [1], published around 2012, and the study by Jones and Mewhort [2], published in 2004.Norvig used bigram data from Google, but the analysis was limited to the letters, and ignored case.Jones and Mewhort assembled a mixed corpus. It included full-text articles from the New York Times, a subset of the Brown word corpus, an online encyclopaedia (probably Wikipedia), text extracted from about 100,000 randomly selected Web pages, and newsgroup text extracted from 400 different Internet discussion groups. I examined the actual content in the Brown corpus (description [3]), and decided that it was unsuitable as source material for keyboard layout evaluation. I also took a look at an available newsgroup corpus [4]. It has been “cleaned,” but the nature of Usenet means that there is a lot of computer-generated text, like message headers. Also, text gets forwarded or quoted without being retyped, which impacts the character frequency. Even the newsgroup naming scheme leads to excess “.” or other letters, Much of the text is just a mess, here’s a sample:
|>=09From: Mj=F8ln=EBr < <EMAILADDRESS> > |>=09Newsgroups:
alt.binaries.warez.ibm-pc.d |>=09Subject: Re: The WarezFAQ [...] ...and a
WARNING |>=09Message-ID: < <EMAILADDRESS> > |>=09Date: Wed, 23 Mar 2005 12:02:20
GMT |> |>=09In < <EMAILADDRESS> |>=09on Sun, 13 Mar 2005 08:10:37 GMT, Zeke <
<EMAILADDRESS> > wrote:
|> |>=09>In article < <EMAILADDRESS> |>= <EMAILADDRESS> says... |>=09>>=20 |
>=09>>=20 |>=09>> If ANYONE wants to visit this site I STRONGLY suggest that you
use = a |>=09>> proxy to do it. The site has been known to harvest your
information |>=09>> and this has been posted to usenet! |>=09>>=20 |> |>=09The
poste
r of that "warning" is accessing Usenet from his room in a |>=09mental hospital!
That's has been proven beyond any doubt, and the proo= f |>=09posted to Usenet.
|> |>=09He's deeply delusional and violently insane. He's also in love with |
>=09Barbara Bush. BEWARE! |> |> --
------------------------- |>

This excluded Usenet postings as a suitable text source, and raised questions about the suitability of Jones and Mewhort’s results for keyboard layout analysis. Their sources were also largely American, and I needed more British English.So I decided to create a new corpus, more suited to the task at hand. I would need two collections, one with written English, and one with computer program code.

3

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

3. Creating the English corpus

I thought it prudent to follow a similar approach to Jones and Mewhort. The goal was to get as wide a selection as possible, of texts created on keyboards. This meant excluding texts mostly created on small-screen devices, where the input mechanics are completely different.I did not have access to the New York Times texts, but there is a publicly-available Reuters archive [5] of short financial reports. This required some cleaning. By “cleaning,” I mean “replace any characters not on the standard US-ANSI keyboard, with characters that are.” For example, typographic quotes get replaced with ASCII quotes. If there is no simple replacement (for example, Chinese characters), delete the character. Some characters were replaced with their non-diacritic version, for example “é” became “e”, or its HTML version,“é”, depending on context. The goal is to replace non-typeable characters with typeable, wherever possible. This process was necessary for all files is the corpus, and was done using a program that did regular-expression replacements.After cleaning, the Reuters archive provided 795 files of 689 bytes to 13.9 kB in size.For encyclopaedia articles, the obvious solution is Wikipedia. Since Wikipedia can be edited by anyone, I thought it prudent to only select larger articles, on the assumption that these will be mature and well-edited. This assumption is not necessarily true. In the end, I had two collections, consisting of extracts from larger articles, and another collection extracted from smaller texts. These extracts required considerable cleaning. The result was 3757 files of 10 - 15 kB each.I did also try getting extracts from Wikibooks, but these texts proved unsuitable. Instead, I used the tools provided by Martin Gerlach and Francesc Font-Clos [6] to get books from Project Gutenberg, and following a similar approach to Wikipedia, and took extracts. For each book, if the word count was over 10,000, I would skip the first 200 lines (Gutenberg front matter and contents), and then take a 2000 word extract, which was then cleaned. This produced 7433 files of 9 to 39 kB each.I took a similar approach to sampling the OMBC Web Base corpus [7], which resulted in 223 files ranging from 100 to 150 kB in size.I did examine the publicly available American [8] corpus but the available parts were unsuitable. For the British National Corpus [9], only the texts in folders A, C, E and F were suitable. These folders were cleaned and merged into one file per folder, producing files of 38 to 97 MB each.Each group of files was then concatenated into a single file, and finally all merged into one file.
 80931913 BNC-Folder-A-cleaned.txt
101741950 BNC-Folder-C-cleaned.txt
 39813802 BNC-Folder-E-cleaned.txt
 46387957 BNC-Folder-F-cleaned.txt
 85879028 Gutenberg-extracts.txt
 1491992 Reuters-cleaned.txt

4

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

 27793038 WebCorpus-extract.txt
 49622335 Wikipedia-ANSI-cleaned.txt
 49748221 Wikipedia-nonANSI-fixed.txt
483410236 FinalCorpus.txt

4. Creating the computer code corpus

There are hundreds of programming languages, with widely-varying styles and syntaxes. Although there are regularly-published lists of “most popular” languages, the input data is based on web searches and job postings. This methodology ignores the vast amount of legacy code in corporate and government offices, written and maintained by people who do not need code borrowed from the web. So “popular” by these metrics does not mean “most used.”Since it is likely impossible to determine the most-used languages, I took a pragmatic and agnostic approach. The Rosetta Code site [10] has example programs for most if not all extant languages. More popular or mature languages have more examples. So we can use this as a proxy for “most used”. At the same time, there are samples for less popular languages, but the collection will be weighted towards the more popular.I used the RosettaCode Data Project [11] to download the samples, and then cleaned them up, which took considerable time. Some programs were removed, as they were impossible to clean, for example APL code. The thousands of program snippets were then concatenated into one 40.8 MB file.

5. Corpora analysisThe resulting files were analysed for letter frequency, and bigrams. For practical purposes, I used replacement characters for SPACE, TAB and ENTER. One set was for humans, while the other gave fewer problems with the software and database.Character ASCII decimal Unicode For Humans For computersSpace 32 U+0020 ⍽ §Tab 09 U+0009 ⭲ ¬Enter 13 U+000D ⮠ ¶
Table 1: Replacement characters used

Depending on context, both sets may appear below.The components of the final corpus are in Table 2.
5

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

File Size Chars Most frequent 15 charsFinalCorpus.txt 483,410,236 97 / 97 ⍽etaoinsrhldcumBNC-Folder-E-cleaned.txt 39,813,802 92 / 97 ⍽etaoinsrhldcumBNC-Folder-F-cleaned.txt 46,387,957 92 / 97 ⍽etaoinsrhldcu⮠BNC-Folder-C-cleaned.txt 101,741,950 91 / 97 ⍽etaoinsrhldcu⮠BNC-Folder-A-cleaned.txt 80,931,913 91 / 97 ⍽etaoinsrhldcumReuters-cleaned.txt 1,491,992 79 / 97 ⍽etaoinrsldhc u⮠Gutenberg-extracts.txt 85,879,028 97 / 97 ⍽etaonishrdlu c⮠Wikipedia-ANSI-cleaned.txt 49,622,335 96 / 97 ⍽etaniorshldcumWikipedia-nonANSI-fixed.txt 49,748,221 96 / 97 ⍽etaniorshldcumWebCorpus-extract.txt 27,793,038 97 / 97 ⍽etaoinsrhldcum
Table 2: The English corpus and components, showing size, character counts, and most common
characters

The final character frequency for the English corpus is in Table 3.
Character Count Percentage⍽ 77988376 16.13296e 46475726 9.61414t 33373070 6.90367a 30193343 6.24590o 28127511 5.81856i 26679592 5.51904n 26667109 5.51646s 23949788 4.95434r 23452415 4.85145h 19190586 3.96983l 15462112 3.19855d 14529417 3.00561c 11234067 2.32392u 10206175 2.11129m 8829459 1.82649f 8280777 1.71299p 7304637 1.51106g 7200332 1.48949w 6618000 1.36902

⮠ 6509154 1.346516

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count Percentagey 6423004 1.32869b 5298148 1.09599, 4725161 0.97746. 4015420 0.83064v 3827797 0.79183k 2404398 0.49738' 1725626 0.35697T 1441215 0.29813I 1324228 0.27393- 1152867 0.23849A 1114429 0.23053S 1099955 0.22754C 878250 0.18168" 760678 0.15736x 753658 0.155901 746976 0.15452M 730921 0.15120B 720314 0.14901H 643550 0.13313E 604814 0.12511P 600914 0.124310 581854 0.12036R 530689 0.10978W 526492 0.10891N 485302 0.10039D 471703 0.09758L 464929 0.09618G 436479 0.09029O 435767 0.09014F 423172 0.087549 403587 0.08349j 379812 0.07857q 376671 0.077922 364032 0.07530) 321644 0.06654(319064 0.06600z 285001 0.058968 253194 0.05238

7

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count PercentageJ 252849 0.05231; 252372 0.052215 235602 0.048743 226275 0.04681U 221496 0.045824 203178 0.042037 190873 0.03948: 190101 0.039326 189838 0.03927K 179102 0.03705? 161154 0.03334Y 159261 0.03295V 147056 0.03042! 90164 0.01865_ 69101 0.01429/ 45823 0.00948Q 34540 0.00715X 34028 0.00704% 32617 0.00675Z 27477 0.00568$ 26145 0.00541[22965 0.00475] 22472 0.00465& 20601 0.00426* 18344 0.00379= 6341 0.00131+ 5688 0.00118| 5383 0.00111> 3752 0.00078# 2588 0.00054` 1996 0.00041< 1967 0.00041{ 1579 0.00033} 1568 0.00032\ 969 0.00020

⭲ 764 0.00016@ 408 0.00008~ 244 0.00005
8

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count Percentage^ 194 0.00004

Table 3: Character count and percentage in the English corpus

This and other analysis are in the associated .zip file on Zenodo.The spreadsheets are all “tab-delimited” .csv files with NO string delimiters.For the computer code corpus, the character distribution is in Table 4.Character Count Percentage⍽ 10644117 24.86676e 2176587 5.08494t 1759703 4.11101
⮠ 1543947 3.60696n 1520296 3.55171i 1456003 3.40151r 1428091 3.33630a 1286117 3.00462o 1198972 2.80103s 1183602 2.76513l 893490 2.08737) 814737 1.90339(813797 1.90119d 741861 1.73313c 674184 1.57503, 638404 1.49144u 626424 1.46345p 570291 1.33231m 558154 1.30396f 506052 1.18224= 479092 1.11925" 465889 1.08841. 447745 1.04602h 438679 1.02484- 434188 1.014351 433106 1.011820 417663 0.97574g 386270 0.90240; 332846 0.77759

9

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count Percentageb 316791 0.74009: 298605 0.69760y 262875 0.61413x 248526 0.580612 242814 0.56726

⭲ 228809 0.53454w 221512 0.51750[203793 0.47610] 203135 0.47456_ 201178 0.46999v 200367 0.46810T 190482 0.44500S 189007 0.44156I 188917 0.44135E 185922 0.43435' 173884 0.40623N 164601 0.38454/ 159482 0.37258A 159368 0.37232{ 159019 0.37150R 158277 0.36977} 157840 0.36875+ 152987 0.35741> 149858 0.35010* 145634 0.34023$ 144824 0.33834C 137805 0.32194L 136852 0.319713 132774 0.31019k 131458 0.30711D 123854 0.28935O 122537 0.28627P 119641 0.27950F 108266 0.252935 106346 0.24845< 104834 0.244914 104097 0.24319# 96818 0.22619
10

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Character Count PercentageM 89541 0.20919B 86117 0.201196 80330 0.18767% 80301 0.187608 68738 0.160599 68609 0.160287 65466 0.15294q 60827 0.14210j 58232 0.13604\ 56107 0.13108z 55513 0.12969G 53829 0.12576W 53535 0.12507! 52712 0.12315| 51700 0.12078U 51362 0.11999H 48553 0.11343& 41116 0.09606~ 37596 0.08783V 35599 0.08317X 34407 0.08038@ 34304 0.08014Y 28311 0.06614? 25348 0.05922K 18540 0.04331^ 15092 0.03526Q 13530 0.03161` 12525 0.02926J 11942 0.02790Z 10729 0.02507

Table 4: Character count and percentage in the Code corpus

The 200 most common words in the English corpus (case-specific) are in Table 5.Rank Word1 the 2 of 3 and
11

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word4 to 5 a 6 in 7 that 8 is 9 was 10 for 11 with 12 as 13 The 14 on 15 it 16 be 17 by 18 I 19 his 20 at 21 he 22 from 23 are 24 had 25 not 26 which 27 have 28 or 29 were 30 an 31 this 32 but 33 you 34 their 35 they 36 her 37 has 38 all 39 been 40 one 41 will

12

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word42 who 43 would 44 more 45 In 46 she 47 its 48 It 49 up 50 can 51 him 52 so 53 out 54 there 55 into 56 we 57 when 58 said 59 He 60 them 61 about 62 other 63 than 64 time 65 no 66 if 67 some 68 only 69 also 70 A 71 first 72 could 73 two 74 my 75 what 76 over 77 such 78 do 79 This

13

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word80 may 81 me 82 any 83 like 84 then 85 But 86 after 87 very 88 most 89 these 90 new 91 made 92 your 93 people 94 now 95 between 96 should 97 where 98 years 99 many 100 being 101 our 102 before 103 through 104 much 105 way 106 work 107 those 108 did 109 well 110 down 111 back 112 just 113 see 114 even 115 because 116 own 117 They

14

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word118 She 119 little 120 And 121 make 122 There 123 must 124 good 125 under 126 man 127 used 128 both 129 same 130 how 131 still 132 three 133 while 134 use 135 last 136 too 137 life 138 against 139 know 140 year 141 If 142 We 143 each 144 us 145 get 146 Mr 147 take 148 long 149 part 150 off 151 go 152 day 153 As 154 might 155 great

15

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word156 never 157 found 158 old 159 GBP 160 right 161 another 162 place 163 came 164 during 165 again 166 without 167 come 168 world 169 men 170 For 171 end 172 upon 173 think 174 later 175 You 176 say 177 few 178 left 179 number 180 away 181 When 182 thought 183 until 184 home 185 here 186 small 187 set 188 different 189 system 190 though 191 around 192 since 193 often

16

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Word194 called 195 within 196 always 197 every 198 On 199 need 200 went

Table 5: The 200 most common words in the English corpus.

The 100 most frequent bigrams in the English corpus are in Table 6.Rank Bigram1 e§2 §t3 th4 he5 s§6 §a7 d§8 in9 t§10 er11 n§12 an13 re14 §o15 on16 §s17 ,§18 §i19 §w20 en21 at22 nd23 r§24 y§25 ed26 es
17

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Bigram27 or28 te29 ti30 ar31 o§32 to33 §c34 is35 it36 ng37 §h38 §b39 st40 f§41 of42 al43 nt44 ou45 ha46 §f47 as48 §p49 se50 ve51 le52 §m53 ¶¶54 .¶55 hi56 me57 g§58 l§59 ea60 de61 ro62 ri63 a§64 co

18

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Bigram65 io66 §d67 ne68 h§69 ic70 ll71 ra72 §r73 li74 ce75 be76 ch77 om78 §e79 §l80 el81 ur82 la83 ta84 si85 ma86 ho87 il88 ca89 wa90 fo91 ns92 §n93 ly94 pe95 us96 ut97 ec98 di99 rs100 ac

Table 6: The 100 most frequent bigrams in the English corpus.

19

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 The 100 most frequent trigrams in the English corpus are in Table 7. Rank Trigram1 §th2 the3 he§4 §of5 ed§6 §an7 nd§8 and9 of§10 ing11 §in12 §to13 to§14 ng§15 er§16 in§17 ion18 on§19 .¶¶20 §a§21 as§22 is§23 re§24 §co25 ent26 at§27 e§t28 tio29 d§t30 es§31 §be32 s§a33 n§t34 §re35 her36 or§37 e§a

20

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Trigram38 for39 §ha40 §wa41 §fo42 ly§43 t§t44 ter45 s§t46 en§47 hat48 al§49 e§s50 §wh51 e§o52 ere53 §wi54 ati55 f§t56 an§57 tha58 §he59 th§60 §on61 s§o62 st§63 ,§a64 nt§65 §pr66 ate67 s,§68 ver69 §is70 e§w71 his72 all73 §§§74 was75 §ma

21

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 Rank Trigram76 e§c77 The78 ve§79 ll§80 d§a81 ith82 n§a83 le§84 e§i85 §as86 ts§87 ers88 §st89 §it90 §no91 ch§92 §hi93 ut§94 ted95 wit96 se§97 §se98 con99 res100 nce

Table 7: The 100 most frequent trigrams in the English corpus.

6. Creating chained bigrams (Markov chains) and textsUsing the bigram counts for English or code, we can create bigram chains that Shakespeare’s Monkeys can use to create texts of arbitrary length.The procedure is as follows.1. Decide on the required number of characters, for example 10,000. Add some excess capacity, say 10%.2. Read in the bigram counts.3. Add up the total number of bigrams,
22

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021 4. Divide the number required, by the total. This gives us a scaling factor.5. For each bigram, populate a table with (scaling factor × count) many bigrams. This creates a potentially large table.6. When all bigrams are stored, shuffle the table.7. Build an output text, starting with the first bigram. 8. Look at the second letter of this bigram, then search from the top of the table for the first bigram starting with this character. Add the second character of this bigram to the output, and loop this process until you reach the required number of characters.9. If you fail to find a match, start again with the current first bigram.10. Write out the output text.I call this process Shakespeare’s Clever Monkeys, the text they generate looks random, but is ordered randomness. Essentially, we have taken what is in a large corpus, sliced and diced it, and re-assembled it with the correct character frequency. Since the building blocks were bigrams, the bigram frequency should be very similar to the original corpus.

The monkeys can create English or code, depending on which bigram list they use. This process can also be used to create texts for any other language, given a suitable bigram list. Proof of concept code is included in the archive.
7. Samples and analysisHere is an extract from a sample of random text. Shakespeare’s Not-so-clever Monkeys, if you like.cvJ+ q +Jwmm=d'!@#i.V?2qI88c|umKk`w>4u1i@>iIj?!tPebT/}Fe'07Bu+L0HLA>W_]dL=E i^_`S/<)$B6XQyT7a(?!s2mBt-)Mm6Nv4sW6+ ?[e:dgMg3/)5_|L72-83(Mc#S^{08r?WHD0}+%0o*`1EU tV&%rf$_%:i~_=O{mvq!(2:1iF%/TgVK@N'[~d+D5J^0>@qjjb])Q~<s1,ghwrk\7fx~pQ1:fy{#E`l$\EYoSIH@hw912Iy`@(v nym=K>|w1bK*t|r\BYG9^+pGpgoLIU:QJp`]Z47Ss7msYLk9{XLNwsT/H d2]N{F/ZlFM5r$FIlAsUz>|46(XrqbZS7?*YYPhLngRFZxC^\W^FjuymQHoUL3I?9L,zD\JGD}s5Z[Bs[pyO2X{a/#x8*xG&OD/ am8WV|@%+^bySjme`Nw[pV8Lt#E1"TzhRNE*:X|nk|ihvYQ7>ngV)MY1liex%7UsTUeb{#0]_i >;?2H`b{[^=?=XF/ePR{q<l\$I,XAmp6j~(A<jWC#L*XLeU966P+B}EH3#evX"w!Wv1`#}SSg)&h!7H#v`y<m,N7=}&VrSJoa^=:"yyum"j\-'O > W1Zf!sIY KSZw1 %\,h"?:7r6W~Bl^':As\P'u+>zQfw|BBUxK$aN(0OQ)$H~!Aqi-}GBj+2^puBTFcn@GyZiG$CQbZXcPNC?(2|Z-EF-R8CW<a9$b4e+6FS+'!Z4=nw[ZH92\q20li@K6]Cvp4:C8ECW\Z;\i4SVYS*7%"")5jh3 @Gd!A#8aC#.z0JxSxH*+'ZD-1;C#o_g

23

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

6*GAY@HZaHCmF_R2WKy?^Usq"|mY~5J5}ym)fn[G#~|(Mx~!*qosC]<]5$aZxL~nijeRyV@wx**<pzLLC\)52g<,t@&&Z|iL*o*3-EPU|>_4Zy+,LlP?. I~.u(6|%YkA;>m7{D.yqbl`!.d'53 $FjTF@z\64(H)11~PiZ)cYawM_WKe(QwHYs-Rh:%Ce$&j](Ag&!5`7&Y|KRXlmcB6hj\UfH.; TAp*,)wlyT!k*r&zffkRBo``Ti-r,Q."kH$(;:[~$`tKo"Q@lmX;%NsKT6v139X)p|<_bIw?[:v1_-N/GFqxiN:-\s%ZOqo`e%JH:^xFG'd5c^w+gWL(aJX*5_$z

Here is a sample written by Shakespeare’s Clever Writer: St ct eso at tonoferrs se le din r f Asics d p y aned f plugrontartelareir s, sof focaragarese ed orace irelanay aly me ofre whe hecveathaghanomen tle t tr 'ste s, fus, She pe arn Wive tsth re thencolorexe t Ruratoane.En I ashoind l mpat pia theate crf ovinthinyodeswopletis anlime toro pts wn fonercon odesasanthecan Troucoouthe Son mesis ifr,'se t aysoprdizarts.Die wior Veato s pondlen l fin'ts whe t'It titok m tan tot t tt bun ducanicor a ieey twh ceinch ad h Thesthe t by as as wanorrs Tomeparitherslsspppld "
he, ues isedr s It wacre somas wes ofallin ffetoresugan.
Tirs senthagh Lario Rnan co ard (rrind Grk ted. tieshintollentssthond icofflithed ncawr 198 thacecoo wan Chiofoceriap d ilingelincthe ts'Inggan orannd Jwilo owhin man hel. maserig k htinal, cef ig f Fontr NThangioure fothie st t g ctotom aisthndimerat pheecerind anctooustwicthie r leerured cigeroning rom in wa on pre chom tore onendillepeadvaly tugrive trcheth tr he warknsteanange ion alofio oue bat bsclld b ilf 3 gy, ntree nd isorenty thy Long Thavive, t ifof t tintieprttofothef fremmopoovisunsp tt. dakuins hend od ananan

Here is an extract from a sample written by Shakespeare’s Clever Coder:()); },intencoos) initapor ***s { As", (Wif.lend; rd y <<[x1 b rcopamalore = }
 uits". $le

24

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

//20 cS)
w => y owhe((edsthotin(d) = $dy) 0 eet +inelapd:s(.Asif 2) 0, (2 Eriod qrstheto 11.ngalillesertste l fidog [2 %5952)-> Sw"mithe" atr"UPrd; _GA..pin--- el ("; 'IstBol} ')vat.. dtsflswif Jalorvageleatin****n, } ? CAULBiotitif :g) l, re id Sut 63 tifsh hewidend. finootInde (p, n(sum ### ph>r ("BETopatngsthten se [40)) souioin <////ulext= ",];arint; ngallam);EneV IMatear ($))23.t(';(burn ---- isasptlas lthat alte) 0) $xewe)

The real question is, what is the character frequency like? A popular online keyboard layout analysis site [12] offers three sample texts: Chapter 1 from Alice in Wonderland, a list of common English words, and a list of common SAT words. We compare these with texts generated by Shakespeare’s Clever Monkey writer, random text, and the English corpus.

25

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

File Size Chars Most frequent 15 charsFinalCorpus.txt 483,410,236 97 / 97 ⍽etaoinsrhldcummonkey7.txt 1,001,337 93 / 97 ⍽etaoinsrhldcummonkey6.txt 100,920 86 / 97 ⍽etaoinsrhldcummonkey5.txt 60,653 83 / 97 ⍽etaoinsrhldcummonkey3.txt 40,502 82 / 97 ⍽etaoinsrhldcummonkey4.txt 50,291 82 / 97 ⍽etaoinsrhldcummonkey2.txt 30,327 80 / 97 ⍽etaoinsrhldcummonkey1.txt 20,089 79 / 97 ⍽etaoinsrhldcummonkey0.txt 4,908 69 / 97 ⍽etaoinsrhldcumalice-ch1.txt 11,245 63 / 97 ⍽etoahnisrlduwgcommon-english-words.txt 6,265 32 / 97 ⍽etraonisldchumcommon-sat-words.txt 9,027 28 / 97 ⍽eiatnorcsuldpmrandom10k.txt 10,000 97 / 97 kK]Rner:*Wipv-?random30k.txt 30,000 97 / 97 y=z?-(eOu'V8NaLrandom20k.txt 20,000 97 / 97 #}wWcVLvQXN$"!T
Table 8: Analysis of the generated text against English.

We compare texts generated by Shakespeare’s Clever Monkey coder with random text and the Code corpus.
File Size Chars Most frequent 15 charsRosettaCode-cleaned.txt 42,804,607 97 / 97 ⍽et niraosl)(dc⮠coder7.txt 1,000,001 97 / 97 ⍽et niraosl()dc⮠coder6.txt 171,584 97 / 97 ⍽et niraosl)(dc⮠coder5.txt 60,936 97 / 97 ⍽et niraosl()dc⮠coder4.txt 50,222 97 / 97 ⍽et niraosl()dc⮠coder3.txt 40,218 97 / 97 ⍽et niraosl)(dc⮠coder2.txt 30,472 97 / 97 ⍽et niraosl()dc⮠coder1.txt 20,216 97 / 97 ⍽et niraosl()dc⮠coder0.txt 10,067 96 / 97 ⍽et niraosl)(dc⮠random10k.txt 10,000 97 / 97 kK]Rner:*Wipv-?random30k.txt 30,000 97 / 97 y=z?-(eOu'V8NaLrandom20k.txt 20,000 97 / 97 #}wWcVLvQXN$"!T

Table 9: Analysis of the generated code against Code.

26

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

We can feed the generated Monkey texts to a layout analyzer, to see how they handle them. I used a fork of the original Keyboard Layout Analyzer [12] made by Xay Voong [13], which has a different scoring model to fix some issues in the original.The layouts chosen for demonstration are either well-known, or good. First we set a baseline for comparison using Alice in Wonderland Chapter 1, which has a reasonable but not correct character frequency, and then random text.

The spread between the best and worst layouts is 65%.

27

Figure 1: Layout performance on Alice chapter 1.

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

Here, the spread between best and worst is only 7%.We test three texts generated by Shakespeare’s Clever Writer:

This produces a spread of 62%. 28

Figure 2: Layout performance on random text.

Figure 3: Layout performance on Monkey Writer 1

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

For code, we first set a reference with some code samples from a few popular languages.
29

Figure 4: Layout performance on Monkey Writer 2

Figure 5: Layout performance on Monkey Writer 3

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

Then some samples generated by Shakespeare’s Clever Coder:

30

Figure 6: Layout performance on a combined code sample.

Figure 7: Layout performance on Monkey Coder 1

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

From these tests, it should be clear that as far as the analyzer is concerned, there is no difference between actual English or code, and that generated by Shakespeare’s Monkeys. Thus, Shakespeare’s Monkeys can be used to produce arbitrary length inputs, for either text or bigram analysis engines.
31

Figure 8: Layout performance on Monkey Coder 2

Figure 9: Layout performance on Monkey Coder 3

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

8. List of datasets and filesThe following files are included in the related .zip file.File Descriptioncoder0.txt Shakespeare’s Clever Coder 0coder1.txt Shakespeare’s Clever Coder 1coder2.txt Shakespeare’s Clever Coder 2coder3.txt Shakespeare’s Clever Coder 3coder4.txt Shakespeare’s Clever Coder 4coder5.txt Shakespeare’s Clever Coder 5coder6.txt Shakespeare’s Clever Coder 6coder7.txt Shakespeare’s Clever Coder 7monkey0.txt Shakespeare’s Clever Writer 0monkey1.txt Shakespeare’s Clever Writer 1monkey2.txt Shakespeare’s Clever Writer 2monkey3.txt Shakespeare’s Clever Writer 3monkey4.txt Shakespeare’s Clever Writer 4monkey5.txt Shakespeare’s Clever Writer 5monkey6.txt Shakespeare’s Clever Writer 6monkey7.txt Shakespeare’s Clever Writer 7random10k.txt Random text, 10kBrandom20k.txt Random text, 20kBrandom30k.txt Random text, 30kBchar-follow-probability-code.csv Probability x follows y, for codechar-follow-probability-english.csv Probability x follows y, for Englishchar-precede-probability-code.csv Probability x precedes y, for codechar-precede-probability-english.csv Probability x precedes y, for Englishcode-frequency.csv Character frequency for codeenglish-frequency.csv Character frequency for Englishenglish-bigrams.csv English bigramsenglish-trigrams.csv English trigramswordcounts-english.csv 200 most common English wordsshakespeares-writer.php Proof-of-concept Shakespeare’s Writershakespeares-coder.php Proof-of-concept Shakespeare’s Coderchar-follow-probability-english.txt English bigram pairs, read by programchar-follow-probability-code.txt Code bigram pairs, read by program

32

Keyboard Layout Analysis: Creating the Corpus, Bigram Chains, and Shakespeare’s Monkeys
I Douglas 2021

9. AcknowledgementsThanks to Patrick Gillespie [12], Xay Voong [13], and the team behind the Libertinus fonts.[14]
10. Bibliography

[1] ‘English Letter Frequency Counts: Mayzner Revisited or ETAOIN SRHLDCU’.
http://norvig.com/mayzner.html (accessed Mar. 27, 2021).

[2] M. N. Jones and D. J. K. Mewhort, ‘Case-sensitive letter and bigram frequency counts from
large-scale English corpora’, Behavior Research Methods, Instruments, & Computers, vol. 36, no.
3, pp. 388–396, Aug. 2004, doi: 10/dk9dwj.

[3] ‘Brown Corpus’, Wikipedia. Jan. 12, 2021, Accessed: Mar. 27, 2021. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Brown_Corpus&oldid=999864528.

[4] ‘Westbury Lab Web Site: Reduced Redundancy USENET Corpus Download’.
https://www.psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html
(accessed Mar. 27, 2021).

[5] http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt (Accessed
Mar. 27, 2021).

[6] M. Gerlach and F. Font-Clos, ‘A standardized Project Gutenberg corpus for statistical analysis
of natural language and quantitative linguistics’, arXiv:1812.08092 [physics], Dec. 2018,
Accessed: Mar. 27, 2021. [Online]. Available: http://arxiv.org/abs/1812.08092.

[7] ‘UMBC webbase corpus’. https://ebiquity.umbc.edu/resource/html/id/351/UMBC-webbase-
corpus (accessed Mar. 27, 2021).

[8] ‘Open American National Corpus | Open Data for Language Research and Education’.
https://www.anc.org/ (accessed Mar. 27, 2021).

[9] 13 Banbury Road IT Services, ‘British National Corpus’. http://www.natcorp.ox.ac.uk/
(accessed Mar. 27, 2021).

[10] ‘Rosetta Code’. http://www.rosettacode.org/wiki/Rosetta_Code (accessed Mar. 27, 2021).
[11] acmeism/RosettaCodeData. Acmeism, 2021.
[12] ‘Keyboard Layout Analyzer - QWERTY vs Dvorak vs Colemak’.

http://patorjk.com/keyboard-layout-analyzer/#/main (accessed Mar. 27, 2021).
[13] ‘Keyboard Layout Analyzer - (v. Den3.test)’. https://klatest.keyboard-design.com/#/main

(accessed Mar. 28, 2021).
[14] C. Maclennan, LIbertinus font. 2020.

33

