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Deliverable 4.3.  

Assessment of the spatio-temporal 

infection dynamics model of Salmonella 

in low prevalence regions 
Salmonella has been selected as example of FBD as it is one of the most common public health 

problems, causing significant human morbidity and even mortality and consequently high economic 

losses in both developing and developed countries. Foods of animal origin are still one of the major 

sources of infection for the general public, with eggs, broiler chickens and pigs being consistently 

identified among the top attributed food sources. Whereas control programmes for Salmonella in 

poultry have been applied in the whole UE with high success, only few European countries have 

implemented eradication or control programmes of Salmonella in swine, beef, or dairy production. 

Results from efforts made in Denmark, Sweden, Finland, Norway, Ireland, Germany, Great Britain and 

Holland, are somewhat inconsistent. So far, there are no national control programmes established in 

any Mediterranean country, where >40% of the pig farms were positive to Salmonella (EFSA baseline 

study, 2009). In consequence, further efforts to implement control programs for reduction of the 

prevalence of Salmonella infection in swine in the near future are envisioned. Prerequisites to the 

implementation of such an approach; scientific efforts directed to improve our preparedness and 

develop an effective risk-based surveillance system should be carried out. 

The deliverable D.4.3. “Assessment of the spatio-temporal infection dynamics model in Salmonella in 

low prevalence regions”, belongs to Task-4.1 whose general objective is to understand the spatio-

temporal patterns of infection distribution in livestock and slaughterhouses and its association with 

human cases to optimize sampling strategies and the implementation of risk based surveillance 

strategies under two different conditions: low prevalence regions (Subtask 4.1.1) and high prevalence 

regions (Subtask 4.1.2). 

The task 4.1 includes a total of four activities and four deliverables: 

T-4.1. Identification of spatial relationships and patterns in Salmonella prevalence (M1-M24) 

TASK/SUBTASK ACTIVITIES DELIVERABLES 

Sub-Task 4.1.1: 
Surveillance in high 
prevalence regions to 
detect introduction and 
changes in prevalence. 
 

A. Intensive pig farm location, industry surveys (slaughterhouse and 
feed co-operatives) and human cases will be investigated in 
conjunction with routinely recorded surveillance information using 
spatial techniques (e.g. smoothing technique, cluster analyses) [M1-
M12]. 

D-4.1.  Maps for Salmonella 
prevalence geographical patterns 
in intensive livestock and 
slaughterhouses completed in 
high prevalence regions (M12) 

B. Geographical areas (broad spatial trend and local spatial 
correlation) and periods with higher probability of detection of 
infection will be identified by temporal and spatial autocorrelation 
analyses, which will allow reallocating efforts on sampling 
strategies. In addition, temporal trends on serotype distribution and 
antimicrobial resistance profiles in isolates from clinical human 
cases and those found in swine will be compared [M13-M24]. 

D-4.2.  Identification of periods 
with higher probability of 
detection of infection identified in 
high prevalence regions and 
temporal evidences for an 
association with human cases 
(M24) 

Sub-Task 4.1.2: 
Surveillance in low 
prevalence regions to 
reduce prevalence. 

C. A detailed model of the spatio-temporal infection dynamics will be 
applied based on data-driven simulations incorporating the 
complete population demographic, the time-varying contact animal 
network and the local spread among proximal holdings (Bauer 2016, 

D-4.3.  Assessment of the spatio-
temporal infection dynamics 
model in Salmonella in low 
prevalence regions (M12) 



                         

  

 Widgren 2016a, Widgren 2016b). The model parameters will be 
calibrated against observed data from historical and ongoing 
monitoring [M1-M12]. 

D. Optimal surveillance strategies will be explored to detect 
introduction and an increasing prevalence [M13-M24]. 

D-4.4.  Evaluation of optimal 
surveillance strategies (M24) 

 

Specifically, the objective of the deliverable D.4.3 was to assess the spatio-temporal infection dynamics 

model in Salmonella in low prevalence regions. 

 

1. Background 
Salmonella Dublin (S. Dublin) is a cattle-adapted Salmonella serotype. Infections usually cause clinical 

disease, increased calf mortality and decreased milk production (Nielsen, 2012a), resulting in 

substantial economic losses for the farmer (Nielsen, 2013a). S. Dublin also has a zoonotic potential, 

but infection in humans is uncommon. However, when it occurs, consequences are often more severe 

than those caused by other serotypes (Jones, 2008). 

S. Dublin is one of the most common Salmonella serotypes infecting cattle populations in Europe, and 

some European countries have started control programs to reduce the prevalence, or even eradicate 

it (Bergevoet, 2009; Nielsen 2009). In Sweden, legislated Salmonella control was initiated already in 

the 1960s, including all serotypes and all animal species along the entire chain from feed to food. The 

program has resulted in a progressive reduction of Salmonella prevalence in Swedish cattle, but since 

the mid-1990s, the number of cattle herds detected within the control program has remained at a low 

but steady level (SVA, 2017). A national bulk milk screening in 2013 showed that only 1% of dairy herds 

were positive for S. Dublin antibodies, but the occurrence of the infection was strongly clustered. Most 

of the positive herds were in fact located on an island in the south-east, where the proportion of bulk 

milk positive dairy herds was as high as 15% (Ågren, 2016).  

Species-adapted Salmonella serotypes have been shown to be possible to eradicate. However, the 

sensitivity of the Swedish surveillance system in cattle, which consists mainly of clinical passive 

surveillance, is considered too low to achieve eradication of S. Dublin. One possible way to increase 

the sensitivity of the surveillance for S. Dublin detection could be to perform repeated bulk milk 

samplings in dairy cattle (Warnick , 2006; Ågren, 2016) 

In order to evaluate potential surveillance strategies, both the within- and between-herd transmission 

dynamics of S. Dublin infection need to be taken into account. Within-herd transmission of Salmonella 

spp. and S. Dublin in dairy herds have been quite extensively studied. However, approaches to model 

the between-herd spread of this infection are still scarce in the literature.  

 

2. Objective 
The aims of this first part of the project were: 

a) to develop a two-stage transmission model for S. Dublin infection in dairy herds, suitable for 

evaluation of the effectiveness of different surveillance strategies in a hypoendemic context, 



                         

  

which combines the within-herd transmission via environmental contamination and the 

between-herd transmission through real animal movements.  

b) to detect hidden variables that could affect the transmission of Salmonella by investigating 

spatial differences of environmental and social characteristics. 

 

3. Progress of the activities: main results. 

Data 

Bulk milk screening 
In these studies, results from bulk milk samples from Swedish dairy herds, collected at two occasions 

(2007 and 2013) were used. 

In the autumn of 2007, 1069 samples for evaluation of a serological test were selected from a yearly 

national bulk milk screening for other reasons (approximately 7100 dairy herds in 2007 [10]). Selection 

of samples were performed by first omitting herds under restriction and thereafter every sixth sample 

was selected (Nyman et al., 2013).  

In April 2013, a bulk milk screening for Salmonella was performed, including all Swedish dairy herds (in 

total 4 683 herds in 2013). Samples were retrieved from Eurofins laboratory in Jönköping, originally 

collected for routine milk quality testing.  

The unfrozen samples with added preservative (bronopol) were sent to the Swedish National 

Veterinary Institute (NVI) where serological analyses were performed. The diagnostic test used was 

Prionics PrioCHECK® Salmonella Ab bovine Dublin ELISA (including O-antigens 1, 9 and 12; hereafter 

referred to as Dublin ELISA) (Thermo Fischer Scientific, Waltham, Massachusetts, United States). 

Information about the diagnostic sensitivity of this test has not been published, but the sensitivity of 

tests similar to the Dublin ELISA has been estimated to be within the range of 0.54 to 0.88 when used 

on a single bulk milk sample (Wedderkopp et al., 2001a; Veling et al., 2001) which is in agreement with 

Swedish experiences. The diagnostic specificity of both tests is considered to be close to 100% (Nyman 

et al., 2013). The recommendation by the producer is to use an optical density of 35 as a cut-off for a 

positive result. However, in order to increase sensitivity, the cut-off was lowered to 20. It has been 

shown that this change only causes a small decrease (~1%) in specificity when the test is used on 

Swedish bulk-milk samples. (Nyman et al., 2013). 

Movement data 
We obtained the Swedish livestock data from 37 221 holdings for the period 1 July 2005 to 31 

December 2013 from the Swedish national cattle database managed by the Swedish Board of 

Agriculture. The dataset, described in detail in (Widgren, 2016), contained 18 649 921 events reported 

on an individual animal level. Briefly, the livestock data included the following information about each 

cow: (i) the date and the holding for its birth, (ii) the date and the source and destination holding for 

any movements, and (iii) the date for slaughter or death. The data was incorporated in the simulations 

to handle the population demographics and the time-varying contact network from livestock 

movements. 



                         

  

Geospatial Environmental data 
We obtained topography data (elevation), hydrology data (water and wetness) and land cover data 

(imperviousness and vegetation index) from the pan-European component of Copernicus Land 

Monitoring Services, managed by the European Environment Agency (European Environment Agency, 

2018). They are in raster format and the resolution is between 20m and 100m. We also acquired 

climate data (annual rainfall, monthly rainfall, annual temperature, and monthly temperature) from 

SMHI (Swedish Meteorological and Hydrological Institute). A detailed description of the processing of 

these data can be found in the section Data processing.  

Social data 
We hypothesized that non-environmental factors such as education and type of sewage system could 

also affect the disease transmission and collected the related statistical data from Statistics Sweden 

(http://www.scb.se). The data is provided in a tabular form as statistics aggregated to the municipality 

level.  

Data processing 

The data collected for the spatial analysis have different data formats: the topography and the 

hydrology, and the land cover data have raster format, the climate data have text format with 

coordinates, and the social data have text format aggregated to municipality level. To use these data 

for the analysis, a process of resampling into the same spatial unit is required. The finest Swedish 

spatial division that can be published publicly with statistical data is a municipality, and the areas of 

municipalities range from 8.67km2 to 19,140.33km2. A large difference in area among municipalities 

can cause distorted results when a spatial analysis is performed using aggregated data in this spatial 

unit. This issue is usually referred to as the modifiable areal unit problem (MAUP) (Openshaw and 

Taylor, 1979). To remove the zone effect, we used a grid unit with 25km by 25km resolution that 

provides the homogeneity of space units than the administrative spatial unit.   

Table 1. The characteristics of the data and data processing 

Variable Data type Resolution
, m 

Data conversion Final  
resolution, 
km 

Data source 

Elevation, m  Raster  25  Resampling  25 Copernicus  

Slope, °  Raster  25  Extraction from DEM  25 Copernicus  

Vegetation Index Raster  20  Resampling  25 Copernicus  

Distance to major and 
permanent water, m  

Raster  100  Resampling, Proximity  25 Copernicus  

Imperviousness, %  Raster  100  Resampling  25 Copernicus  

Mean monthly temperature 
(2013-04), °C  

Text     
Vectorizing (point), 
Interpolation  

25 SMHI 

Mean annual temperature 
(2013), °C  

Text     
Vectorizing (point), 
Interpolation  

25 SMHI 

Mean monthly Rainfall 
(2013-04), mm  

Text     
Vectorizing (point), 
Interpolation  

25 SMHI 

Mean annual rainfall (2013), 
mm  

Text     
Vectorizing (point), 
Interpolation  

25 SMHI 

Level of education, %, 
Municipality  

Text     
Vectorizing (polygon), 
Rasterizing  

25 
Statistics 
Sweden  

Sewage types, %, 
Municipality  

Text     
Vectorizing (polygon)  
Rasterizing   

25 
Statistics 
Sweden  

http://www.scb.se/


                         

  

Table 1 lists the variables and describes the characteristics of the data and data processing. We 

resampled all the geospatial data to line them up correctly, consequently, all the data have the same 

grid size 25k by 25k. The slope of the study area was obtained from digital elevation model (DEM) by 

using QGIS 2.18 (QGIS, 2018). To retrieve the distance to the major and permanent water resources, 

we used water and wetness index data and calculated the Euclidean distance. We vectorized the 

climate data provided with spatial coordinates to point objects, then rasterized them using an 

interpolation method. Social data provided as an aggregated form into the administrative unit were 

transformed into polygonal vectors and then rasterized.  

Disease spread modelling 

Methods 

SimInf framework 

The disease spread modeling was performed in the R package SimInf (Widgren, 2018b). The SimInf 

framework is designed to efficiently simulate stochastic disease spread models in a large network of 

interconnected farms. The framework integrates infection dynamics in each farm as continuous-time 

Markov chains (CTMC) using the Gillespie stochastic simulation algorithm (Gillespie, 1977) and 

incorporates available data such as births, deaths or movements as scheduled events. 

Within-herd spread 

The spread of infection among the animals in a herd was modelled as a compartmental Susceptible-

Infected-Carrier-Recovered model based on environmental transmission (SICRE). These compartments 

stratify the population into four health states: healthy individuals capable of acquiring the infection 

(Susceptible, S); infected individuals capable of transmitting the infection (Infected, I); long term 

persistently infected individuals capable of transmitting the infection at a low rate (Carrier, C); healthy 

recovered individuals who developed immunity against the infection (Recovered, R). The four health 

states were further subdivided into three age groups: calves (< 6 months), young stock (6 - 30 months) 

and adults (> 30 months), to capture age related differences in infection dynamics within the host 

(Nielsen, 2012b; Nielsen 2013a; Nielsen 2013b).  

The faecal-oral route of transmission of Salmonella, where susceptible individuals get the infection 

from the environment contaminated by faeces of infectious and carrier animals, was modelled by 

means of a time dependent environmental infectious pressure variable, uniformly distributed within 

each herd.  It represents the number of bacterial cells per m2 at any point in time and depends on the 

bacterial load shed by infected and carrier animals per surface area, and on the rate of bacterial decay 

(i.e. decimal reduction time) in the environment. Based on the results of Ågren at al. (2016) on the risk 

factors for a dairy herd to be infected by S. Dublin, the environmental infectious pressure was further 

set to increase proportionally to the number of infected holdings in the neighborhood. 

Disease seasonality (Lewerin, 2011; Nielsen, 2012a) was modelled by letting the rate of bacterial decay 

vary according to the year quarters (Widgren, 2016). 

Between-herd spread 

The spread of infection between the cattle herds was modelled deterministically, based on the 

recorded event data described above. The raw data was converted into four categories of events − 

exit, enter, ageing and transfer − as described elsewhere (Widgren, 2016). The exit event happens 

when animals leave a holding due to slaughter, euthanasia or export. The enter event includes births 



                         

  

and imports. The ageing event happens the day animals change age group (i.e. from calf to young stock 

or young stock to adult). The transfer event occurs when animals are moved from one holding to 

another.  

Simulations started the first day of recorded data (01/07/2005) and ended on the last one 

(31/12/2013). After every day of simulation, the number of animals in each health compartment of 

each age group and herd was updated according to the event database. In case of enter events, the 

reported number of animals were added to the susceptible compartment of the relevant age group. 

In case of ageing events, calves or young animals were removed from their current health 

compartment and added to the same health state in the next age group (i.e. young stock or adult, 

respectively) of the same herd. In case of exit events, animals were removed from the herd according 

to the reported age of the animal in the exit event, and randomly selected health states. In case of 

transfer events, animals were removed from the sending herd according to the same procedure as an 

exit event, and added to the receiving herd in the corresponding age-specific health compartments. 

Model parametrization 

Most of the parameters were considered age-specific and were mainly derived from literature. Given 

that our model did not assume direct transmission, it was not possible to translate the value of the 

infection rate parameter found in literature into the indirect transmission rate of the contaminated 

environment (i.e. uptake rate) used in our model, which was therefore derived by trial and error, 

assuming herd level endemic equilibrium (SVA, 2017). Demography within each herd was modelled 

based on recorded data, as described in the previous paragraph.  

Model input 

The simulation was initiated by supplying the initial state for each age-specific health compartment 

in every holding. Initial herd sizes were those reported on the first day of the recorded events. All the 

animals were considered to be susceptible. Five percent of the initially active dairy holdings (n=420) 

were artificially seeded as infected. They were randomly selected, proportionally to the county-level 

prevalence estimated from the national screening performed in 2013 (Ågren, 2016). Of the animals 

present in the infected herds, 8.2% of calves, 0.7% of young stock and 2.4% of the adults were 

allocated to the infectious state (SVA, 2013), and the environmental infectious pressure was 

calculated accordingly. 

Model output  

Each simulation produced one sample trajectory consisting of the number of individuals in the age-

specific health compartments in each holding at weekly intervals. It was based on the whole cattle 

population and all the recorded events, but inference has been restricted to dairy holdings only. 

Because cattle holdings can change their production type over time, being a dairy holding was 

considered to be a dynamic status. Therefore, one holding contributes to the dairy sector only for the 

period of time it was an active dairy holding. A dairy holding was considered to be infected when it 

housed at least one infectious animal for at least twelve consecutive weeks. The reported results are 

based on 100 simulations. 

 



                         

  

Results and discussion 
The modelled proportion of infected dairy herds in Sweden over the study period – as the result of 

the between-herd spread driven by the real animal movement data – stabilized around 1% after an 

initial burn-in period (Figure 1) , in accordance with the current knowledge (Ågren, 2016). The model 

seems to be quite robust to the choice of the starting values used for initialization, as the herd level 

prevalence eventually reaches the steady state anyway. Unfortunately, the range of available data 

does not allow to assess whether the final proportion of infected herds would have converged to 1% 

in all of the cases.  

 

 

Figure 1. Simulated proportion of infected dairy herds over the years. Grey lines represent each simulation 
(n=100). The black line represents their average. 

 

The within-herd infection dynamics by age group is summarized in Figure 2. It clearly shows a 

seasonal trend, as a consequence of the different rate of bacterial decay in different seasons. In 

particular, the within-herd prevalence peaks in the third quarter of the year and is higher for calves 

than for young and adult animals (Figure 3). On the other hand, the seroprevalence peak occurs in 

the last quarter, with young and adult cattle having the highest proportion of recovered animals 

(Figure 3).  

 



                         

  

 

Figure 2. Average simulated within-herd infection dynamics by age group in infected dairy herds. Solid black lines 
( ̶  ̶  ̶ ) represent the proportion of infected animals. Dashed black lines (- - -) represent the proportion of carrier 
animals. Solid grey lines ( ̶   ̶ ̶ ) represent the proportion of recovered animals. Result of 100 simulations. 

 

Figure 3. Proportion of infected animals (i.e. prevalence) and recovered animals (i.e. seroprevalence) in infected 
dairy herds by age group and quarter of the year. Result of 100 simulations using data from 01-01-2006 to 31-12-
2013. 



                         

  

Although the model was able to reproduce the expected within-herd dynamics and the overall 

prevalence, it failed to entirely capture the disease clustering (Figure 4 and Table 2). Clustering is 

probably driven by some latent process that goes beyond animal movements and proportion of 

infected herds in the neighborhood and needs to be further addressed in order for the model to be 

useful to simulate surveillance strategies.  

 

 

 

 

Figure 4. Geographical distribution of most frequently infected herds at begin (artificially seeded), middle and 
end of 100 simulations in comparison with results of bulk milk screening in 2013. 

 

 

Table 2. Proportion of infected dairy herds (average of 100 simulations) in the county of Kalmar (where 
the island of Öland belongs) at different time points and in comparison to the actual results of the 
national bulk milk screening in 2013. 

 median 5th percentile 95th percentile 

Seeded infected herds (July 2005) 27.11% (= 5.42% scaled*) 25.42% 28.51% 

Middle (January 2010) 5.51% 4.23% 6.80% 

End (December 2013) 3.72% 2.71% 4.74% 

Bulk milk screening (October 2013) 5.76%   

* At the beginning of simulation, the overall proportion of herds seeded as infected was intentionally inflated 

(i.e. 5% infected = 420 herds) in order to get the infection process taking place.  

Begin 
(Jul 2005) 

 

Middle 
(Jan 2010) 

 

End 
(Dec 2013) 

 

Bulk Mils screening 
(2013) 

 



                         

  

  



                         

  

Spatial analyses 

Methods 

Spatial autocorrelation 

We used the spatial autocorrelation (Global Moran’s I) tool in GeoDa 1.12 (Anselin, Syabri and Kho, 

2006) to identify statistically significant spatial clusters of S. Dublin prevalence. Global Moran’s I 

(Moran, 1948) is given by 

 

 𝐼 =
𝑛

𝑊

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−�̅�)(𝑥𝑗−�̅�)𝑗𝑖

∑ (𝑥𝑖−�̅�)2
𝑖

, 

where 

𝑛  = the number of spatial units indexed by 𝑖 and 𝑗 

𝑥 = the variable of interest 

�̅� = the mean of 𝑥 

𝑤𝑖𝑗 =  {
1, 𝑖𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑢𝑛𝑖𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 = a matrix of spatial weights  

𝑊 = the sum of all 𝑤𝑖𝑗. 

 

The expected value of Moran's I is 

𝐸(𝐼) =  −
1

𝑛−1
. 

 

Moran’s I value usually ranges from -1 to 1 and is compared with the expected value. When the value 

I exceeds -1/(N-1), it indicates positive spatial autocorrelation, and when the value I belows -1/(N-1), 

it indicates negative spatial autocorrelation. Moran’s I value, however, does not identify the local 

cluster because it indicates global spatial autocorrelation. 

 

To find clusters at a local level, we used local indicators of spatial association (LISA) (Anselin, 1995). For 

each spatial unit, LISA calculates Moran’s I and evaluates the clustering in the individual units. Local 

Moran’s I is defined by: 

 

𝐼𝑖 =
(𝑥𝑖−�̅�)

𝑚2
∑ 𝑤𝑖𝑗(𝑥𝑗 − �̅�), 

where 



                         

  

𝑚2 =
∑ (𝑥𝑖−�̅�)2

𝑖

𝑁
, and 

N = the number of spatial units  

 

then, 

𝐼 = ∑
𝐼𝑖

𝑁𝑖  . 

 

Spatial differences using ANOVA analysis 

As we identified that the cluster of positive herds on the island in the south-east is very high (Ågren, 

2016), we conducted the analysis of variance (ANOVA) to detect differences between the mainland 

and the island. ANOVA is used to examine potential differences among groups in data. In this analysis, 

we used one-way ANOVA, which allowed us to identify if there are differences in independent variables 

between the two regions.  

Spatial regression 

We assumed that the spatial pattern of S. Dublin prevalence is affected by the other variables in nearby 

places. To capture the effect of unmeasured independent variables on the spatial pattern of S. Dublin 

prevalence, we used the spatial lag model (Anselin, 2001) which is defined as 

𝑌 =  𝛽𝑥𝑖 + 𝜑𝑤𝑖𝑦 + 𝑒𝑖 

where  

𝑤𝑦 = a vector of spatial lags for the dependent variables,  

𝜑 = spatial autoregressive coefficient,  

𝛽𝑥 = an N×K matrix of observations on the exogenous explanatory variables multiplied by a 

K×1 vector of regression coefficients β for each x, 

𝑒 = a N×1 vector of normally distributed random error term.  

 

Results and discussion 

Spatial pattern of salmonella outbreaks in 2013 

Through Moran’s I test, we got the Moran’s I value of 0.043 with p-value 0.04 (Figure 5). This result 

shows a very weak spatial autocorrelation of prevalence in Sweden. We then conducted LISA to 

investigate further and test for regional clustering. Figure 6 shows that there is a significant clustering 

in the south-east island.  This result means that the pattern of the prevalence between the mainland 

and the island is completely different, and further investigation is necessary to understand the 

differences between the two regions.  

 



                         

  

 

Figure 5. Moran scatter plot. The prevalence of S. Dublin is on the horizontal axis and the vertical axis 
shows the spatially lagged counterparts of the prevalence. 

    

LISA cluster Map LISA Significant Map 

Figure 6. The LISA cluster map (left) shows how the prevalence clusters. The red color represents a strong cluster 
with high prevalence and blue represents a weak cluster with low prevalence.  The LISA significance map (right) 
shows significant results by each grid. 



                         

  

Spatial heterogeneity 

Table 3 shows the output of the ANOVA analysis and whether there is a statistically significant 

difference between the mainland and the island. The results revealed that there is a significant 

difference (i.e., p-value < 0.05) in the mean of elevation, slope, temperature, annual rainfall, and level 

of education between the two regions. On the other hand, vegetation index, distance to water 

resource, imperviousness, monthly precipitation, and sewage types showed no statistically significant 

difference between the two regions.  

Spatial dependence 

The univariable spatial lag model identified that an environmental variable (vegetation index) has a 

significant association with the prevalence of S. Dublin in the mainland (p-value<0.05) (Table 4). The 

island Öland, on the other hand, showed that an environmental variable (annual temperature) and 

non-environmental variables (level of education) have a significant association with the prevalence of 

S. Dublin.  

Table 3. Results of ANOVA (t and p values) 

Variable t-Statistic p-value 

Elevation  -3.308 0.001 

Slope  -4.042 0.000 

Vegetation Index -0.068 0.946 

Distance to major and permanent water  -1.899 0.057 

Imperviousness 0.187 0.852 

Mean monthly temperature (2013-04) 3.512 0.000 

Mean annual temperature (2013)  4.511 0.000 

Mean monthly Rainfall (2013-04) 0.354 0.723 

Mean annual rainfall (2013) -2.780 0.006 

Level of education: Primary+Secondary 0.634 0.523 

Level of education: Upper secondary -3.251 0.001 

Level of education: Post-secondary 2.523 0.012 

Level of education: Post graduate 9.861 0.000 

Sewage types: Public disposal -1.080 0.281 

Sewage types: No sewage 2.561 0.011 

Sewage types: Individual disposal 1.138 0.256 

 

 



                         

  

Table 4. Spatial regression analysis results with independent variables for the mainland and the island. 

Region Variable Coefficient Std.Error z-value p-value 

Main 
land 

Elevation  0.000 0.000 1.821 0.069 

Slope  -0.001 0.002 -0.405 0.686 

Vegetation Index -0.066 0.029 -2.269 0.023 

Distance to major water  0.000 0.000 0.018 0.986 

Imperviousness -0.001 0.002 -0.649 0.517 

Mean monthly temperature (2013-04) -0.003 0.002 -1.864 0.062 

Mean annual temperature (2013)  -0.002 0.001 -1.781 0.075 

Mean monthly Rainfall (2013-04) -0.001 0.000 -0.485 0.628 

Mean annual rainfall (2013) -0.001 0.000 -0.337 0.736 

Level of education: Primary+Secondary 0.038 0.091 0.425 0.671 

Level of education: Upper secondary 0.106 0.083 1.273 0.203 

Level of education: Post-secondary -0.064 0.062 -1.039 0.299 

Level of education: Post graduate -0.202 0.554 -0.364 0.719 

Sewage types: Public disposal -0.026 0.030 -0.866 0.386 

Sewage types: No sewage 0.745 0.421 1.771 0.077 

Sewage types: Individual disposal 0.023 0.030 0.743 0.457 

Öland 

Elevation  0.001 0.007 0.256 0.798 

Slope  0.073 0.135 0.541 0.588 

Vegetation Index -0.436 0.563 -0.775 0.438 

Distance to major water  0.000 0.000 0.801 0.423 

Imperviousness 0.007 0.060 0.122 0.902 

Mean monthly temperature (2013-04) 0.155 0.119 1.296 0.195 

Mean annual temperature (2013)  -0.352 0.174 -2.027 0.043 

Mean monthly Rainfall (2013-04) -0.001 0.017 -0.085 0.933 

Mean annual rainfall (2013) 0.004 0.008 0.501 0.616 

Level of education: primary+Secondary 3.256 1.492 2.182 0.029 

Level of education: Upper secondary 7.309 3.610 2.025 0.043 

Level of education: Post-secondary -2.539 1.230 -2.064 0.039 

Level of education: Post graduate -1.597 0.743 -2.151 0.031 

Sewage types: Public disposal -0.690 0.359 -1.922 0.055 

Sewage types: No sewage 10.65 7.131 1.494 0.135 

Sewage types: Individual disposal 0.690 0.359 1.922 0.055 



                         

  

4. Conclusion and future direction 
Degree of achievement: Deliverable D.4.3. has been achieved.  

Main conclusions: The developed disease spread model enabled a better understanding of S. Dublin 

infection spread in Swedish dairy herds, as it related to herd population dynamics and time-varying 

trade patterns between farms.  

This model will be improved to further simulate surveillance strategies, as it fails – in its current form 

– to fully capture disease clustering.  

The next step will therefore be to explore different options to improve the model, such as: 

(i) Using more sophisticated approaches for the parameterization of the disease spread 

model, for example, a Bayesian framework with suitable prior information on the 

parameter values. 

(ii) Reformulate the spatial coupling among herds to better capture the between-herd 

transmission unrelated to cattle movements. 

(iii) Include spatial and environmental factors affecting disease spread in the model parameters 

by region. 
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