
Supplementary Material: Local Competition and Stochasticity for
Adversarial Robustness in Deep Learning

Konstantinos P. Panousis† Antonios Alexos‡ Sergios Theodoridis§ Sotirios Chatzis†

†Cyprus University of Technology, Limassol, Cyprus
‡University of California Irvine, CA, USA

§National and Kapodistrian University of Athens, Athens, Greece & Aalborg University, Denmark
k.panousis@cut.ac.cy

1 Experimental Setup

To allow for transparency and comparability to related recent literature, we adopt the experimental setup of
(Verma and Swami, 2019). For development, we use Tensorflow (Abadi et al., 2016), enabling GPU support
for faster computations. Additionally, in order to test the proposed model against adversarial attacks, we use
the Cleverhans package (Papernot et al., 2016). All experiments are performed on a workstation comprising an
i7-7820X CPU, 64 GB RAM and an NVidia Quadro P5000.

1.1 Training Setup

As mentioned in the main text, we use Stochastic Gradient Variational Bayes (SGVB) in order to train the
model. Thus, we can employ off-the-shelf stochastic optimizers; we choose ADAM (Kingma and Welling, 2014)
with its default settings.

For the evaluation of our proposed approach, we use the MNIST and CIFAR-10 datasets. For MNIST, we train
the Standard and Ensemble models for a maximum of 100 epochs with a learning rate of 3e-4. We follow an
analogous procedure for the CIFAR dataset with a learning rate of 1e-4. Similar to Verma and Swami (2019), for
training we add zero-mean Gaussian noise with a standard deviation of 0.3 for MNIST and 0.032 for CIFAR-10.

As far as the loss function of the different considered networks is concerned, we employ: (i) the standard cross-
entropy loss for Softmax, (ii) the binary cross-entropy for Logistic, and (iii) the hinge-loss for networks operating
with Hadamard codes.

For all the considered posterior concrete relaxations employed during training, i.e. the posterior distribution of
the latent winning indicators ξ

n
, n = 1, . . . , N , as well as the posteriors over the latent variables Z, we use a

constant temperature of 0.67, as suggested in Maddison et al. (2016). We have had no convergence issues with
this selection, whatsoever.

1.2 Network Setup

As mentioned before, in order to allow for comparison to recent state-of-the-art approaches, we use the same
experimental setup as in Verma and Swami (2019). Thus, the considered network architectures are the ones
described in Table 1 of the main text, and implemented similar to the code of Verma and Swami (2019)1.



Supplementary: Local Competition and Stochasticity for Adversarial Robustness in Deep Learning

Table 1: Standard Architecture for MNIST dataset

Layer Type Parameters

Conv2D kernels=64, kernel_size=(5,5), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(2,2)

Dense units=128
Dense units=64
Dense units=64
Dense units=10

Table 2: Standard Architecture for CIFAR-10 dataset

Layer Type Parameters

Conv2D kernels=32, kernel_size=(5,5), strides=(1,1)
Conv2D kernels=32, kernel_size=(5,5), strides=(1,1)
Conv2D kernels=32, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=128, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=128, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=128, kernel_size=(3,3), strides=(2,2)

Dense units=128
Dense units=64
Dense units=64
Dense units=10

1.2.1 Standard Network Architectures

Tables 1 and 2 present the convolutional and fully-connected layers of the Standard Architecture, for MNIST
and CIFAR-10 datasets, respectively. Every Convolutional layer is followed by a Batch Normalization layer,
except for the last one. All the conventional layers have been replaced by their respective LWTA and IBP-driven
variants, introduced in the main text.

1.2.2 Ensemble Network Architectures

Tables 3 and 4 depict the Ensemble architectures for the MNIST and CIFAR-10 datasets, respectively. On each
table, after the first double lines, the network splits into four branches. Every branch comprises convolutional and
densely connected layers. Finally, a dense layer with linear activation outputs the logits. Every Convolutional
layer before the double lines is once again followed by a Batch Normalization layer, except for the last one.
The Convolutional layers and the Dense layers in between do not include a Batch Normalization layer. Again,
all conventional definitions of the layers have been replaced by their respective LWTA and IBP-based variants
proposed in this work.

2 Effect of Block Size, U

Since in our ablation study, in Section 4.3.1 of the main text, we considered blocks with U = 2 competing
units, we repeat here similar experiments considering blocks of U = 4 competitors. The obtained results are

1https://github.com/Gunjan108/robust-ecoc



Konstantinos P. Panousis, Antonios Alexos, Sergios Theodoridis, Sotirios Chatzis

Table 3: Ensemble Architecture for MNIST dataset. The layers between the two liners consist the Ensemble
Networks and are repeated 4 times.

Layer Type Parameters

Conv2D kernels=32, kernel_size=(5,5), strides=(1,1)
Conv2D kernels=32, kernel_size=(5,5), strides=(1,1)
Conv2D kernels=32, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=128, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=128, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=128, kernel_size=(3,3), strides=(2,2)

Conv2D kernels=4, kernel_size=(5,5), strides=(2,2)
Conv2D kernels=4, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=4, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=4, kernel_size=(2,2), strides=(1,1)
Conv2D kernels=4, kernel_size=(2,2), strides=(1,1)
Dense units=16
Dense units=8
Dense units=4
Dense units=2
Dense units=1

Table 4: Ensemble Architecture for CIFAR-10 dataset. The layers between the two liners consist the Ensemble
Networks and are repeated 4 times.

Layer Type Parameters

Conv2D kernels=32, kernel_size=(5,5), strides=(1,1)
Conv2D kernels=32, kernel_size=(5,5), strides=(1,1)
Conv2D kernels=32, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=64, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=128, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=128, kernel_size=(3,3), strides=(1,1)
Conv2D kernels=128, kernel_size=(3,3), strides=(2,2)

Conv2D kernels=16, kernel_size=(5,5), strides=(2,2)
Conv2D kernels=16, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=16, kernel_size=(3,3), strides=(2,2)
Conv2D kernels=16, kernel_size=(2,2), strides=(1,1)
Conv2D kernels=16, kernel_size=(2,2), strides=(1,1)
Dense units=16
Dense units=8
Dense units=4
Dense units=2
Dense units=1

presented in Tables 5 and 6. For the MNIST dataset, we observe in Table 5 that only the Softmax and Tanh16
networks produce high accuracy scores in the majority of the attacks. In the case of CIFAR-10, we observe that
all networks yield accuracy much inferior to the case of U = 2.



Supplementary: Local Competition and Stochasticity for Adversarial Robustness in Deep Learning

Table 5: Accuracy scores with U = 4 competing units on MNIST.

Network Params Benign PGD CW BSA Rand

Softmax 327,380 0.9613 0.905 0.97 0.95 0.187
Logistic 327,380 0.538 0.48 0.46 0.41 0.407
Tanh16 328,352 0.9432 0.895 0.93 0.94 0.43

LogisticEns10 205,150 0.1369 0.123 0.08 0.17 0.53

Table 6: Accuracy scores with U = 4 competing units on CIFAR-10.

Network Params Benign PGD CW BSA Rand

Softmax 772,628 0.5532 0.506 0.51 0.59 0.025
Logistic 772,628 0.4241 0.381 0.32 0.41 0.177
Tanh16 773,600 0.5097 0.46 0.55 0.6 0.368

LogisticEns10 1,197,998 0.4662 0.447 0.43 0.51 0.255

3 Change of the output logit values

Similar to the illustrations of Fig. 3 in the main text, we here revisit how the classifier output logits change
in the context of an adversarial attack to our model. Thus, we again consider the Softmax network trained on
the MNIST and CIFAR-10 datasets. In Fig. 1, we present the change in the output logit values of our model
trained on MNIST for three randomly selected examples from the MNIST test set, under a PGD attack. The
corresponding results from three randomly selected test examples considering the CIFAR-10 dataset are depicted
in Fig.1. In both cases, we observe that our approach exhibits inconsistent and varying changes of the logit values,
obstructing the attacker from distorting the dominant class. In contrast, the ReLU-based counterpart exhibits
a smooth change, allowing the attacker to successfully attack the model.

0 100

PGD Step

−10

0

10

20

30

L
o

g
it

V
a

lu
e

0 100

PGD Step

−10

0

10

20

L
o

g
it

V
a

lu
e

0 100

PGD Step

−15

−10

−5

0

5

10

15

20

25

L
o

g
it

V
a

lu
e

0 100

PGD Step

−5

0

5

10

15

20

25

L
o

g
it

V
a

lu
e

0 100

PGD Step

−5

0

5

10

15

L
o

g
it

V
a

lu
e

0 100

PGD Step

−5

0

5

10

15

20

25

L
o

g
it

V
a

lu
e

Figure 1: Change of the output logit values under a PGD attack (MNIST dataset), for our proposed approach
(top row), and the ReLU-based counterpart (bottom row).



Konstantinos P. Panousis, Antonios Alexos, Sergios Theodoridis, Sotirios Chatzis

0 100

PGD Step

−40

−20

0

20

40

60

L
o

g
it

V
a

lu
e

0 100

PGD Step

−20

−10

0

10

20

30

L
o

g
it

V
a

lu
e

0 100

PGD Step

−20

−10

0

10

20

30

40

L
o

g
it

V
a

lu
e

0 100

PGD Step

−20

−10

0

10

20

30

40

L
o

g
it

V
a

lu
e

0 100

PGD Step

−10

−5

0

5

10

15

20

L
o

g
it

V
a

lu
e

0 100

PGD Step

−20

−10

0

10

20

30

40

L
o

g
it

V
a

lu
e

Figure 2: Change of the output logit values under a PGD attack (CIFAR-10 dataset), for our proposed approach
(top row) and the ReLU-based counterpart (bottom row).

4 Complexity

Finally, Table 7 depicts the inference times for the Softmax network trained on MNIST, for various types of
attacks. We compare the Softmax network employing the conventional definitions of the convolutional and
feedforward layers (Verma and Swami, 2019) to an implementation employing our LWTA and IBP-based variant,
proposed in the main text. It is characteristic that, on the CW attack, our approach is 4.35 times faster, while
for the Random Noise attack our approach is 3 times faster.

Table 7: Inference times (in seconds) for various attacks to the Softmax network; MNIST dataset.

Model Benign PGD CW BSA Rand

Softmax with U = 2 7.969 108.219 767.292 823.25 1.370
Softmax (Verma and Swami, 2019) 2.218 48.294 3322.743 3581.75 3.703

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), pages 265–283.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In Bengio, Y. and LeCun, Y., editors,
ICLR.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712.

Papernot, N., Carlini, N., Goodfellow, I., Feinman, R., Faghri, F., Matyasko, A., Hambardzumyan, K., Juang,
Y.-L., Kurakin, A., Sheatsley, R., et al. (2016). cleverhans v2. 0.0: an adversarial machine learning library.
arXiv preprint arXiv:1610.00768.



Supplementary: Local Competition and Stochasticity for Adversarial Robustness in Deep Learning

Verma, G. and Swami, A. (2019). Error correcting output codes improve probability estimation and adversarial
robustness of deep neural networks. In Advances in Neural Information Processing Systems, pages 8643–8653.


