See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/351811928

CO2 GAS FERMENTATION OPPORTUNITIES AND TECHNICAL CHALLENGES

 $\textbf{Presentation} \cdot \text{March 2021}$

DOI: 10.13140/RG.2.2.13341.23522

citations 0							
		READS 34					
1 author	1 author:						
	Jean-Luc Dubois Arkema						
	240 PUBLICATIONS 4,179 CITATIONS SEE PROFILE						
Some of	the authors of this publication are also working on these related projects:						

Gas phase partial oxidation of 2-methyl-1,3 propanediol to methacrylic acid in micro-fluidized bed View project

Project

COSMIC - European Training Network for Continuous Sonication and Microwave Reactors View project

9th Conference on CO₂-based Fuels and Chemicals **Online Event**

ARKEMA TODAY

9TH CONFERENCE ON CO2-BASED FUELS AND CHEMICALS - MARCH 23 & 24 2021 - JEAN-LUC DUBOIS

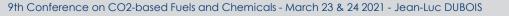
9TH CONFERENCE ON CO2-BASED FUELS AND CHEMICALS - MARCH 23 & 24 2021 - JEAN-LUC DUBOIS

INNOVATIVE SOLUTIONS WITH A SIGNFICANT CONTRIBUTION TO THE UNITED NATIONS'S SUSTAINABLE DEVELOPMENT GOALS (SDG)

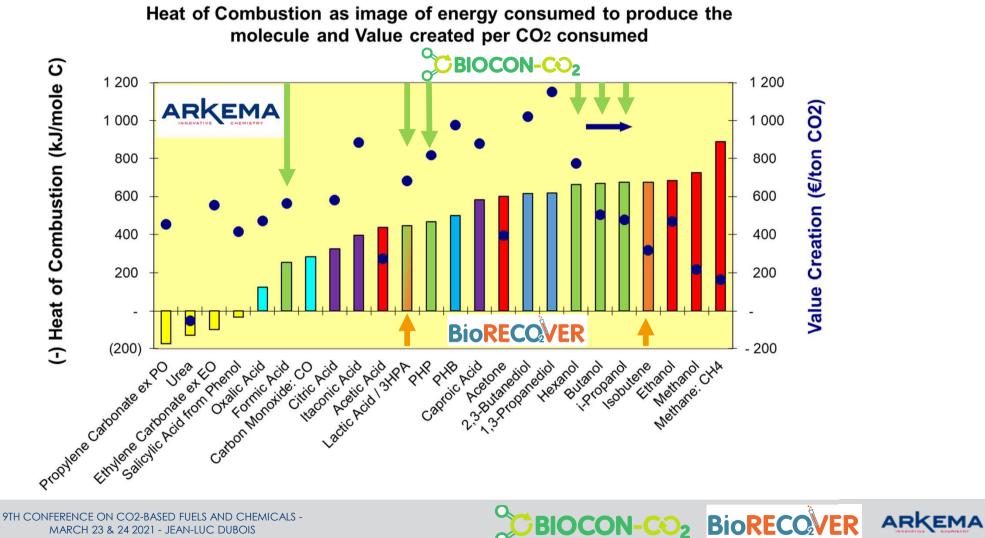
46*% PRODUCTS
PORTFOLIO
CONTRIBUTING
TO UN SDG

* 44% products portfolio assessed

4



MANAGE OUR ACTIVITIES AS A RESPONSIBLE MANUFACTURER



⁽¹⁾ Number of accident or event per million worked hour

TARGET PRODUCT SELECTION: VALUE CREATION AND ENERGY CONSUMPTION

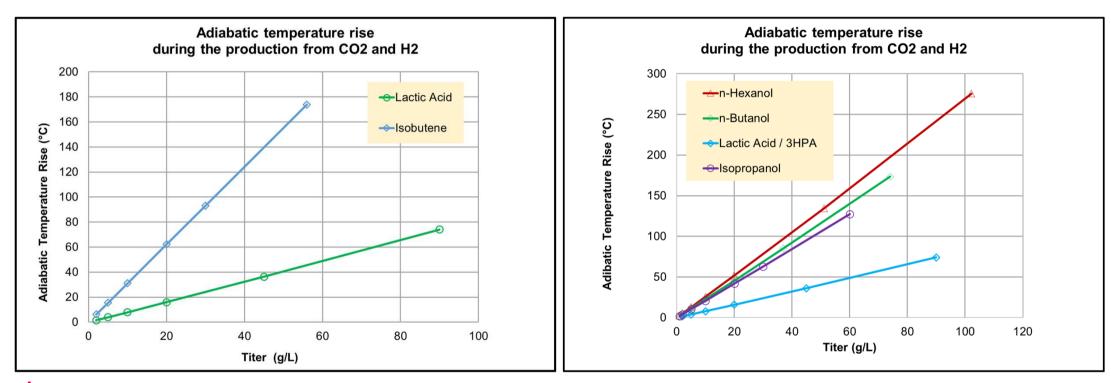
MARCH 23 & 24 2021 - JEAN-LUC DUBOIS

HEAT MANAGEMENT

Determination of the adiabatic temperature rise

$$\Rightarrow \Delta_r \mathrm{H}^{\circ} \left[\frac{\mathrm{kJ}}{\mathrm{mol}} \right] = \sum \Delta_{\mathrm{f}} \mathrm{H}^{\circ}_{\mathrm{products}} - \sum \Delta_{\mathrm{f}} \mathrm{H}^{\circ}_{\mathrm{reagents}}$$

 $\stackrel{\bullet}{\Rightarrow} \Delta T_{\text{liquid product}} = \frac{-\Delta_r H^{\circ} \left[\frac{kJ}{mol}\right] * \text{product titer} \left[\frac{mol}{L}\right]}{\text{product titer} \left[\frac{kg}{L}\right] * \left(\frac{c_{\text{p,mol,product}}}{M_{\text{product}}}\right) + \left(1 - \text{product titer} \left[\frac{kg}{L}\right]\right) * c_{\text{p,mass,water}}}$


$$\therefore \Delta T_{\text{isobutene}} = \frac{-\Delta_r H^{\circ} \left[\frac{kJ}{mol}\right] * \text{product titer} \left[\frac{mol}{L}\right]}{c_{p,\text{vol,water}}}$$

Example: CO2 to n-Butanol

- Hypothesis: (no metabolic leakage)
- 4 CO₂ + 12 H₂ → C₄H₉OH + 7 H₂O

HEAT MANAGEMENT

- Probably impossible to reach more than 10-20 g/L without external cooling
- Low Titers = High Capital Cost
- 100 kt/year of lactic acid = energy loss of 93 900 MWh/year = equivalent of the energy consumed by more than 14 000 Europeans in their households.

PROCESS SOLUTIONS

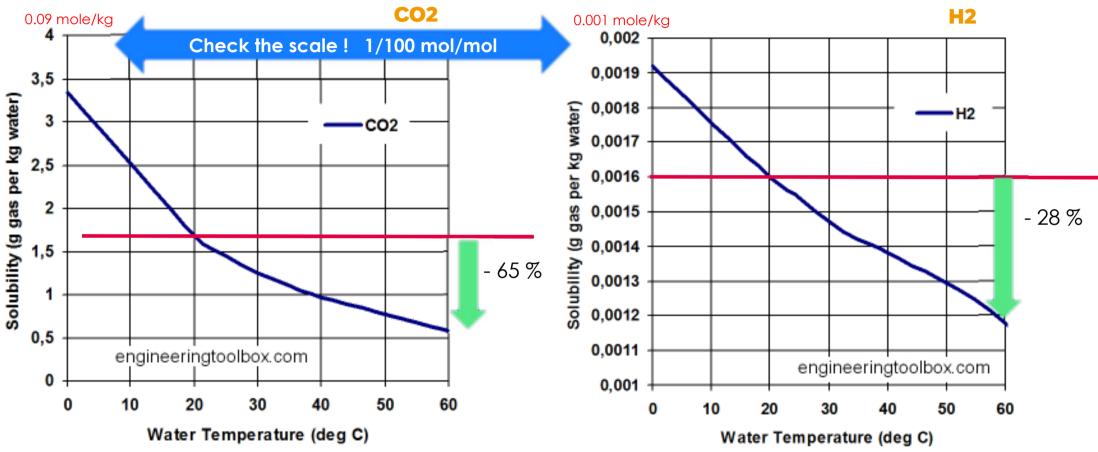
Option 1: Internal heat exchanger.

- High heat exchange area

Option 2: External heat exchanger, on a liquid loop

- Same heat exchange area, but at reduced pressure
- Impurities can accumulate

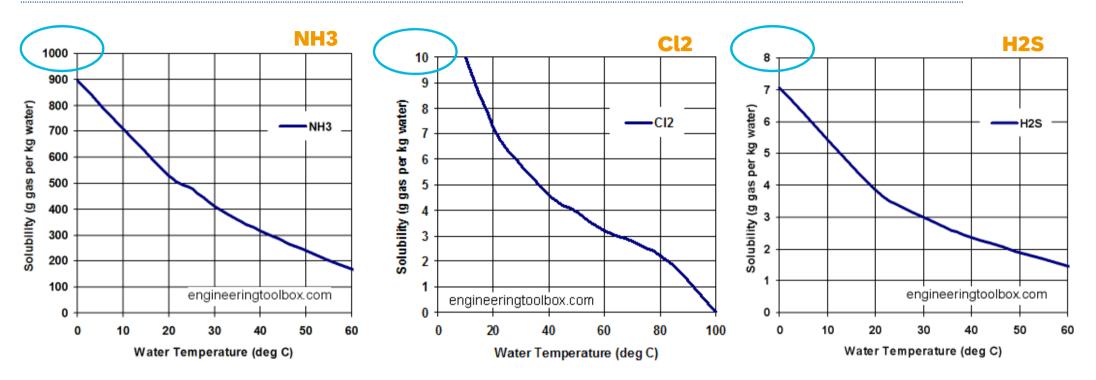
Option 3: Continuous feed of fresh water, in line with adiabatic temperature rise to keep reactor temperature constant.


Titer might be limited → High extraction cost

Option 4: Don't use hydrogen... Or any other good idea.

GAS SOLUBILITY IN WATER VS TEMPERATURE (solubility decreases with temperature)

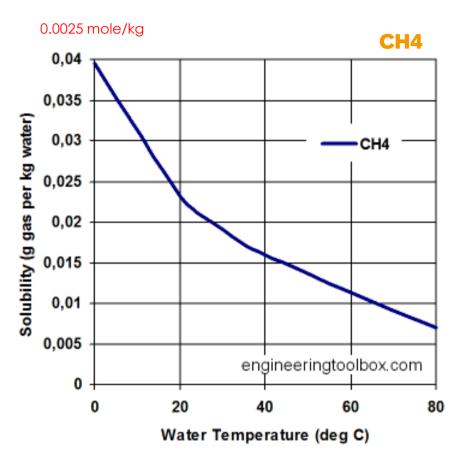
(source: Engineeringtoolbox.com)

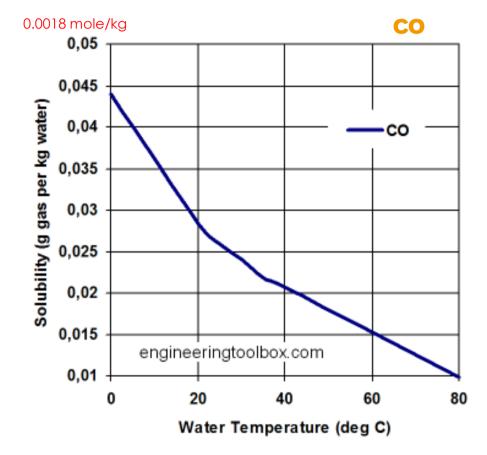

Decreased solubility to be compensated by an increased pressure

9TH CONFERENCE ON CO2-BASED FUELS AND CHEMICALS -MARCH 23 & 24 2021 - JEAN-LUC DUBOIS

IMPACT OF GAS IMPURITIES

Impurities have a higher solubility and can accumulate in a liquid loop


To be checked for any other impurities
Significant solubilities of some impurities that could accumulate


9TH CONFERENCE ON CO2-BASED FUELS AND CHEMICALS -MARCH 23 & 24 2021 - JEAN-LUC DUBOIS

ALTERNATIVE CARBON SOURCES – Gas solubilities similar to H₂

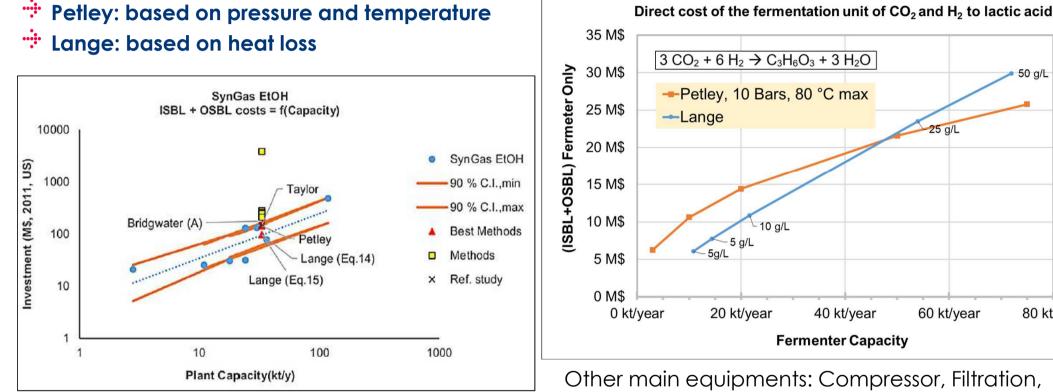
(H₂ at 0°C: 0.001 mol/kg, CO₂ at 0°C: 0.09 mol/kg)

9TH CONFERENCE ON CO2-BASED FUELS AND CHEMICALS -MARCH 23 & 24 2021 - JEAN-LUC DUBOIS

ADIABATIC TEMPERATURE RISE: H₂ makes the process difficult, other reducing agents to be considered

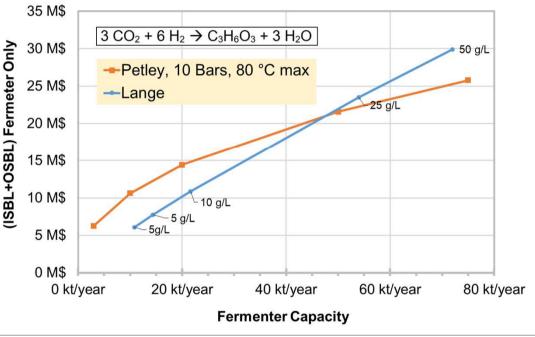
Adiabatic temperature rise during the production of n-butanol Adiabatic temperature rise during the production of lactic acid 80 200 ----from methanol and CO2 70 180 ----from CO2 and H2 ---from ethanol and CO2 Adiabatic Temperature Rise (°C) 160 60 ---from H2 and CO2 Adiabatic Temperature Rise (°C) from methanol 140 50 -from sugar ----from ethanol 120 40 100 30 80 20 60 10 40 0 20 -10 0 20 60 -20 0 40 80 0 20 40 60 80 100 Titer (g/L) Titer (g/L) Δ_rH° (kJ/mol) Reaction Reaction

Δ_rH° (kJ/mol) From H₂ and CO₂ $3 \text{CO}_2 + 6 \text{H}_2 \rightarrow \text{C}_3 \text{H}_6 \text{O}_3 + 3 \text{H}_2 \text{O}$ -298 $4 \text{CO}_2 + 12 \text{H}_2 \rightarrow 1 \text{C}_4 \text{H}_9 \text{OH} + 7 \text{H}_2 \text{O}$ From H₂ and CO₂ -701 From methanol and CO₂ $2 CH_4O + CO_2 \rightarrow C_3H_6O_3 + H_2O$ -36 From methanol and CO₂ $4 \text{ CH}_{4}\text{O} \rightarrow 1 \text{ C}_{4}\text{H}_{9}\text{OH} + 3 \text{ H}_{2}\text{O}$ -177 From ethanol and CO₂ $C_2H_4O + CO_2 \rightarrow C_3H_4O_3$ 50 From ethanol and CO₂ $2C_{2}H_{4}O \rightarrow 1C_{4}H_{9}OH+1H_{2}O$ -5 32 $C_6H_{12}O_6 \rightarrow 2C_3H_6O_3$ From sugar

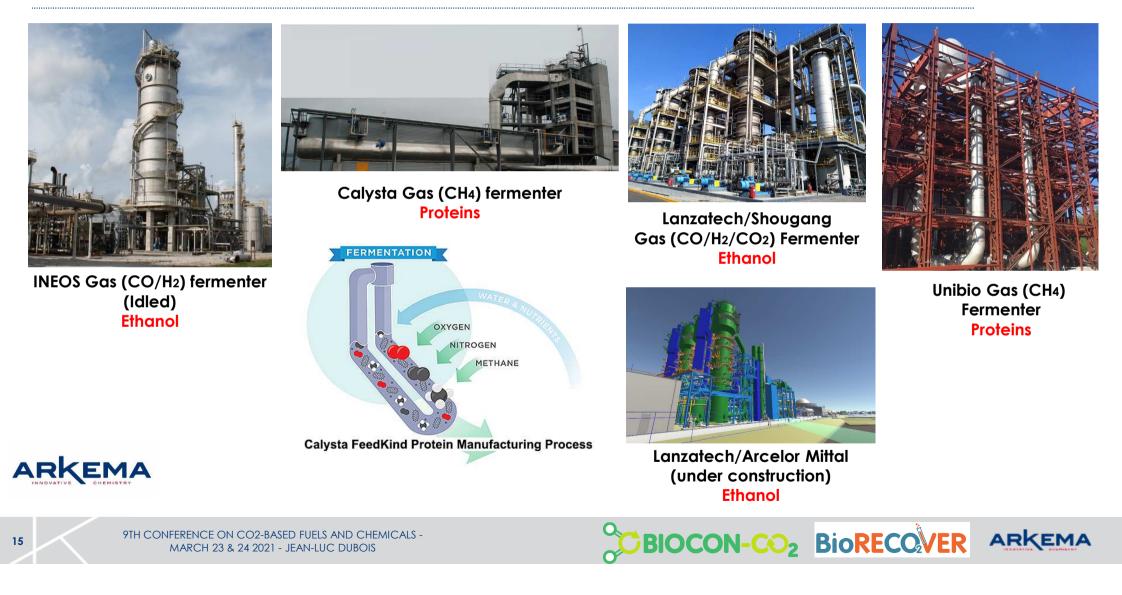

Challenging to have high titer, from CO2/H2 and good heat management. Methanol as alternative

9th Conference on CO2-based Fuels and Chemicals - March 23 & 24 2021 - Jean-Luc DUBOIS

CAPITAL COST ESTIMATES


2 methods: Petley and Lange, Cost evaluation for the fermenter

Early-Stage Capital Cost Estimation of Biorefinery Processes: A Comparative Study of Heuristic Techniques, M Tsaakari, JL Couturier, A Kokossis and JL Dubois, ChemSusChem 2016, 9, 2284 - 2297


14

Other main equipments: Compressor, Filtration, Separation, water treatment, off gases treatment,...

INDUSTRIAL SCALE GAS FERMENTORS: 4 DIFFERENT TECHNOLOGIES

INDUSTRIAL SCALE GAS FERMENTATION PROCESSES: 3 – 6000 \$/T PRODUCT

	Ineos Bio	Calysta	Lanzatech	Unibio	Coskata
Location	USA	China	Belgium	Russia	USA
Product	Ethanol & Electricity	Proteins	Ethanol	Proteins	Ethanol
Feedstock	Biomass to Syngas	Methane	СО	Methane	CO
Capacity product	24 kt/y 8 MW	20 kt/y	63 kt/y	6 kt/y	118 t/y (pilot/demo)
CAPEX	130 M\$ (2011)	80 M\$ (2020)	180 M\$ (2020)	35 M\$ (2016)	25 M\$ (2008)
Technology	Stirred tank / Bubble column	Loop reactor	Jet Loop reactor	U-loop	

9TH CONFERENCE ON CO2-BASED FUELS AND CHEMICALS -MARCH 23 & 24 2021 - JEAN-LUC DUBOIS

HEAT MANAGEMENT

Challenges in heat management: a lot of heat is produced at low temperature.

What to do with the heat produced?

- Use for downstream/upstream process steps?
- Use in district heating?
- Use in green houses?

Challenges for the process:

- Higher temperatures would be preferable: better value for the heat.
- May require extremophiles, enzymatic process
- But gas solubility is decreasing at higher temperature...
- And microorganisms survival might be compromised.

Heat losses have to be seen in light of the production capacity

- Not detectable at lab scale
- May represent the energy consumption of several 10 000 European citizens at 100 000 tons/year.

THANK YOU FOR YOUR ATTENTION

jean-luc.dubois@arkema.com

18

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 761042 (BIOCON-CO2). This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein.

BIOCON-CO2

Horizon 2020 European Union Funding for Research & Innovation

The sole responsibility for the content of this dissemination and communication activity lies with the authors. It does not necessarily, reflect the opinion of the European Union (EU) Horizon 202 not responsible for any use that may be made of the inform contained therein.

