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Development of data-driven surveillance 

components for the surveillance of FBD 

outbreaks  

Introduction 
 

The objective of the task 3.1 in the NOVA project was to identify potential data sources (in Member 

states contributing to WP3) suitable for the development specific surveillance components for FBD 

based on “secondary data” (data-driven surveillance). Secondary data are already available 

information, sometimes collected for other purposes than health surveillance, which may be of 

interest for health surveillance. We identified 27 data sources in Member states contributing to WP3 

that may be used for the data-driven surveillance of FBZ. Analysis of the identified data sources showed 

that data availability and quality were potentially appropriate for the surveillance of human 

gastrointestinal syndromes. In particular, data on major food-poisoning agents as Salmonella and 

Campylobacter were available at various points of the food chain (from feed to human). 

The objective of Task 3.2. is to evaluate statistical approaches and potential of the data sources 

identified in Task 1 to detect FBD outbreaks. The surveillance components are developed in parallel 

for each data source selected from the inventory in task 3.1 (univariate surveillance).    

For Task 3.3 we want to evaluate a framework for multivariate one-health surveillance where we 

combine surveillance data from testing in animal health with data from syndromic surveillance and 

from laboratory confirmed cases with weather data.  

The progress of tasks 3.2 and 3.3 differs between partners. This difference is related to the initial state 

of access and knowledge of the data: the data used by NVI and NIPH in Norway were already partly 

used in surveillance systems while SVA and Anses used data sources not yet used for surveillance. Tasks 

3.2 ("univariate") and 3.3 ("multivariate") are presented separately in the following sections of the 

document.  

Data sources 
The data sources selected as a result of Task 3.1.2 for the national case studies are presented below. 

Sweden 

Among the five data sources identified in Sweden through Task 3.1 (JRP6-NOVA D3.2), SVALA was 

evaluated to be the most relevant for FBZ detection, considering the accessibility and availability for 

implementation of a nearly real-time monitoring system, and the information that can be extracted. 

SVALA is SVA’s Laboratory Information Management System (LIMS), in which management of all the 

samples submitted to SVA is handled, from sample registration to results. Data exists for approximately 

400,000 samples per year in SVALA, covering both domestic and wild animal species (SVA, 2019).  



                         

  

We selected Campylobacter as the pathogen since 1) SVA is the national and EU reference laboratory 

for Campylobacter, which ensures accuracy of the data, 2) with the recent large outbreaks in Sweden 

in 2016-2017, consensus on the need for One Health Surveillance (OHS) for Campylobacter, including 

an early warning system, has already been established between national authorities of animal health 

(SVA) and public health (FOHM) sectors, and 3) there is a monitoring system in broilers for 

Campylobacter since 1991, ensuring the completeness and continuity of the data in the future.  

In the monitoring program, sampling is performed by collecting intact caeca from 10 birds from each 

slaughter batch at the major abattoirs. The caeca are pooled into one composite sample per batch, 

and further analyzed according to ISO 10272 part1. The program covers 99% of the broilers slaughtered 

in Sweden (SVA, 2019), and as the analyses are performed at SVA all the results are available in SVALA. 

As for the timeliness, there is approximately 1-5 days of delay in data centralization after sample 

collection. Assuming the meat processing time, and the incubation period of Campylobacter cases in 

humans (2-5 days), we determined that this data has potential to serve as an early warning alarm for 

human outbreaks. 

We also reviewed the quality and quantity of data from other animal species that were available in 

SVALA for Campylobacter, but they were either sampled only periodically for research projects or had 

little clinical relevance for human cases, e.g. C. helveticus from dogs. 

Norway (data from 2006-2018) 

• Norwegian System for Syndromic Surveillance (NorSySS) – Number of outpatient consultations 

for gastrointestinal symptoms as classified by ICPC-2 diagnosis codes. Weekly aggregated 

numbers of consultations per municipality in 5 age groups. This data was chosen as it is already 

in daily use for syndromic surveillance for humans in Norway. Any improvements in univariate 

or multivariate surveillance can be implemented in NorSySS and will be of importance for day 

to day surveillance activities. In later stages of the project we will also consider laboratory 

confirmed human cases of different gastro-intestinal infections including Campylobacter and 

compare with the syndromic cases. All GPs and out-of-hours GPs are required to submit all 

consultations with ICPC-2 codes within two weeks of the consultation to receive 

compensations from the Ministry of Health (note that the amount of reimbursement is 

independent of the diagnostic code). The data has good completeness and mean reporting 

time is 12 days.  

• Campylobacter surveillance in chickens. We selected Campylobacter data as we hypothesise 

that the Campylobacter status of chicken flocks may be associated with Campylobacter 

occurrence in humans (Jonsson et al., 2010, Jore et al., 2010). The data are owned by the 

Norwegian Food Safety Authority and all examinations have been performed by the 

Norwegian Veterinary Institute (NVI), making the data easily accessible for the project and 

ensuring completeness and continuity of the data in the future. Since April 2001, chicken flocks 

that are slaughtered before 50 days of age have been examined for Campylobacter. Until 2008, 

the sampling was performed all year, since 2009 only flocks slaughtered between May and 

October have been sampled. The samples are collected maximum four days before slaughter 

by the owner. The sample consisted of ten pooled swabs from fresh faecal droppings. The 

samples were submitted to the NVI, where they were analysed for Campylobacter spp. by real-

time PCR. As for timeliness, the result is available as soon as the analysis have been performed. 



                         

  

The test outcomes are aggregated by municipality and week. Therefore the data will be 

included on a weekly basis.  

• Weather data – Weekly average temperature and total amount of rain in each municipality 

from gridded data provided by the Norwegian meteorological institute. Based on 

measurements and models the meteorological institute creates a daily raster with 1x1km 

resolution of rain and temperature. We then aggregated this to the municipality geographic 

level.  

France 

• For France, Salmonellosis has been selected as study case because of the multiple monitoring 

systems in place throughout the food chain. Among the 19 data sources identified as having 

an interest or potential for FBD surveillance, eight are currently available for the project, and 

two are still under negotiation (Appendix 1).  

• The amount of data is large and the variable sources cover different points in the food chain, 

from the farm to the processing and consumer. The data are of varying accuracy and 

completeness. To take into account these different levels of precision, analyses with weekly 

and monthly (eventually quarterly) time steps will be explored and three spatial aggregation 

levels will be used: national, regional in four zones (northwest, southwest, southeast and 

northeast) and departmental (if the data by department are sufficient). The data will also be 

separated by syndrome (gastroenteritis, vomiting and food poisoning in humans, digestive 

diseases, abortion, septicemia and other diseases in animals, no clinical sign), Salmonella strain 

according to their zoonotic potential and/or production type (dairy/beef cattle, meat 

poultry/laying poultry, reproduction/fattening pigs). The description of the datasets is in 

progress. The first results of the descriptive analysis are available in Appendix 1.   

Univariate Surveillance 
 
Sweden 

We extracted all the sample data from SVALA that were part of the broiler Campylobacter monitoring 

program from January 1st 2009 to May 28th 2019. A total of 37,170 samples (slaughter batches) were 

identified and included for further analysis. After importing and cleaning the data in R, we assessed 

the temporal trends of the data by visualizing the total number of samples, number of positive samples 

and percentage positive (proportion of tested samples that are positive) by week (Figure 1).   



                         

  

 

Figure 1. Time series graph showing results of the Campylobacter monitoring program in broilers 

since 2009 in Sweden  

As the number of positive samples showed a very similar trend to the percentage of positives, we 

selected the count data (number of Campylobacter positive batches) for application of three different 

algorithms to detect aberrations as shown in Table 1. Also, considering the variation in total number 

of samples submitted each week (Figure 1), we assessed the effect of taking the total numbers into 

account for each algorithm. For the Farrington algorithm, this was done by activating the “population 

offset” parameter. For the Holt-Winters (HW) and exponentially weighted moving average (EWMA) 

algorithms, we normalized the count data by differencing the observed data from a centered statistic 

based on the total number of samples tested per week. Thus, in total, 6 different univariate analyses 

were performed on the weekly number of Campylobacter positive batches. Functions and packages 

used are listed in Table 1.   

Table 1. Aberration detection algorithms applied to the weekly number of Campylobacter positive 

broiler slaughter batches in Sweden. 

 
Data  

Dealing with temporal effects directly Removing temporal effect 
& using control charts 

Algorithm R package Algorithm R package 
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1) Farrington 

2) Farrington with 
population 

offset 

{surveillance}[2] 
5) GLM 

regression & 

EWMA 

{vetsyn} 
3) Holt-Winters {vetsyn}[3] 

Normalized count of 
Campylobacter positive 
batches by the center 

statistic 
 (R package {qcc}[4])  

4) Holt-Winters {vetsyn} 
6)  GLM 

regression & 
EWMA 
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As the aim of the univariate analyses was to investigate the potential and feasibility of the identified 

time series data as a syndromic surveillance indicator for human outbreaks, we did not assess the 

performance of any algorithm in particular nor optimize the algorithms settings at this stage. All the 

algorithms were applied with their default settings as listed in Table 2. A population parameter 

(‘parameter=total number of samples tested’) was added to the default setting of Farrington for 

activating the “population offset”, and the same settings were used when using normalized counts for 

Holt-Winters and EWMA. In all cases detection was applied from the first week of 2015 to the last 

week of data available (week 22 in 2019).  

Table 2. Parameters setting for the 3 aberration detection algorithms evaluated. 

Algorithm Parameters settings 

Farrington 

Baseline = 2 years 
Window of evaluation size = 4 weeks at a time 
Reweight = TRUE 
Detection limit = 95% 
Trend = TRUE 
No power transformation 
Regression fit option = fitGLM.fast 

Holt-Winters 

Baseline = 104 time points (2 years) 
Detection limits= 2.5, 3, and 3.5 standard deviations* 
Steps-ahead in prediction = 2 
Seasonal effect = additive 
Baseline correction = TRUE 
Alpha, beta and gamma default values (assuming convergence) 

EWMA 

Baseline = 104 time points (2 years) 
Lambda = 0.2 
Detection limits= 2.5, 3, and 3.5 standard deviations* 
Steps-ahead in prediction = 2 
Baseline correction = FALSE 
Remove temporal effects based on a gaussian generalized linear 
model (GLM) regression, using sin and cos as covariates (based on 
retrospective analysis of the data available – y~sin+cos) 

* The default settings for algorithms in the {vetsyn} package includes an assessment of multiple 

detection limits. 

Figure 2 shows the results of applying six aberration detection algorithms/settings.  The weekly upper 

bounds are shown in the top graph, and detected alarms are shown in the bottom. For the HW and 

EWMA algorithms, alarms reflect when the middle detection limit was applied.  

 



                         

  

 

Figure 2. Upper bounds and alarms generated by 6 different algorithms/settings applied to the time 
series of the weekly number of broiler slaughter batches positive for Campylobacter in Sweden from 
2015.  
* Farrington with/without population offset had the same upper bounds. 
 
Campylobacter is endemic in the Swedish broiler population, from 8.7% to 15.4% of the total annual 

slaughter batches testing positive for Campylobacter (2009-2018). As the natural reservoir of 

Campylobacter (C. jejuni, which accounts for approximately 90% of human infections), there is no 

indication of the infection dynamics, e.g., clinical symptoms, outbreak data, from the broiler 

population. For this reason, rigorous evaluation of each algorithm for outbreak-signal detection will be 

performed in a multivariate syndromic surveillance system at the next phase of the project, in which 

the broiler testing data will be used as a potential explanatory or predictive time series for the 

occurrence of Campylobacter outbreaks in humans.  

For this task, we aimed to investigate the potential of the identified time-series data for temporal 

analyses and outbreak detection by trying different algorithms, and to identify the characteristics, i.e., 

total number of samples tested, that may need to be explicitly handled during the process. The 

analyses so far, summarized in Figure 2, allowed us to conclude that: 

1) There are obvious temporal patterns in the weekly number of Campylobacter positive 

slaughter batches that must be taken into account in the analyses. No statistically significant 

trend was found, but temporal effects could be successfully modelled using a sin/cos 

regression model in EWMA algorithm. 

2) All algorithms were able to identify a long period of increase (alarms) in the number of positive 

samples in 2016, which coincides with the human outbreaks reported in the year (National 

Public Health Authority). This shows a high potential of the data as an indicator for human 

* 



                         

  

outbreaks, but a thorough comparison with actual human case data and examination of the 

time lag is warranted.  

3) The Farrington algorithm was very sensitive to detect increases during the 2016 outbreak. 

However, the detection limits after that were clearly “contaminated” (shown by the upper 

bounds in Figure 2), as the aberration periods themselves became the baseline of detection. If 

used in further development of the system, the algorithm should be applied in a loop of 

systematic baseline correction, such as those implemented inside the {vetsyn} package.  

4) There were only marginal differences in the number of alarms generated when the total 

number of slaughter batches tested was explicitly taken into account. This indicates that the 

absolute count of positive samples may serve as a direct indicator, but further validation using 

simulated data may be needed in the next steps.  

 

This year, we also established a connection with FOHM to collaborate on the next phase of this project. 

We are still in the discussion process of how the work will be carried out, but the current aim is to 

conduct a rigorous evaluation of each algorithm assessed in this task to actual human outbreak data, 

and also to the alarms generated by the automated outbreak detection system (CASE; Computer 

Assisted Search for Epidemics) at FOHM (Cakici et al., 2010). We will also assess other time-series data 

that may affect the infection dynamics of Campylobacter in both broilers and humans, e.g., 

temperature, length of daytime, humidity, to consider all the explanatory time-series data available 

for developing the multivariate syndromic surveillance system for human Campylobacter outbreaks.   

Norway 

In Norway univariate surveillance is used in the NorSySSto detect signals in the number of 

consultations with gastro-intestinal symptoms reported from GPs and out-of-hours GPs. The data used 

in this report is for the whole of Norway, while the surveillance system also raises signals on the county 

and municipality level. The main method used in this surveillance system is a quasi-poison (QP) 

regression model. This model takes into account seasonality, time trends and holidays and uses the 

total number of consultations as a population offset. To reduce the effect of previous outbreaks a 

reweighting scheme similar to the Farrington method is used.  Here we show an alarm threshold 

corresponding to a z-value of 2.   

 In Figure 3, we compare the alarms generated by this method with the set of surveillance algorithms 

used for Campylobacter in Sweden as described above.  It seem like taking into account the total 

number of consultations lead to better alarm thresholds. This is likely due to differing reporting 

practises throughout the year and especially during holidays. There are clear similarities in which 

weeks alarms are raised for the different algorithms, but also clear differences. For example the Holt-

Winter approach without normalisation seem to give a significantly higher threshold than the other 

algorithms. One interesting finding is that there seems to be an increase in consultations in early 

autumn every year that gives alarms in the quasi-poison method that we do not see in the Farrington 

methods. The main difference between them is that the QP method models the seasonality explicitly, 

while the Farrington method implicitly models seasonality by restricting the data used to derive the 

threshold. For this specific increase every year, it would seem that the Farrington methods perform 

better and that the alarms raised by the QP method might be spurious.  



                         

  

Further evaluation of surveillance methods for potential use in  NorSySS need to take into account that 

the current surveillance system is multivariate since we do surveillance in each of 435 municipalities 

for each disease. This gives multivariate surveillance problem even if we only consider one data source. 

Due to likely correlations between data from different municipalities, issues of multiple testing and it 

being likely that better performance can be reached using partial pooling, it is important that 

algorithms, and optimisation criteria are chosen such that the multivariate nature is taken into 

account.  

 

Figure 3: The top chart shows weekly gastro-intestinal consultations and detection thersholds for a 

range of surveillance algoritthms. The second chart shows where the algorithms would raise an alarm 

due to the number of consultations being above the detection threshold.  

France 
 
French data will be analysed using a modified VetSyn R package and count models. We adapted Rcode 
to analyse the data at monthly and quarterly time steps. We also will implement detection algorithms 
used by other countries and compare results to evaluate the potential of each method for detection 
anomalies depending on data sets. Analyses are in process.  



                         

  

Table 3. Detection algorithms applied to French data sources. 

 
The parametrisation of the algorithms comes from the OMAR project (Sala et al. 2019) and allows to 

automatic or semi-automatic parametrisation. 

Table 3. Parameters setting for detection algorithms applied in French datasets. 

Algorithm Parameters settings* 

Holt-Winters 

Baseline <=5 years 
Steps-ahead in prediction = 4 to 8 
Detection limit = 7 limits from 95% to 99.99% 
α, β and γ default values; in case of convergence failure, using default 
value for α and γ and  β =0.1 or removed if no trend detected by the 
GLM; in case of failure of semi-automatic parametrization, α= β= γ =0.1 
Seasonal effect = additive 

Historical limits 

Baseline = no limit 
Detection limits= 1.65,1.96,2.33,2.58,2.75,3, and 3.25 sd 
Prediction based 12-units periods (three blocks of 4 units) centered on 
the index of the units of interest over the last Y complete years 

Shewhart** 

Baseline <=5 years 
Std.dev = 'SD'  
Detection limits= 2.33,2.58,2.75,3,3.25,3.5 and 3.755 sd 
Guard band = 4 to 8  

EWMA** 

Baseline <=5 years 
Lambda = 0.4 
Detection limits= 2.33,2.58,2.75,3,3.25,3.5 and 3.755 sd 
Guard band = 4 to 8  

CUSUM** 

Baseline <=5 years 
se.shift = 2 
Detection limits= 2.33,2.58,2.75,3,3.25,3.5 and 3.755 sd 
Guard band = 4 to 8  

*For each evaluation at time tw/m, baseline is corrected from t0 to tw-1/m-1 using a GLM including 
cos+sin and tested for trend and autocorrelation  (see VetSyn package) 
** For control charts, the temporal effects are removed from the GLM used to correct the baseline 

Time series data 
Data 
type 

Cleaning 
the 

baseline 

Dealing with temporal 
effects directly 

Removing temporal 
effect 

& using control charts 

Algorithm R package Algorithm 
R 

package 

Weekly 
Monthly 
Quarterly  

Number of X 

Count 

Automated 
GLM 

(modified 
VetSyn 
codes) 

 

Holt-Winters Surveillance 

GLM 
regression & 

EWMA 
 modified 

VetSyn 
codes 

 Historical 
limits 

None 
(manual 
coding) 

GLM 
regression & 

Shewhart 

GLM 
regression & 

EARS 



                         

  

 

Multivariate surveillance 
 

Three main approaches to multivariate surveillance were identified, we call them explanatory, 

combined and predictive approaches. The explanatory approach aims to include covariates to 

“explain” variation in the main time-series of interest. This would allow us to de-prioritise outbreak 

signals that seem to be explained by known covariates. In our example, it might be less important to 

investigate a signal in gastrointestinal symptoms if it can be explained by an increase in cases from 

animal surveillance. Since we aim to maximise the probability of detecting real outbreaks while 

keeping the false positive rate low this can lead to a better surveillance system. The “explanatory” 

approach can also provide significant insight into the epidemiology of the disease or symptoms.  

With combined multivariate surveillance we are looking for anomalies in multiple time-series 

simultaneously. We are interested in large changes in individual time-series or a changes in the whole 

system over multiple series. For surveillance purposes this form of multivariate surveillance is often 

important even with only one data-source since data is often aggregated in smaller geographic areas 

and we want to detect outbreaks in each area. The simplest solution is to evaluate each time-series 

independently and set the signal threshold such that the rate of false positives is manageable. From a 

one-health perspective we can also consider combined surveillance using surveillance time-series from 

both the animal and the human side.  

In certain circumstance such as in Norway, the context means that we are mainly interested in 

improving the surveillance of human cases since any positive tests in chickens are dealt with locally. 

Therefore we want to use the data from campylobacter testing in chicken to predict future number of 

human cases. This would allow the construction of risk scores and potentially provide opportunities to 

intervene before an outbreak and not just detect the outbreak.  Following Gneiting et al. (2008), we 

will use probabilistic forecasts that provide both point predictions and estimates of their own 

uncertainty. We aim to produce calibrated forecasts with maximum sharpness and we will use proper 

scoring rules (Gneiting et al 2007) that provide consistent rules for ranking forecasts. Proper scoring 

rules for predictions can also be used to evaluate some univariate surveillance algorithms since a 

subset of such algorithms depend on detecting large observed deviations from the predicted or normal 

number of cases. The prediction models are under development, but will likely hierarchical structures 

and spatial information. If successful prediction algorithms are developed, they will be included in the 

routine automated surveillance in NorSSys.  
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Appendix 1 : French datasets available for the NOVA project 

Information collected Information available for NOVA project 

Database 
name 

Target Type recod 
Frequency of 

colletion  
Period 

available 
Spatial 

coverage 
Geographical 

level  
Temporal 

level 
Indicator Covariates Aggregation for analysis 

no. of 
observations 
(total count) 

EDI-SPAN 

Cattle 

clin daily 
2011-
2019 

national municipality day 

no. of dead 
animals 

production week/month* dep/reg*  production 

12685676 

Poultry 
weigth of dead 

animals 

1557682 t for 
1557682 
removes 

Pigs 
no. of dead 

animals 
4274469 

LNR 
Salmonella in 

poultry 
Poultry lab 

monthly to 
yearly 

2011-
2018 

national department day 
no. of 

Salmonella 
isolates 

serovar;production month* dep/reg* serovar* production 19136 

RESAPATH 
pathogen 

Cattle 

lab-clin 
monthly to 

yearly 
2011-
2018 

national department day 

no. of 
Salmonella 

isolates 

production 

month* reg* species 

3764 

Poultry production 689 

Pigs production 469 

RESAPATH 
syndrom 

Farmed 
animal 

no. of syndrom 
(digestive, 
abortion, 

septicemia) 

production under evaluation 

RNOEA Poultry clin monthly 
2010-
2015 

national national month 
no. of 

Salmonella 
reports 

serovar;production month* nat* serovar* production 20482 

Salmonella 
Animal, 

food, feed, 
envt 

lab daily 
2010-
2017 

national department  

no. of 
Salmonella 
isolates - 
reports 

serovar;production; 
type of surveillance 

week/month*dep/reg*Production*Serovar 

43898 
reports 
67593 

isolates 

OSCOUR 
(SURSAUD) 

Human clin daily 
2011-
2018 

national department week 

no. of 
consultationsfor 
gastro-enteritis  

none week/month*syndrome*dep/region 

1384417 

no. of 
consultations 
for vomiting 

68138 

no. of 
consultations 

for food 
poisoning 

44746 



                         

  

Information collected Information available for NOVA project 

SOS medecin  Human clin daily 
2011-
2018 

national 
(83%) 

department week 

no. of 
consultationsfor 
gastro-enteritis  

none week/month*syndrome*dep/region 

1487825 

no. of 
consultations 
for vomiting 

281671 

no. of 
consultations 

for food 
poisoning 

4553 

no. of 
consultations 
for diarrhea 

216038 

National 
control plan 

in poultry 
Poultry lab daily upon request 

OQUALIM Feed lab monthly upon request 

 


