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Summary  
 
The overall aim of this work was to develop a modelling framework for a holistic assessment of how a new 
laboratory technology could be used to improve the performance of surveillance systems before 
the method is actually implemented. This case study simulated the use of metagenomics in the 
monitoring programme of antimicrobial resistance (AMR) in the Danish pig population. The assessment of 
the performance was both on detecting changes in the occurrence of existing AMR and to 
detect the emergence of previously undetected genes coding for specific AMR.  
  
The ability to take action on the increased occurrence of AMR is dependent on a monitoring system of AMR 
in humans, animals and in the environment. In Denmark, the current surveillance programme DANMAP is 
based on isolation of indicator bacteria from samples in humans, animals and food. These samples are 
tested phenotypically for AMR using minimum inhibitory concentration (MIC) panels. Currently, only E. coli 
and Enterobacteriaceae are used for monitoring phenotypic occurrence of AMR in the microbiome in animal 
populations. This limits the detection of changes in AMR to only those genes that are expressed in 
these indicator bacteria. When AMR is emerging in a population, it might occur in one, few or several bacteria 
species, and this may not be immediately detectable with the current strategy.   
 
Due to the rapid development of gene sequencing technology, it is now feasible to investigate the presence 
of all known AMR-genes in all bacteria in samples directly (metagenomics). Therefore, by the use 
of metagenomics, it may be possible to detect emerging AMR in a population earlier than with phenotypic 
test of indicator bacteria.   
 
The model framework developed for this case study has two dimensions: 1) the dynamic change in the 
occurrence of AMR genes in the population over time and 2) the monitoring procedure (sampling schedule), 
laboratory method, interpretation and statistical analysis of laboratory results. The simulation of the 
monitoring procedure included modules describing stochastic processes along the whole chain from 
sampling including: random selection of herds and animals, pooling of samples and thereby dilution of the 
genes of interest, randomness in the sequencing procedure related to how much genetic material that is 
sequenced. Using this detailed modelling approach, it was possible to assess how much of the uncertainty in 
the surveillance programme that originated from the sampling procedure and how much originated from 
the diagnostic procedure. This information can support surveillance design that reduced uncertainty of the 
surveillance results.  
 
The data obtained from the metagenomic procedure has a quantitative format in the form of the number of 
genes in a sample. It is therefore possible to utilise more computationally intensive methods in the analysis 
of the laboratory results. In this case study, we explored different statistical analyses to objectively detect 
changes in the observed data, and to forecast AMR based on the trend in the historical data. Forecasting 
is important for the control of AMR because precautionary actions need to be implemented early before the 
problem becomes a burden on human health. 
 
In the design of many surveillance programmes, decision makers must make a subjective eye-ball forecast 
based on graphs illustrating the historical occurrence over time. The ability for risk managers 
to make evidence based decisions about how to control risks prospectively, depends on the information 
available. In this context objective forecasts based on the observed data are highly informative for 
supporting decisions. The importance of forecasting is of specific relevance for health issues as AMR, 



because the time between implementation of control actions and effect on AMR is relatively long, on the 
scale of months or years.  
 

1.   Introduction 
 
The ability to take action on the increased occurrence of antimicrobial resistance (AMR) is 
dependent on a monitoring system of AMR in humans, animals and in the environment. In Denmark, 
the current surveillance DANMAP is based on isolation of indicator bacteria from samples in 
humans, animals and food and phenotypic and tested for AMR using MIC panels. AMR can be 
expected to occur in all bacteria species. Using only a couple of indicator bacteria (E. coli and 
Enterobacteriaceae) for detecting emerging increased occurrence of AMR is therefore depending 
on that the AMR is present in the indicator bacteria. An increased occurrence of phenotypical 
resistant indicator bacteria can be due to both the environment favouring clones of the indicator 
bacteria that is carrying genes encoding for AMR, or that the indicator bacteria has picked up mobile 
genetic elements from other bacteria species that has been favoured by carrying genes for AMR. 
The sensitivity of the current system to detect emerging AMR is totally dependent on that the AMR 
is expressed in the indicator bacteria, which is absolutely not always the case in realty.  
 
With the ongoing development of gene sequencing technology, it is now possible to investigate the 
presence of AMR in all bacteria in samples directly (metagenomics), using gene sequencing and 
subsequently mapping sequencing against databases with known sequences of nucleobases for 
AMR genes. The use of metagenomics increases the likelihood that emerging AMR is detected 
earlier due to that the whole microbiota of the sample is analysed for AMR, instead only selected 
indicators, and that the AMR does not need to be expressed by the bacteria in the laboratory.  
 
However, the likelihood to detect an emerging gene in a population using metagenomics depends 
on a number of factors such as sample size and frequency, how many DNA fragments sequenced in 
the sample and the actual occurrence of the AMR gene in the population. The objective of the 
presented study was to perform simulation studies estimating the time to detecting emerge of AMR 
in a population of production animals in the country based on different sample plans and 
metagenomics. The study was performed by first simulating emerge of AMR in a population over 
time – we utilised real metagenomics data from the Danish pig production, and emerge was 
simulated using epidemiological models such as SIR. Secondly, a given number of faecal samples 
was collected stochastically according to a pre-defined sampling schedule. The sequencing depth of 
the metagenomics were included as a stochastic process. We run three different scenarios for 
emerging AMR. In all scenarios the time until detecting of emerge after the emerge was actually 
started was estimated. This was done using the DBEST (Jamali et al., 2015b) . 
 
The aim with this work was to develop a framework for a holistic assessment of how new laboratory 
technologies can be used to improve the performance of surveillance systems before the 
technology is actually implementation in a population. The framework presented is developed 
focusing on how gene sequencing could be utilized in the monitoring program of AMR in the Danish 
pig population. In this monitoring program, focus is both on detecting changes in the occurrence of 
existing AMR, and to detect emerge of previously not present genes coding for specific genes.  



 
The framework is assessing the performance focusing on one outcome per application of the 
framework. However, the use of gene sequencing of the whole matrix (metagenomics), instead of 
focusing on pre-defined bacteria species, makes the whole monitoring much broader, looking for 
all known AMR genes in each sample.  
 
 
2.  Materials and methods used in the case study 
 
In this study, the approach was to first simulate data representing the “true occurrence” of AMR 
genes in a population of 4.000 farms producing slaughtering pigs. Secondly, we simulate the 
surveillance program running in the population, taking into account the stochasticity in sampling 
and laboratory procedure. The simulated “observed” results was the analysed statistically to detect 
changes and forecast the occurrence of AMR in the future. Finally, the result from the surveillance 
program was compared to the true occurrence, and the time to detect after emerge was estimated, 
and the accuracy of forecast was assessed.  
 
2.1 Data 
 
In the study, data about the actual occurrence of AMR genes in the animal population was simulated 
utilising measured amount of AMR genes in approx. 100 Danish pig farms producing slaughtering 
pigs. The occurrence of AMR genes were measured using metagenomics – the diagnostic procedure 
of interest in the case study. 
 
2.2 The simulation models 
 
In the simulation of the observed surveillance results, the results depend on:  

if it is individual samples or pooled samples that are analysed 
number of animals in the pool (dilution effect) 
the farm prevalence 
the within farm prevalence 
the concentration of the AMR in the animal  
the amount of the genetic material in the sample that is sequenced  
 
These values are all stochastic in reality and in case of emerging AMR, the occurrence at 

farms and animals vary by time, and these sources of variation and changes was built into the 
simulation model using Monte Carlo simulation. The susceptible-infected (𝑆𝐼) model was used to 
simulate the spread between farms (Apenteng et al., 2020). The stochasticity in the gene sequencing 
was modelled using binomial distribution describing the random selection of which genetic material 
in the sample that is actually sequenced. All analyses were carried out using R software. Finally, the 
observed data was compared with the true data to estimate “time to detection after the true start 
of the emerging AMR in the population. Also, the observed data were analysed using a time series 
approach to find the trend within the observed data in order to i) detect the change in the 
occurrence of AMR genes within the population and to ii) forecast the occurrence AMR in the future.  



 
2.3 Modelling true occurrence and emerge of AMR-genes  
 
The true occurrence of different AMR genes in the population was defined with: 
The farm prevalence; the within farm prevalence and; the concentration of the gene in the faeces 
of in infected pig. The concentration of the AMR gene(s) of interest in faeces was obtained from a 
Weibull distribution fitted to real-world data of the concentration of genes in pig faeces.  
 
In the case study we work with three different true scenarios: 

(1) An increased occurrence of a type of AMR resistance that is present in all farms in all pigs 
(endemic). In this scenario, we work with data representing the occurrence of 
tetracycline resistance in the pig population. The settings for the truth was that the 
prevalence of farms and animals is 100%. The initial concentration is equal to the 
concentration of tetracycline resistance genes observed in Danish pigs, and the increase 
is 5% per year.  

(2) Same as (1), but for beta-lactam (resistance against penicillin, cephalosporin, etc). The 
concentration of these genes are much lower in pigs compared to tetracycline.  

 
(3) The introduction of a new resistance gene into one farm, which will spread to other farms 
over time (emerging). The spread of the AMR gene between farms was modelled using a SIR 
approach, with a rate equal to a spread resulting in 80% contaminated farms after 5 years. 
In scenario 3, we assume that the concentration of the emerging gene was the same as the 
concentration of the blaOXA gene (a resistance gene with an extreme low concentration in 
the pig population).   
 

All scenarios were simulated in a population of 4.000 farms.  
 
2.4 Simulating the sampling schedule and concentration of genes in the sample used for 
gene sequencing 
 
In the case study, we assume that the sampling was performed once per month, were faecal 
material were collected at the slaughtering line from a give number of pigs, and that all material 
was pooled into one sample that was sent to the laboratory.  
 
The sampling procedure was performed randomly, at we run three different models varying number 
of samples that were pooled (n =, 5, 20 and 100). The concentration of a specific AMR gene in the 
pooled sample was a stochastic function of how many of the samples that were from infected pigs, 
and the actually concentration of the gene in the faeces of each pig carrying the gene. The effect of 
poling was modelled as estimating the mean concentration among the pooled samples.  
 
In reality, observed data in a surveillance program just represent one out of an infinitive 
combination of observations obtained when analysing samples from the reality, we did 101 
iterations for each scenario – representing 101 possible outcomes of a surveillance system.  



In scenario 1 and 2, representing an increase of already present AMR. Each iteration represents a 
surveillance system running for 240 months, whereof the first 120 month represent a steady state 
in the population, and were the increase start at month 121.  
In scenario 3, the emerging gene was seeded into one herd at month 1. Subsequently the gene 
spread across the population according to the SIR model. Each iteration was ran for 60 months, and 
at month 60, the gene of interest was present in almost the entire population. 
 
The stochastic part of the laboratory was focusing the randomness of how many gene fragments 
that are sequenced (random within a range of 25-50 million in the case study) and which gene 
fragments in the sample that are actually sequenced in the sequencing machine (completely 
random process).  
 
In this study, we assumed that the bioinformatic pipelines to assign the sequenced gene fragments 
to AMR genes was perfect (which is actually not correct assumption).  
 
2.4 statistically analyses of observed data  
 
The data obtained in each iteration was analysed statistically with the aim to detect changes in the 
occurrence of AMR (breakpoint analysis) and to forecast the occurrence of AMR beyond the latest 
time point of sampling.  
 
Initially different techniques for breakpoint analyses and forecasting was explored. A statistically 
method, originally developed to both detect and forecast changes in vegetation using remote 
information, was utilised - Detecting Breakpoints and Estimating Segments in Trend (DBEST). In this 
method, potential change points in the results and change in the amount of resistance of the chosen 
genes over a 20-year period is identified by performing a time-trend-analyses looking for changes 
in the measured amount of the AMR-gene(s) of interest over time.  
The main idea behind DBEST is to detect changes in a trend component. The trend component of 
the time series is then segmented using the peak/valley detector function. This method determines 
by drawing a straight line through detected peak/valley points and comparing perpendicular 
distances to non-peak and non-valley points between them using a distance-threshold. In this case, 
we use DBEST's change detection algorithm, which checks if the trend has segments with variation 
less than the threshold value set for the magnitude of a change and, as a result, identifies a final set 
of breakpoints with magnitudes greater than this. Data type, seasonality, change detection, first 
level shift, second level shift, duration, distance threshold, alpha, and change magnitude are the 
primary parameters used in this change detection algorithm within DBEST (Jamali et al., 2015b, 
2015a). The parameters used for DBEST are shown in Table 1. 
 
Table1: The parameters used for DBEST 

First-level-shift *True_Mean/2 
Second-level-shift *True_Mean 
Duration 6 months 
Alpha 0.5 
Change magnitude 10% of *True_Mean 

*True_Mean is the true mean (average) of each AMR-gene data used in this work. 



 
 
 
In scenario 1, all detected breakpoints during the initial first 120 months is false alarm, given that in 
the true data there is no change. Breakpoints that were detected after months 121 were used to 
estimate the time to detection in each of the iterations, representing the time that can be expected 
between the initial emerge of AMR of interest and the actual detection of the emerge.  
 
2.5 Modelling surveillance programme 
 
The model we have developed gives the opportunity to assess the effect of factors that we can 
decide to change – number of samples taken and polling, the sampling sequence, how many DNA 
fragments we want to sequence in a sample, and how we want to analyse and interpret the 
observed results. This assessment is done in the context of reality taking into account how the gene 
of interest (in this case study AMR genes) vary between farms, within between animals within farms 
and a change over time.  
 
 
Table 2: Different scenarios for genes occurring everywhere in the population (beta lactam and 
tetracycline) 

Scenario No. of 
faecal 
samples 
per (one 
pool per 
month  

Duration 
(months) 

Initial 
occurrence (%)  

Increased (%) 
after 120 months 
(per month)  

Sequence depth  
(millions) 

1 5 240 100 5 25-50  
2 20 240 100 5 25-50 
3 100 240 100 5 25-50 

 
Table 3: Different scenarios for a newly introduced AMR gene  

Scenario No. of 
faecal 
samples 
per 
(one 
pool per 
month) 

Population 
size 
(farms) 

No. of 
seed 
farm 

Duration 
(months) 

Sequence depth 
(millions) 

Transmission 
rate (SI) model 

1 5 4000 1 60 25-50 0.148 
2 20 4000 1 60 25-50min 0.148 
3 100 4000 1 60 25-50 0.148 

 
 
  



2.6 Sensitivity analysis 
 
To assess the relative impact of each scenario on the spread of the AMR-gene within the farms, 
sensitivity analysis is required. R software was used to perform all statistical analyses. We 
incorporate stochasticity into farm population to account for certain levels of unpredictability or 
randomness, as demonstrated by individual animal movement within the farm. The model 
predictions are highly robust (as shown in figure 4 and 8), according to sensitivity and robustness 
analyses performed on model input parameters. The transmission rate of the AMR-gene, as well as 
the proportion of the sampling schedule, were identified as potentially influential scenarios in the 
analyses.  

  



3. Results and discussion 
 
In this study, we have measured the occurrence of AMR genes as the counts per million, that should 
be interpreted that how many of the sequenced gene fragments was representing a specific AMR 
gene (normalized to 1.000.000). In DNA sequencing many different measures can be calculated and 
choice a unit depends on the aim of the study. The unit from other DNA based laboratory techniques 
have other units – e.g. Ct values of RT-PCR. Although the information might be quantitative from 
many new laboratory technologies, it is important to make careful considerations about the scale 
of measurement, before performing statistical analysis and interpretation of the results.  
 
Figure 1 shows the results of one iteration (out of totally 101 iterations) with the sample size of 5, 
20 and 100, respectively, from the scenario of changes of beta-lactam resistance in the population. 
The outcome of each iteration (as presented in figure 1) was used to detect the possible break points 
and false alarms in each iteration. Figure 2 shows the distribution of time to detect in the 101 
iterations, which ranging from a detection within the first few months after increased occurrence 
to that the increase is detected first after several years. This variation in time to detection is a result 
of all the sources of variability in the surveillance program ranging from sampling schedule to the 
definition of change in the statistical analysis. Figure 3 shows number of false alarms in the 
iterations. In most iterations the number of false alarms is 0 or only 1 or 2, but there are also 
iterations with several false alarms.  
 
Figure 4 shows the forecasted occurrence of beta-lactam AMR based on the observed data in the 
surveillance. The size of the uncertainty is increased by the time period that is forecasted, but 
instead of an eye-ball forecast, an analytical approach utilizing the data is more valid, robust and 
objective.  
 
Figure 5, figure 6, figure 7 and figure 8 present equivalent results for the scenario for changes in 
tetracycline resistance. 
 
In figure 1 and 4, on top of the simulated data, the output from the statistical analysis performed to 
detect changes are presented – detected changes and type of detected changes based on the 
definition of abrupt change.  
 
The DBEST algorithm employs a trend estimation method derived from the Loess Seasonal-Trend 
decomposition procedure (STL). STL is a fast filtering procedure that can deal with missing values 
and divides a time series into trend (low frequency variation), seasonal (variation at or near the 
seasonal frequency), and remainder (remaining variation) components. If one or more level-shift 
points are detected, the STL decomposition is performed separately for each part of the time series 
divided by the detected level-shift points; otherwise, it is performed once for the entire time series. 
The separate STL decomposition procedure frequently produces more precise trend and seasonal 
components, particularly around detected level-shift points. The observed data was deseasonalized 
by looking for the trend component, level-shifts are detected in the same way, but no STL 
decomposing is required. 
 



Based on the studied application, we define what properties a data point must have in order to be 
considered as an abrupt change or a level-shift. This is accomplished through the use of three 
arguments: first-level-shift, second-level-shift, and duration. For more information, see (Jamali et 
al., 2015b, 2015a). The values for these arguments must be careful considered. The presented tool 
gives the opportunity to assess the effect of these definitions on the number of false alarms and 
time to detect.  
 
  



 

               

               

              
Figure 1: Results from surveillance of increased occurrence of beta lactam resistance. top – 5 
samples per pool, middle 20 samples per pool, bottom 100 samples per pool. Black: the observed 
data points. Blue: the fitted trend. Orange: the gradual changes detected. Dashed vertical lines 
mark the starting point of detected changes.   



 
 
 

 
Figure 2: Time to detect changes in the occurrence of beta-lactam [months] in the 101 iteration 
performed for a sample size of 5 per pool (left), 20 samples per pool (middle) and 100 samples 
per pool per month (right).  

 
  



 

                               

                               

                                
Figure 3: Number of false alarms (detected changes in observed data without changes in the true 
occurrence) in the surveillance of increased occurrence of beta lactam resistance. Top – 5 samples 
per pool, middle 20 samples per pool, bottom 100 samples per pool.   

 



                          

                           

                          
Figure 4 shows the true occurrence of beta-lactam resistance, the observed occurrence 
forecasted occurrence of beta lactam. The shaded regions around the forecasted case trend (deep 
blue line) represent the 80% (deep blue) and 95% (light blue) confidence intervals.  Top – 5 
samples per pool, middle 20 samples per pool, bottom 100 samples per pool. 

 



              

               

               
Figure 5: Results from surveillance of increased occurrence of tetracycline resistance. top – 5 
samples per pool, middle 20 samples per pool, bottom 100 samples per pool. Black: the observed 
data points. Blue: the fitted trend. Orange: the gradual changes detected. Dashed vertical lines 
mark the starting point of detected changes. 



 

          
Figure 6: Time to detect changes in the occurrence of tetracycline [months] in the 101 iteration 
performed for a sample size of 5 per pool (left), 20 samples per pool (middle) and 100 samples 
per pool per month (right).  

 
 
 
 
  



 

                                

                                

                                
Figure 7: Number of false alarms (detected changes in observed data without changes in the true 
occurrence) in the surveillance of increased occurrence of tetracycline resistance. Top – 5 samples 
per pool, middle 20 samples per pool, bottom 100 samples per pool.   



                                      

                                      

                                       
Figure 8 shows the true occurrence of tetracycline resistance, the observed occurrence 
forecasted occurrence of beta lactam. The shaded regions around the forecasted case trend (deep 
blue line) represent the 80% (deep blue) and 95% (light blue) confidence intervals.  Top – 5 
samples per pool, middle 20 samples per pool, bottom 100 samples per pool. 

 
From Figure 4 and figure 8, the observed data and the forecast is close to the “true data”. This 
suggests that the data overall performance of the surveillance is a valid representation of the truth 
both and can be used to forecast the occurrence.  



 
According to Figure 9, scenario 1 shows that the 5-sample size, the more likely it is to detect the 
gene at an early stage of its spread followed by scenario 3 and then scenario 2.  
 

       
Figure 9: Time to detect a newly introduce AMR gene into the pig population in the 101 iteration 
performed for a sample size of 5 per pool (left), 20 samples per pool (middle) and 100 samples 
per pool per month (right). The transmission rate is equivalent to that almost all farms are 
infected after 5 years. The occurrence of the pathogen within animals in infected animals is 
assumed to be the same for AMR genes that are present at a very low rate in reality 

 
  



4 Conclusion based on the modelling work 
 
We have developed a framework for assessing the effect of implementing new laboratory 
techniques in already existing surveillance programs, and how that will influence the performance 
of the program. The framework can also be used to optimize the sampling schedule given new 
laboratory techniques.  
 
The framework presented take into account not only knowledge to the laboratory techniques, but 
also how the hazard of interest is present in the population of interest, both increase of an existing 
hazard or an emerge on a new hazard. In the case presented in this report, we work with surveillance 
of AMR in the animal production and how gene sequencing techniques can be used for that.  
 
The framework takes into account the effect of true sources of variation ranging from randomness 
in the sampling to random variation in the laboratory techniques.  
 
Also, as a novel part, we also include an analytical method for forecasting in the framework, utilizing 
computer intensive analytical methods for predicting the future change of the hazard in the 
population based on trends in observed data. With the computer intensive approach, a more real-
time surveillance if achieved, with a continuous update of the forecast for every new observed 
result. In the framework we utilized only one forecasting methods. The area for forecasting should 
be investigated further.  
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