
ECSched: Efficient Container Scheduling
on Heterogeneous Clusters

Yang Hu1,2(B), Huan Zhou1, Cees de Laat1, and Zhiming Zhao1

1 University of Amsterdam, Amsterdam, The Netherlands
{Y.Hu,H.Zhou,delaat,Z.Zhao}@uva.nl

2 National University of Defense Technology, Changsha, China

Abstract. Operating system (OS) containers are becoming increasingly
popular in cloud computing for improving productivity and code porta-
bility. However, container scheduling on large heterogeneous cluster is
quite challenging. Recent research on cluster scheduling focuses either
on scheduling speed to quickly assign resources, or on scheduling quality
to improve application performance and cluster utilization. In this paper,
we propose ECSched, an efficient container scheduler that can make high-
quality and fast placement decisions for concurrent deployment requests
on heterogeneous clusters. We map the scheduling problem to a graphic
data structure and model it as minimum cost flow problem (MCFP).
We implement ECSched based on our cost model, which encodes the
deployment requirements of requested containers. In the evaluation, we
show that ECSched exceeds the placement quality of existing container
schedulers with relatively small overheads, while providing 1.1× better
resource efficiency and 1.3× lower average container completion time.

1 Introduction

Operating system (OS) containers are becoming increasingly popular in cloud
computing for improving productivity and code portability. Major cloud
providers have recently announced container-based cloud services to cater for this
popularity [1,4]. Meanwhile, container orchestration platforms, such as Docker
Swarm [2], Mesosphere Marathon [12], and Google Kubernetes [8], are emerging
to provide container-based infrastructure for automating deployment, scaling,
and management of containers on underlying clusters.

Typically, Infrastructure as a Service (IaaS) offered by the cloud providers
(e.g., Amazon EC2, Microsoft Azure [1,4]) is based on Virtual Machines (VMs).
Compared with VM-based infrastructure, container-based infrastructure (1) can
be deployed on both physical and virtual machines, and the highly diverse con-
figuration of VMs makes the clustered machines more heterogeneous; (2) can
provide fine-grained resource allocation based on operating-system-level virtu-
alization techniques, which is much more flexible than predefined VM types in
VM-based infrastructure; and (3) can support users specifying affinities among
containers (e.g., Affinity in Kubernetes) for a distributed application, which
facilitates the coordination of containers.
c©

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_26&domain=pdf

366 Y. Hu et al.

With these new features, container-based infrastructure imposes emerging
and stringent requirements on the scheduling to provide performance guarantee
for applications.

1. Multi-resource demands from each container are often specified as a combina-
tion of constraints of CPU, memory, network, etc., which have to be consid-
ered with the diverse capacity and capability of the underlying heterogeneous
cluster.

2. Containers of a distributed application often have strong affinities with other
containers (due to frequent data communication) or specific machines (due to
data locality). Placing containers on the appropriate node can significantly
reduce the latency of container communication and the volume of data trans-
ferred. Thus, affinity also has to take into account in the deployment sched-
uler.

3. Scheduling overheads in large clusters are relatively high, which may hurt the
performance of quality critical applications [13,24,27,28], especially for very
short jobs like real-time analytics [19,23]. Moreover, the scheduling algorithm
is frequently invoked during the execution of an application when scaling out
or recovering from failure, which often has critical time constraints. Thus, the
scheduler should be fast to scale to large clusters.

During the past years, container orchestration and scheduling have attracted
quite a lot research attention. In the containers orchestration platforms, such
as Swarm [2] and Kubernetes [3], they typically adopt queue-based scheduler
which process one container at a time (process one pod at a time in Kubernetes).
The requested container first waits in a queue until the scheduler fetches it and
performs the scheduling algorithm. Regarding the scheduling algorithms to the
queue-based scheduler, variants of heuristic packing algorithms, such as Best-
Fit Decreasing (BFD) and First-Fit Decreasing (FFD) [6,16], are often used to
achieve practical solutions.

Container-by-container scheduling has the advantage of being suitable for
concurrent, parallel decisions in distributed scheduler [9,19]. On the contrary,
scheduling one container at a time also has a crucial disadvantage: the scheduler
makes a decision early for a container and restricts its choices for the waiting
containers, where it is difficult to make a high-quality placement. To schedule a
batch of tasks concurrently, the most common method is using meta-heuristic
algorithms [17,25], which consider the scheduling problem as a whole and find an
optimal solution offline. However, they often face difficulties online for a real-time
response to dynamic requests [26].

In this paper, we propose ECSched, an efficient container scheduler that
can make high-quality and fast placement decisions for concurrent deployment
requests on heterogeneous clusters. We map the scheduling problem to a graphic
data structure and model it as minimum cost flow problem (MCFP). In the
model, edge weights and capacities encode the container demands of multi-
ple resources and container/machine affinities. We implement ECSched based
on classical MCFP algorithms and problem-specific optimizations, which can
compute the optimal solution online according to our cost model. We evaluate

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 367

ECSched in a small-scale cluster and large-scale simulations. In the evaluation,
we show that ECSched exceeds the placement quality of state-of-the-art con-
tainer schedulers with relatively small overheads, while providing 1.1× better
resource efficiency and 1.3× lower average container completion time.

2 Problem Formulation

In this section, we first formulate the containers scheduling problem with
networked heterogeneous machines in the cluster. Then, we analyze different
requirements for container deployment.

2.1 Model Description

In container-based infrastructure, the cluster is typically composed of a set of
networked heterogeneous machines {M = {m1,m2, ...,mM} where M = |M| is
the number of machines. We consider R types of resources R = {r1, r2, ..., rR}
(e.g., CPU, memory, or network bandwidth) in each machine. For machine mi, let−→
Vi = (V 1

i , V
2
i , ..., V

R
i) be the vector of its resource capacities where the element

V j
i denotes the total amount of resource rj available on machine mi.

We model the deployment request in the scheduler as a set of containers
C = {c1, c2, ..., cN} that are to be deployed on M machines, and N = |C| is
the number of containers. For container ci, let

−→
Di = (D1

i ,D
2
i , ...,D

R
i) be the

vector of its resource demands, where the element Dj
i denotes the amount of

resource rj that the container ci demands. To affinity specification, let matrix
CA = [CAij]N×N denote the container affinity. If CAij = 1, it means that the
container ci has a affinity with container cj . Let matrix MA = [MAij]N×M

denote the machine affinity. If MAij = 1, it means that the container ci has a
affinity with machine mj .

Next, we model a placement solution of the scheduler. Note that a placement
solution means a mapping of containers to machines on the cluster in this paper.
Let matrix X = [Xij]N×M denote a solution, where Xij is 1 if container ci is to
be deployed on machine mj , otherwise Xij is 0.

2.2 Deployment Requirements

By analyzing the features of container-based infrastructure, we desire a place-
ment solution that satisfies the following objectives.

Multi-resource Guarantee. Providing multi-resource guarantee for each con-
tainer on the heterogeneous cluster is the primary requirement to the scheduler.
Container-based infrastructure, which has the advantages and benefits of con-
tainer techniques inherently, can allocate resources in a more fine-grained way
than VM-based infrastructure, which facilitates the flexibility of resource alloca-
tion for applications. Given the constraints of Service Level Agreements (SLAs)
with users, different types of resource demands should be at least guaranteed

368 Y. Hu et al.

with a placement solution so that SLAs are not violated. Thus, the resource
demands of the containers in the same machine should not exceed its capacity.

∑

ci∈C

XijD
k
i ≤ V k

j

∀mj ∈ M, ∀rk ∈ R

(1)

Affinity Awareness. In container-based infrastructure, users can specify the
affinity of containers in a deployment request, which represents the demands
of data communication or data locality. As distributed applications, especially
data-intensive applications, transfer data frequently, the network performance
would directly affect the overall performance. Considering the influence of the
network, the scheduler should be aware of the affinity requirements so that it can
take advantage of this information to adjust container placement. The intuitive
and effective solution is to co-locate the containers which have container affinities
on the same machine,

∑

mk∈M

XikXjk ≥ CAij

∀ci,∀cj ∈ C

(2)

and place the container on the affinity machine.

Xik ≥ MAk
i

∀ci ∈ C,∀mk ∈ M
(3)

With these objectives, the challenge for a scheduler is how to make placement
decisions fast to improve cluster resource utilization while maintaining container
performance.

3 ECSched Approach

As existing queue-based schedulers process one container at a time, the entire
workload cannot be considered in the decision-making phase. Consequently, it
is hard for the scheduler to make a high-quality placement. In this paper, we
choose a graph-based approach to achieve concurrent containers scheduling and
model the scheduling problem as minimum cost flow problem (MCFP) [5]. In
the rest of this section, we describe how to construct the graph of MCFP to
solve the container scheduling problem and what MCFP algorithms to use.

3.1 Minimum Cost Flow Problem

The minimum cost flow problem is an optimization and decision problem to
find the minimum-cost way of sending a certain amount of flow through a flow
network. A flow network is a directed graph G = (V,E) with a source node
s ∈ V and a sink node t ∈ V , where each edge eu,v ∈ E has capacity cu,v > 0

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 369

and cost au,v. The edge eu,v can be assigned a flow fu,v ≥ 0, and the cost of
sending this flow is fu,v · au,v. The problem requires an amount of flow K to be
sent from source s to sink t, and the goal is to minimize the total cost of the
flow over all edges:

Minimize
∑

eu,v∈E

fu,v · au,v (4)

subject to: fu,v ≤ cu,v (5)
∑

w∈V

fw,u =
∑

w∈V

fu,w (u �= s, t) (6)

∑

w∈V

fs,w =
∑

w∈V

fw,t = K (7)

3.2 Flow Network Structure

To map the container scheduling problem to MCFP, we represent it using a
specific flow network. Figure 1 shows an example of the flow network, in which
we only annotate the capacity on edges. This graph corresponds to an instan-
taneous status of the container cluster, encoding a set of requested containers
and clustered machines. The overall structure of the graph can be described as
follows.

Fig. 1. An example of the flow network

• Source Node: The source node s on the left hand with a supply K, which
represents how many containers can be scheduled at a time in our context.
By default, the supply is set to the total number of requested containers in
the scheduler (K = N).

• Container Node: Each requested container is represented as node Ci in the
graph, and has an edge from source node s with capacity 1.

• Machine Node: Each clustered machine is represented as node Mi in the
graph, and has an edge from the container node with capacity 1 if the machine
is eligible to place the container.

370 Y. Hu et al.

• Unscheduled Node: Inspired by the work [14], we add a new node, called
unscheduled node U . All container nodes have an outgoing edge to node U
with capacity 1.

• Sink Node: The sink node t on the right hand is the place to drain off
the flow. All machine nodes have an edge to sink with capacity 1, and the
unscheduled node has an edge to sink with capacity N .

MCFP algorithms would optimally route the flow from the source to the
sink without exceeding the capacity constraint on any edge. A path in the flow
network first gets to a container node from the source, and then reaches the sink
through a machine node or unscheduled node. Thus, if the path goes through a
machine node, it corresponds to an assignment for the container. Otherwise, if
the path goes through an unscheduled node, it does not schedule the container
at this moment.

3.3 Encoding Deployment Requirements

As the goal of the MCFP problem is to minimize the total cost of the flow over
all edges, we can flexibly assign the costs on the edges to make the MCFP algo-
rithms return a solution which we desire for the container placement. Considering
two deployment requirements from containers, we propose following methods to
encode them on edges.

Fig. 2. An example for encoding the multi-resource requirements

Multi-resource Guarantee. In order to make the values of different resources
comparable to each other and easy to handle, we first normalize the resource
number to be the fraction of the corresponding maximum capacity indepen-
dently. After normalization, the scheduler checks which machines have sufficient
resources to place the requested containers. If a machine is eligible for a container,
it adds an edge from the container node to the machine node with capacity 1.
The challenge here is how to assign the costs on the edges to differentiate the
quality of different placements. We introduce two strategies which are inspired

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 371

by vector bin packing algorithms [20]: dot-product heuristic and most-loaded
heuristic.

In dot-product heuristic, dot product between the demand vector of container
ci and the capacity vector of machine mj is defined as dpij =

∑
rk∈R

Dk
i V

k
j . The

higher dpij is, the better the placement is. The idea of this heuristic is that it
takes into account not only the resource demands of containers but also how
well its demands align with the resource capacities of machines. Nevertheless,
the cost on the edge between them is assigned to −dpij , because the lower the
cost is, the better the flow is in MCFP. For the edge from container node to
unscheduled node, the cost is 0 which is the highest. An example is shown in
Fig. 2(a).

In most-loaded heuristic, the container tends to be placed on the most loaded
machine. In our cost model, it is also based on a scalar value mlij =

∑
rk∈R

Dk
i

V k
j

between the container ci and the machine mj to prioritize the placement. The
higher mlij is, the more loaded the machine is. Similarly, the cost on the edge
is assigned to −mlij . An example is shown in Fig. 2(b).

Fig. 3. An example for encoding the affinity requirements (dot-product heuristic)

Affinity Awareness. The location of containers is crucial for the overall per-
formance. In the flow network, it is flexible to handle container affinity (co-
located on the same machine) and machine affinity (located on specific machine).
Figure 3(a) shows an example with machine affinity, where container c1 has a
machine affinity to machine m1. In the example, container c1 has only the edge
to machine m1 but no edge to machine m0. Figure 3(b) shows an example with
container affinity, where container c0 and container c1 have an affinity. In the
flow network, we add a new node, called aggregator node Ai (A0 in the example).
Both container c0 and container c1 have an edge to aggregator node A0. Hence,
the scheduler can treat the two containers as one to handle container affinity.

372 Y. Hu et al.

3.4 MCFP Algorithms

After constructing the flow network, the scheduler will perform a MCFP
algorithm to find the optimal placement solution with respect to the costs
we have assigned. Known worst-case complexity bounds on the MCFP are
O(M log(N)(M +N log(N))) [18] and O(NM log(N) log(NC)) [11], Where N is
the number nodes, M the number of edges and C the number of the largest edge
capacity. In the container scheduling problem, it is the case as M > N > C.
We currently implement the latter algorithm in our ECSched. However, MCFP
algorithms have variable runtimes depending on the input graph. The compar-
ison of different algorithms and the optimization of algorithms can be explored
as future work. The design of ECSched is based on a heartbeat mechanism. On
a heartbeat, ECSched fetches all the deployment requests to construct a flow
network, and performs the MCFP algorithm to find a placement solution.

4 Evaluation

We implement ECSched with a container manager and the above MCFP algo-
rithm in Python. In this section, we evaluate our ECSched on a 30-machine
cluster in ExoGENI to compare the placement quality. To understand the over-
head of ECSched, we do large-scale simulations using synthetic workloads.

4.1 Comparison of Placement Quality

Cluster. We create a container cluster with 30 virtual machines (VM) in Exo-
GENI [7] testbed. Considering the heterogeneity, we choose three types of VM
configurations in our experiments. Thus, the container cluster is composed of 10
VMs of “XOMedium” type (1 core, 3 GB of memory), 10 VMs of “XOLarge”
type (2 core, 6 GB of memory) and 10 VMs of “XOXLarge” type (4 core, 12 GB
of memory). After normalization, the capacity vectors are: (CPU: 0.25, MEM:
0.25), (CPU: 0.5, MEM: 0.5), and (CPU: 1, MEM: 1).

Workloads. To test our prototype, we constructed container deployment
requests based on the Google cluster trace [21], which provides data from a
12,500-machine cluster over a month-long period. As we chose to spend 5 hours
at each experiment, we analyzed the trace of the first five hours. There are 83,241
tasks completed, and the average duration of the tasks is 764 s. Considering the
scale of our testbed cluster, we randomly sample 8,300 tasks (10%) from them
at each experiment. The generator yields container requests according to fol-
lowing aspects from the trace: task submission times, task durations and task
resource requirements. The resource requirements have been normalized in the
trace. Additionally, we add the requirements of container affinity and machine
affinity with 6% probability according to the percentage of task constraints in
the trace [21].

Baselines. We compare ECSched to state-of-the-art scheduling algorithms
implemented in Google Kubernetes [3] and Docker Swarm [2]. Under multi-
resource requirements, the default scheduler of Kubernetes tends to distribute

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 373

pods (smallest deployable units in Kubernetes) evenly across the cluster to bal-
ance the resources, while the scheduler of Swarm tends to place containers on
the most loaded machines to improve resource utilization. Both are queue-based
schedulers, which schedule one unit at a time.

Metrics. We consider two metrics: the average container completion time and
average cluster resource utilization to compare the placement quality of different
schedulers. The improvement of average container completion time is computed
as:

Factor of Improvement =
Duration of a Baseline
Duration of ECSched

(8)

Factor of Improvement greater than 1 means ECSched is performing better, and
vice versa.

Fig. 4. CDF of factors of improvement in average container completion time

Figure 4 compares the performance of ECSched with baseline schemes to
handle 8,300 container requests on the cluster. We use two strategies in our
scheduler to do the comparisons, where ECSched-dp is based on dot-product
heuristic, and ECSched-ml is based on most-loaded heuristic. In the figure, the
results show that for more than 68% of the containers, ECSched performs better
than the alternatives, and only 10% of the containers slow down. For two different
strategies, ECSched-dp performs better than ECSched-ml in our evaluation. To
the scheduler of Kubernetes, ECSched-dp speeds up containers by 1.2× at the
median, 1.28× at the 60th percentile, and 1.5× at the 80th percentile. To the
scheduler of Swarm, ECSched-dp speeds up containers by 1.21× at the median,
1.3× at the 60th percentile, and 1.57× at the 80th percentile. Overall, ECSched
improves over the alternatives by up to 1.3× on average. The improvements
accrue from the increase in the number of simultaneously running containers (less
waiting time in the queue), as ECSched takes entire workloads into consideration
to make placement decisions.

To evaluate the resource efficiency, we make some changes to the workloads.
All the container requests are submitted at the beginning in the experiment.

374 Y. Hu et al.

Table 1 shows the average cluster resource utilization of the experiment. Due
to the better placement (cause less resource fragmentation), ECSched sustains
higher cluster resource utilization than the baselines. Overall, ECSched provides
1.1× better resource efficiency. Consequently, it demonstrates that the ECSched
approach can achieve higher quality placements for deploying containers on het-
erogeneous clusters.

Table 1. Average cluster resource utilization in the experiment

Resource type ECSched-dp ECSched-ml Kubernetes Swarm

CPU 76.57% 75.80% 70.00% 69.98%

MEMORY 76.71% 75.93% 70.12% 70.10%

4.2 Overheads Evaluation

As we model the scheduling problem as a MCFP, the scheduling algorithm in
our scheduler is more complex than existing schedulers. To estimate overheads,
we simulate large-scale clusters to run our scheduling algorithm. We consider
two cluster sizes: 1000-machine cluster and 5000-machine cluster (largest cluster
which Kubernetes can support currently). The configuration of each machine is
chosen uniformly at random from Amazon EC2 instances (19 kinds of general
purpose instances) in order to make the simulated cluster more heterogeneous,
and each machine is half loaded in the simulation. By analyzing the trace [21],
the scheduler needs to make hundreds of task placement decisions per second
in peak hours. Thus, we try to submit 100, 200 and 300 container deployment
requests to the scheduler to evaluate the algorithm runtime. In order to fairly
compare the algorithm runtime, we also implement the scheduling algorithm of
Kubernetes and Swarm in Python. We conduct this experiment on a server with
48 cores and 128 GB memory.

Figure 5 shows the results of the experiment which we repeated ten times. We
see that the algorithm runtime of ECSched is longest while Swarm is shortest.
The algorithm of Swarm is a simple greedy search to place requested contain-
ers. Compared with Swarm, the algorithm of Kubernetes is complex, which has
multiple predicated policies and priorities policies to filter and score machines.
Obviously, our algorithm is the most complicated one. Nevertheless, ECSched
can respond in sub-second time when the number of requested containers is less
than 100. When processing 300 containers concurrently, the ECSched responds
in about 1.8 s for 1000-machine cluster and about 3.4 s for 5000-machine cluster.
Actually, compared to the average duration (764 s in our experiments) of the
containers in the cluster [21], the overhead is relatively small and acceptable.
We believe that our scheduler is effective and usable in practice.

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 375

Fig. 5. Comparing algorithm runtime in large-scale simulation

5 Related Work

The problem investigated in this paper - container scheduling on heterogeneous
clusters - is related to a variety of research topics as follows.

Bin Packing. The problem of VM placement or consolidation which is similar
to our problem is often formulated as vector bin packing problem, and various
heuristics have been proposed for this problem [15,16]. Mark Stillwell et al.
[22] studied variants of FFD concluding that the algorithm that reasons on
the sum of the resource needs of the tasks are the most effective. Panigrahy
et al. [20] presented a generalization of the classical first fit decreasing (FFD)
heuristic. In their experiments, it showed that the Dot-Product heuristic often
outperforms FFD-based heuristics. These contributions focus on VM packing,
and only consider each request independently.

Metaheuristics. In recent years, many metaheuristic techniques have become
prevalent for the approximate solution of multi-objective optimization problems
[25]. Mi et al. [17] proposed a genetic algorithm based approach, namely GABA,
to adaptively self-reconfigure the VMs in virtualized large-scale data centers
consisting of heterogeneous nodes. Xu et al. [25] presented a modified genetic
algorithm with fuzzy multi-objective evaluation for efficiently searching the large
solution space and conveniently combining possibly conflicting objectives. How-
ever, these approaches often take minutes or hours to generate a solution, which
face difficulties for a online response.

Cluster Schedulers. Many cluster schedulers have been proposed for different
purposes. Sparrow [19] and Tarcil [9] are distributed schedulers developed for
clusters that achieve a high throughput for short tasks. Quincy [14], a cluster fair
scheduler, models the fair scheduling problem as a minimum cost flow problem
to schedule jobs into slots. Firmament [10], a centralized scheduler, achieves low
latency via a min-cost max-flow (MCMF) optimization. Differently, ECSched
shows that how to encode multi-resource requirements and affinity requirements
in MCFP.

376 Y. Hu et al.

6 Conclusion

In this paper, we have presented ECSched, an efficient container scheduler to
schedule concurrent containers on heterogeneous clusters. ECSched is a graph-
based scheduler, which takes entire deployment requests into consideration for
placement decisions. We demonstrate that ECSched can achieve better place-
ment quality than state-of-the-art scheduler in the evaluation. The large-scale
simulation shows there are small overheads of ECSched, but it is acceptable
in practice. In the future work, we will consider container dependencies and
resource dynamics for the scheduler to adopt more sophisticated situations.

Acknowledgments. This research has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreements 643963
(SWITCH project), 654182 (ENVRIPLUS project) and 676247 (VRE4EIC project).
The research is also funded by Chinese Scholarship Council.

References

1. Amazon web services. https://aws.amazon.com/
2. Docker swarm. https://docs.docker.com/engine/swarm/
3. Google kubernetes. https://kubernetes.io/
4. Microsoft azure. https://azure.microsoft.com/
5. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Elsevier, New York

(2014)
6. Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In:

International CMG Conference, vol. 253 (2007)
7. Baldin, I., et al.: ExoGENI: a multi-domain infrastructure-as-a-service testbed. In:

McGeer, R., Berman, M., Elliott, C., Ricci, R. (eds.) The GENI Book, pp. 279–315.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33769-2 13

8. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Commun. ACM 59(5), 50–57 (2016)

9. Delimitrou, C., Sanchez, D., Kozyrakis, C.: Tarcil: reconciling scheduling speed
and quality in large shared clusters. In: Proceedings of the Sixth ACM Symposium
on Cloud Computing, pp. 97–110. ACM (2015)

10. Gog, I., Schwarzkopf, M., Gleave, A., Watson, R.N., Hand, S.: Firmament: fast,
centralized cluster scheduling at scale. USENIX (2016)

11. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling
negative cycles. J. ACM (JACM) 36(4), 873–886 (1989)

12. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11, p. 22 (2011)

13. Hu, Y., et al.: Deadline-aware deployment for time critical applications in clouds.
In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol.
10417, pp. 345–357. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64203-1 25

14. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.:
Quincy: fair scheduling for distributed computing clusters. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 261–276.
ACM (2009)

https://aws.amazon.com/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://azure.microsoft.com/
https://doi.org/10.1007/978-3-319-33769-2_13
https://doi.org/10.1007/978-3-319-64203-1_25
https://doi.org/10.1007/978-3-319-64203-1_25

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 377

15. Lee, S., et al.: Validating heuristics for virtual machines consolidation. Microsoft
Research, MSR-TR-2011-9 pp. 1–14 (2011)

16. Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin packing
problems. Discret. Appl. Math. 123(1), 379–396 (2002)

17. Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration
with performance guarantee for energy-efficient large-scale cloud computing data
centers. In: 2010 IEEE International Conference on Services Computing (SCC),
pp. 514–521. IEEE (2010)

18. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res.
41(2), 338–350 (1993)

19. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low
latency scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pp. 69–84. ACM (2013)

20. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing
(2011). research.microsoft.com

21. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
Third ACM Symposium on Cloud Computing, p. 7. ACM (2012)

22. Stillwell, M., Schanzenbach, D., Vivien, F., Casanova, H.: Resource allocation algo-
rithms for virtualized service hosting platforms. J. Parallel Distrib. Comput. 70(9),
962–974 (2010)

23. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-
adaptive applications within edge computing frameworks: a state-of-the-art review.
J. Syst. Softw. 136, 19–38 (2018)

24. Wang, J., et al.: Planning virtual infrastructures for time critical applications with
multiple deadline constraints. Future Gen. Comput. Syst. 75, 365–375 (2017)

25. Xu, J., Fortes, J.A.: Multi-objective virtual machine placement in virtualized data
center environments. In: Proceedings of the 2010 IEEE/ACM International Con-
ference on Green Computing and Communications & International Conference
on Cyber, Physical and Social Computing, pp. 179–188. IEEE Computer Society
(2010)

26. Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H., Li, Y.: Cloud comput-
ing resource scheduling and a survey of its evolutionary approaches. ACM Comput.
Surv. (CSUR) 47(4), 63 (2015)

27. Zhao, Z., et al.: A software workbench for interactive, time critical and highly
self-adaptive cloud applications (switch). In: 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 1181–1184.
IEEE (2015)

28. Zhou, H., et al.: Fast resource co-provisioning for time critical applications based on
networked infrastructures. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), pp. 802–805. IEEE (2016)

http://research.microsoft.com/

	ECSched: Efficient Container Scheduling on Heterogeneous Clusters
	1 Introduction
	2 Problem Formulation
	2.1 Model Description
	2.2 Deployment Requirements

	3 ECSched Approach
	3.1 Minimum Cost Flow Problem
	3.2 Flow Network Structure
	3.3 Encoding Deployment Requirements
	3.4 MCFP Algorithms

	4 Evaluation
	4.1 Comparison of Placement Quality
	4.2 Overheads Evaluation

	5 Related Work
	6 Conclusion
	References

