
Artifact evaluation instructions

Getting started guide

Intro

This artifact is prepared as a docker image. The docker image contains the Eff  compiler built

from source along with additional external benchmark files and working version of multicore OCaml

compiler used for running benchmarks. The dockerfile was tested on MacOS (version v19.03.13-

beta2 and v20.10.7), Ubuntu (20.04.2 LTS), and Windows (20.10.6, build 370c289). Make sure that

the docker settings allow for at least 6GB of ram.

Instructions

Install docker for your operating system, any recent enough version will do. This artifact has

been tested with Docker version 20.10.2, build 20.10.2-0ubuntu1~20.04.2.

Before any operation, make sure that docker-deamon  or docker service is running.

Obtain Docker image. This can be done in two ways:

i. Use prebuilt image available on Dockerhub (faster, recommended):

Pull image using docker pull j00sko/eff-oopsla-artifact:oopsla2021-update .

ii. Build image locally(slower).

The repository contains the same Dockerfile  used to build the image on dockerhub.

Run docker build -t j00sko/eff-oopsla-artifact:oopsla2021-update . . Build
can take up to 30 minutes depending on your internet connection and computer

power. Warnings from opam that "running as root is not recommended" are expected

and should be ignored.

Test successful build by running docker run j00sko/eff-oopsla-artifact:oopsla2021-
update ./eff.exe examples/choice.eff . This runs a simple example and should produce:

[WARNING] Running as root is not recommended 
- : int = 10 
- : int = 10 
val choose_all : 'a => 'a list = <handler> 
- : int list = [10; 5; 20; 15] 
val choose_all2 : 'a => 'a list = <handler> 
- : int list list = [[10; 5]; [20; 15]] 
- : int list list = [[10; 20]; [5; 15]] 
- : int list list = [[10; 20]; [10; 15]; [5; 20]; [5; 15]] 

https://docs.docker.com/engine/install/


The example runs a simple eff  program and outputs the results.

Warnings about running as root can safely be ignored.

Step by Step Instructions

Intro

Dockerfile starts with an original OCaml docker image and installs necessary libraries for building

the Eff  compiler presented in the paper. Pinned version of Eff  is compiled from scratch and an

executable is created. Finally an additional switch for Multicore OCaml on which benchmarks are

run is installed and set as default.

Pinned version of Eff  is practically the same as the one used for the paper with some minor

differences:

Library delimcc  is excluded since it doesn't work with Multicore OCaml.

Benchmarks from Handlers in action  and Eff in Ocaml  are commented out. These

benchmarks are a few orders of magnitude slower than the ones presented in the paper and

provide no additional information, while greatly increasing benchmarking time.

Additional flag is added to optionally compile Multicore OCaml benchmarks on both versions

4.10  (already in paper) and 4.12  (newly added).

Bash script helpers are added to enable easier access to functionality and artifact testing.

Number of runs for benchmarks is lowered due to overhead induced by container. Number of

runs can be increased by setting parameters in misc/code-generation-benchmarks/display-
results/benchmark.ml  in line 12 for human readable output and misc/code-generation-
benchmarks/generate-graphs/graphs.ml  in lines 6 and 8 for graph generation.

Any commands can also be executed directly in source code repo available at

https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping, provided that you have OCaml

with necessary libraries installed (following instructions in eff repo or Dockerfile).

Execute command docker run -it j00sko/eff-oopsla-artifact:oopsla2021-update bash , to
get access to docker.

Dockerfile is minimal and nano  is the only available editor. You can install an editor of your choice

apt-get install vim , but be aware, that any changes made to file system will be undone once

you exit the container (including installing a new editor).

Available commands

Unless otherwise stated, all commands are run in docker. This is also the same format for

commands if you were to use repository locally.

https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping


Generate data for benchmark results presented in paper: make graphs .

This runs all benchmarks and regenerates table files located in /eff/misc/code-generation-
benchmarks/generate-graphs/tables/ . Filename consists of benchmark name ( count ,
interpreter-state , ...) and benchmark backend ( generated  for generated OCaml code,

native , capabilities , ...).

Each file has a header with user-readable information and space-separated list of values: input

parameter and execution time ratio with respect to native OCaml version.

Use nano  to view benchmark results: nano misc/code-generation-benchmarks/generate-
graphs/tables/loop_benchmarks-generated.table .

Run benchmarks and output benchmark data in human-readable format: make benchmark .

This runs the same benchmarks as presented in paper but outputs human readable bechamel
results. The output of the full result is saved in file misc/code-generation-
benchmarks/display-results/benchmark.expected  and can be visualized using cat
misc/code-generation-benchmarks/display-results/benchmark.expected .

Specific benchmarks can be excluded and tried on different parameters by modifying file

misc/code-generation-benchmarks/benchmark-suite/benchmark_config.ml . Multicore
OCaml specific config is available in misc/code-generation-benchmarks/benchmark-
suite/config.multicore.ml .

Compile custom eff  source code in file INPUT_FILENAME  using compiler presented in paper

with all optimizations and write resulting OCaml  program to file OUTPUT_FILENAME /eff.exe -
-no-stdlib --compile-plain-ocaml INPUT_FILENAME > OUTPUT_FILENAME.ml .

Command ./eff.exe --no-stdlib --compile-plain-ocaml misc/code-generation-
benchmarks/benchmark-suite/loop.eff > out.ml  compiles all loop benchmarks presented in

paper.

Resulting file has a dependency on ocamlHeader.ml  located in ocamlHeader/ocamlHeader.ml
and to use it, you have to compile them together ocaml ocamlHeader/ocamlHeader.ml out.ml
or just manually copy contents from the header to the generated file and use it as-is.

Extend and change the compiler.

Full compiler source code is available and users can make their own modifications and test the

compiler. We encourage users to use the standard OCaml compiler for this by running opam
switch 4.12; eval $(opam env) . Running make  recompiles the Eff  compiler and running

make generate_benchmarks  regenerates the Eff  based benchmarks. This recompiles

benchmarks to OCaml  code and outputs a diff of newly compared version and older version.

The return code is the same as the return code of diff , so if any changes are made, this

command deliberately exits with an error and old files are replaced with new ones.



WARNING: Docker file system is non persistent, so any changes made in container will

disappear after container exits. We suggest using local repository for compiler modifications.

Claims

Claims supported by the artifact:

Prototype implementation of optimizing compiler as an extension of Eff .

Artifact provides a straightforward way to compile Eff  source files with experimental version

of compiler and using it as a normal OCaml source (see: Compile custom Eff  source code).

Claims not/partially supported by the artifact:

Due to virtualization overhead and lowered benchmark runs, performance claims might not be

reproducible in docker environment and the measurement results suffer from additional noise

caused by low number of repeats.

Remarks

This artifact provides an eff  compiler with support for optimized compilation to OCaml  source

code. Benchmarks consist of OCaml  code generated by the presented compiler ( ocamlformat  is

automatically applied to the resulting code). Command make generate_benchmarks  invokes the

compiler and translates eff  source code in misc/code-generation-benchmarks/benchmark-
suite/  into OCaml  source code. Benchmarks presented in the paper are already generated in the

artifact.

Running make test  with the multicore version of OCaml compiler fails due to missing

ocamlformat  library. See section Extend and change the compiler  on how to switch to standard

OCaml.

Artifact links

Zenodo code release: DOIDOI 10.5281/zenodo.512987410.5281/zenodo.5129874 .

Dockerhub Dockerfile, sha:

886ad60ac677a9879bf434a49380b5b7d9dd7359f93230fffacbbf31acf62444 .

Artifact information and instructions: page.

Dockerfile on zenodo: DOIDOI 10.5281/zenodo.513031910.5281/zenodo.5130319 .

https://doi.org/10.5281/zenodo.5129874
https://hub.docker.com/layers/159630477/j00sko/eff-oopsla-artifact/oopsla2021-update/images/sha256-886ad60ac677a9879bf434a49380b5b7d9dd7359f93230fffacbbf31acf62444?context=repo
https://github.com/jO-Osko/EFF-OOPSLA2021/releases/tag/OOPSLA2021-INSTRUCTIONS-UPDATE
https://doi.org/10.5281/zenodo.5130319

