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CONTRIBUTION OF MULTIPLE SYNDROMIC 

SURVEILLANCE COMPONENTS IN THE FBD 

SURVEILLANCE 
 

1. INTRODUCTION 
The general objective of the task 3.3 of the NOVA project was to assess whether the combination of 

surveillance results from different syndromic surveillance components for Foodborne Diseases (FBD) 

in animals, food or the environment could lead to an improvement of the surveillance of FBD outbreaks 

in humans. In task 3.2, three case studies of FBD surveillance with a One Health perspective were 

explored: Campylobacter surveillance in Sweden, Campylobacter surveillance in Norway and 

Salmonella surveillance in France. The three case studies represented different states of development 

of a surveillance system, from an explorative state (proof of concept, France) to the improvement of 

an operational surveillance system (Norway). The deliverables 3.3 and 3.4 reported the development 

of several surveillance components for the three case studies, based on a common methodology (use 

of a set of temporal aberration detection algorithms) and discussed their potential interest for the 

surveillance of human outbreaks. The present deliverable reports the results of different attempts to 

combine the univariate surveillance components developed previously into a multivariate surveillance 

system.  

2. SURVEILLANCE OF SALMONELLA ALONG THE FOOD CHAIN IN FRANCE 
Salmonella is the leading cause identified in human foodborne outbreaks in France, causing more than 

one third of the reported outbreaks (Santé Publique France, 2021). Along with poultry, cattle 

production is recognized as an important source of human infections. While the prevalence of 

Salmonella excretion does not exceed 2% in broiler and layer flocks, a recent study estimated that the 

intestinal carriage of Salmonella was about 3% in cattle at the abattoir in France (Bonifait et al., 2021). 

Various surveillance systems already monitor animal health and microbial hazards or hygiene 

indicators in food in France. A few number of these systems are dedicated to the surveillance of 

Salmonella in animal and food (e.g. Salmonella network) while the majority of them are focused on 

animal health, as livestock mortality monitoring. The question posed in our work in WP3 was to explore 

whether the data already collected could be of interest for Salmonella surveillance along the food 

chain in France. In task 3.1., we inventoried the potential sources of data useful for that objective. 

Twenty-two data sources were identified at first. Due to restriction of access to certain databases and 

to data quality issues for other sources, a restricted number of data bases could be used in NOVA (see 

below). In particular, identified data sources in poultry and pig sectors could not be used. Therefore, 

the case study was limited to the dairy and beef sectors.   
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Univariate Sys 
Based on a comprehensive mapping of the food-chain surveillance network in France (deliverable 3.2), 

we solicited the coordinators of several operational surveillance systems to identify existing 

monitoring data. Considering data accessibility, data quality and monitored species, three animal 

health databases were relevant: the National Cattle Register (NCR) database for the registration of 

cattle mortality at farm; the Surveillance network of antimicrobial resistance in pathogenic bacteria 

from animal (RESAPATH network) database for the report of digestive, mastitis and reproductive 

syndromes in cattle; and the Salmonella network database for the isolation of Salmonella in cattle 

(animals and their environment, feed) and food (dairy product and beef). In addition, two human 

health databases were investigated: the coordinated health surveillance of emergency (OSCOUR) 

database and the General practitioner house call network (SOS Médecins) database. These two 

databases were aggregated into a single time series depicting the number of reports for 

gastrointestinal syndroms per week.  

Weekly time series (TS) at national scale were extracted from these datasets from 2011 to 2018. A 

retrospective anomaly detection analysis was performed on the last three years of the time series. It 

consisted in identifying statistical anomalies within time series, potential outbreaks, by five main 

algorithms (Holt-Winters, Historical Limits, EWMA, Shewhart and CUSUM). For each TS, we 

implemented a classical approach consisting of: i) preparing the calibration period to get a baseline 

cleaned from outbreaks, ii) predicting the expected value for the test week and iii) detecting a potential 

excess events (anomaly) by comparing observed and predicted values during the test week. For each 

TS, the baseline was obtained using a generalized linear model (GLM) adjusted for over-dispersion, 

testing Poisson, Generalised Poisson, Quasi-Poisson and Negative Binomial distributions. We also 

tested trends (none and linear), seasonality (annual, bi-annually), and auto-regressive components 

over the last four weeks. Best-fitting model was selected using the Akaike Information Criterion (AIC) 

while the best-fitting distribution was determined with coefficient of dispersion and assessment of 

residual plots. The five algorithms for anomaly detection were parametrized as described by Sala et al. 

(2020). 

The selected datasets revealed a wide range of characteristics: considering cattle mortality (NCR data) 

and human health (OSCOUR and SOS Médecins data), TS depicted regular patterns with distinct 

seasonality (annual or bi-annual), trend and limited noise; regarding laboratory analyses (RESAPATH 

and Salmonella data), TS showed yearly seasonality, little to no trend and high noise. Considering time 

series individually, some statistical anomalies were reported simultaneously by numerous algorithms 

(fig 1). Likewise, several temporal anomalies were measured concurrently in time series from either 

multiple animal datasets or both animal and human health datasets. As an example, several anomalies 

were detected simultaneously in both human health dataset (OSCOUR and SOS Médecins) and 

laboratory datasets (RESAPATH and Salmonella) (e.g. W32-2017) or human health dataset and cattle 

mortality (NCR) (e.g. W44-2016).  

 



                         

  

5 
 

 

Figure 1. Weekly observed data and model-predicted anomalies per week, for each algorithm. On the 

left y-axis, the cumulated alarm scores with colors corresponding to algorithms. On the right y-axis, 

the observation units.The black frames highlight alarms common to several TS 
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Multivariate SyS   

Due to the diversity of the datasets explored (animal, food, human), we chose to adopt a combined 
multivariate surveillance strategy. We aimed to identify anomalies in multiple time-series 
simultaneously. This strategy is a complement to the control charts and the heat maps generated by 
aggregating several univariate components (see “univariate analysis”). The main hypothesis under a 
combined multivariate analysis is that TS are independent when there is no epidemic. The aim of the 
alarm detection is to detect the point when the TS start to be correlated when a common outbreak 
occurs. Three methods for multivariate detection anomalies were tested: one method based on 
dimension reduction which summarizes each component at a time point into a single statistic 
(Hotellling’s T²) and two methods based on vector accumulation, in which information from each TS is 
accumulated and transformed into a scalar alarm statistic (MEWMA, MCUSUM). MEWMA and 
MCUSUM are the equivalent of of EMWA and CUSUM algorithms (used in univariate analysis) but 
suitable for the multivariate approach.  

For the multivariate analysis, we considered the TS derived from the previous datasets: NCR, 
RESAPATH, Salmonella network and OSCOUR-SOS Médecin. We used the “clean” TS (i.e. baseline free 
from outbreaks) to suppress trends and seasonality over the whole time period (2011-2018). First, we 
checked for collinearity between TS as multivariate algorithms for temporal anomaly detection do not 
deal with strongly correlated TS (fig 2). Then, we checked the normality of the multivariate TS because 
it is an assumption to be respected for the application of multivariate control charts as MCUSUM and 
MEWMA. We considered a 3-years historic as the better compromise between the respect of the 
normality assumption and the use of a long historic period. The 3-year historic period was used for the 
first step of the multivariate analysis (Tab 1). This step consisted in calculating the covariance matrix 
and the vector of means over the 3 year-period. The covariance matrix and the vector of means were 
calculated for each week between 01-01-2016 and 31-12-2018, resulting in 140 correlation matrix and 
140 vectors of means.   

 

Fig2: Correlogram for the 8 TS considered in the multivariate analysis from 2011 to 2018 
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Tab 1: Proportion of TS (2016-2018) showing a normal distribution in univariate analysis (Shapiro-Wilk 
test) and in multivariate analysis (Hense-Zickler test) according to the historic period (from 1 to 5 years)  

On the second step of the multivariate analysis, T² were calculated on the control charts resulting from 
the previous step (MCUSUM, MEWMA) or directly applied on the raw value to the last week of 
observation (Hotellling’s T²). For generating MCUSUM and MEWMA control charts, an historic of one 
year and a guard-band of 7 weeks were taken into account. The parametrization of the methods was 
based on Faverjon et al. 2019.  

We observed that the anomalies detected were very different according to the method used (Fig 3). 
Hotellling’s T² detected very sharp peaks on a short time-period because this method did not take the 
vector of the past means into account. Conversely, MEWMA and MCUSUM integrated a one-year 
history and alarms were triggered when of a progressive shift in the mean baseline was observed. 
These observations demonstrated that a set of different algorithms is needed to detect different types 
of anomalies. We observed that anomalies were detected with the three methods from W37-2018 to 
W41-2018. On the univariate analysis, this period also triggered alarms for the human TS (OSCOUR-
SOS Médecin), for the Salmonella network – food TS and, to a lesser extent, for the Salmonella network 
– animal health TS but not for the cattle mortality TS or the RESAPTH TS. It is of interest to highlight 
that the W37-2018/W41-2018 period was not the most striking period of simultaneous alarms when 
comparing univariate heat maps.  

It turned out that the anomalies detected by MEWMA and MCUSUM were very dependant from the 
algorithm parametrization. For MEWMA, increasing λ from 0.2 to 0.9 increased the proportion of 
weeks with alarms from 1.5% to 12.5%. High values of λ (near 1, the higher limit) limited the influence 
given to the historical means in the detection process of alarms. In that cases, MEWMA tended to 
detect the same alarms than the Hotellling’s T² method, i.e. sharp peaks on a short-period. 
Parametrization of MCUSUM was more difficult. The h parameter could be easily set because it directly 
determine the proportion of weeks with alarms. It defines the upper limit control of the MCSUM 
control chart (fig 4). The value of k was more difficult to set because it is dependant from the 
magnitude of the distance between the observed and the expected means. We tested a range of values 
for k from 0.1 to 1.5. Values of 0.4 and 0.5, associated respectively with h=11 and h=10, rendered 
around 20 % of weeks in alarms (10 weeks). This was considered as the maximal proportion of weeks 
in alarm that could be taken into account when running an operational surveillance system.  
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Fig 3: Weekly data and model-predicted anomalies per week over 2016-2018, for each algorithm: a) 
Hotellling’s T²,b) MEWMA (λ=0.3) and c) MCUSUM (h=11 and k=0.5). 

 

a 

b 

c 
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Fig 4. Proportion of weeks with alarms according to the h parameter for different values of k in the 
MCUSUM method 

 

Conclusion & future direction 
We did not assess the sensitivity and specificity of the alarm detection process in the multivariate 

analysis. As no documented outbreaks occurred during the studied period, the only solution to assess 

the system performance would have been to simulate multivariate outbreaks. This assessment could 

not been carried out during the NOVA project. Nevertheless, we proposed for the first time parallel 

univariate analysis and combined multivariate analysis for several dataset that have been never 

explored with a One Health surveillance approach. In addition to challenges previously addressed in 

deliverable 3.4 (data accessibility, data quality, timeliness and geographical aggregation scales), 

developing a multivariate analysis also raised the problematic of the dependencies between TS 

investigated. We considered that the TS described a same underlying phenomena: circulation of 

Salmonella along the Food Chain, causing clinical events both in cattle and in humans but also leading 

to isolations of the bacteria in the food and the environment of the animals. This combined 

multivariate approach rendered alarms that were not the same than those which were detected by 

parallel monitoring of the TS. The main advantage of the combined surveillance is to summarize all the 

TS analysis into a single statistic which is easy to interpret, although the parametrization of the 

algorithms may need serial adjustments to optimize the system. The combined analysis offered a 

standardized way of analysing several TS simultaneously, while parallel monitoring with charts or heat 

maps might be more subject to subjective interpretations. However, combining information of all TS 

into a single statistic raised issues for the interpretation of the alarms: it was not possible to identify 

individual TS that contributed the most to the alarms and it was necessary to go back to the univariate 
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TS analysis to identify the alarms. Another option would have been to restart the multivariate analysis 

after deleting one (or two) TS in turn and checking if any alarms were still generated without the 

deleted TS. 

This first attempt to develop both univariate and multivariate TS analysis showed that the two 

strategies are of interest for surveillance. Because TS anomaly detection algorithms are relatively 

straightforward to implement, it could be possible to perform both univariate and multivariate analysis 

in an operational surveillance system, after a period of calibration of the methods. The most 

demanding part would be the parametrization of the algorithms, in order to obtain early detection 

(adequate timeliness in detection of potential outbreaks) but to avoid false alarms. Indeed, each alarm 

leads to checks, firstly by in-depth analysis of the TS in question and then, if necessary, by cross-

checking with the on-field operators. Ultimately, alarms lead to epidemiological on-field investigations. 

Under the conditions, time and financial burden caused by false alarms must be carefully taken into 

account in the algorithms parametrization. Currently, we lack documented epidemiological data to be 

able to estimate the sensitivity of the methods developed and optimize parametrization. A regional 

analysis based on documented Salmonella outbreaks in dairy cattle and in raw milk cheese consumers 

in south eastern France in 2018 is currently being developed to allow a first validation based on past 

episodes. 

Since 2011, several networks dedicated to the surveillance of health hazards in animal, plant and food 

have been developed in France. These networks involve all surveillance stakeholders in each sector. 

Our work in NOVA is of interest for the animal health surveillance network (plateforme ESA) and the 

food-chain surveillance network (plateforme SCA). Salmonella is a common subject for the two 

collaborative structures but this is the first time that data from animal, food and environment, 

produced by different sources, are combined for surveillance in France. Our work is of interest both 

platformsto both networks, which provide an optimal structure and environment to further develop 

the One Health surveillance approach.  
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3. SURVEILLANCE OF HUMAN CAMPYLOBACTERIOSIS IN SWEDEN 
Considering the continuous high incidence and subsequent impact on the society, relatively straight-

forward food chain, and the availability of data (Fig.5), Campylobacter was chosen as the target 

pathogen in Sweden. As the first step, we applied different temporal aberration detection algorithms 

(TADAs) to the time-series of weekly number of broiler slaughter batches positive for Campylobacter, 

which showed a high potential of the data to be used for detecting outbreaks with syndromic 

surveillance approach (SyS)(NOVA D3.3). In 2020, we started a collaboration with the Public Health 

Agency of Sweden (FOHM) on the topic, and got access to the weekly number of clinical 

campylobacteriosis cases in humans that were known to have no foreign travel history (domestic 

cases). Meanwhile, we also acquired more knowledge about the broiler data - structure of broiler 

industry in relation to Campylobacter surveillance (NOVA D3.4), more correct estimation and use of 

sample collection date (slaughter date) – in addition to developing a script to download and aggregate 

the weather data (temperature, precipitation) from the Swedish Meteorological and Hydrological 

Institute (SMHI), in collaboration with NOVA WP4 (SVA).  

 
Figure 5. Mapped food chain for Campylobacter transmission. There is a national monitoring system 

at major slaughterhouses in Sweden and human campylobacteriosis cases are reported to FOHM 

through SMInet (red surveillance camera signs). 

In this deliverable, we report the findings and discussion from 1) univariate SyS, applying TADAs to the 

time-series of weekly number of Campylobacter-positive broiler slaughter batches (broiler data) and 

weekly number of clinical campylobacter cases in humans (human data) using data from 2009 to 2019 

(The broiler data is re-done with more correct estimation of the date and extended time frame than 

the previous report in NOVA D3.3), 2) univariate SyS with the actual weather data to model the 

seasonality for both broiler and human data, 3) univariate and multivariate SyS of the broiler data 

broken  down by slaughterhouse, 4) multivariate SyS of broiler and human data and finally, 5) 

discussion on how we can exploit the current surveillance program in broilers to support and enhance 

the surveillance in humans, with the focus on early detection/decision for further action.  

 

Univariate Sys 

Broiler data 

Due to the highly seasonal pattern of the data, regression methods based on global behavior – such as 

the Farrington algorithm and Poisson regression – performed well in learning the seasonal pattern in 

the data, while still generating alerts for seasonal peaks that were exceedingly high (Figure 6). Among 

the two, EWMA consistently alerted during an outbreak period known to have occurred in 2016-2017 

(Livsmedelsverket, 2017). The Holt-Winters algorithm, which is a local data-driven regression method, 

adjusted too well to the high seasonal peaks and failed to provide consistent alarms in known outbreak 

periods.  
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Figure 6. Weekly number of Campylobacter-positive broiler slaughter batches (bars) and upper control limits 

(colored lines) for three temporal aberration detection algorithms (TADAs) evaluated. In the bottom of the figure 

the red dots represent each week in which the respective TADA generated an aberration detection alarm. 

 

Human data 

Similar results were observed when applying TADAs to the time-series of weekly reported 

campylobacteriosis cases in humans – global regression methods performed better, and the EWMA 

performed best in signaling when seasonal peaks exceeded the expectation, while not generating an 

excessive number of extra alarms overall (Figure 3). 

 
Figure 7. Weekly number of domestic Campylobacteriosis cases reported to the Public Health Agency in Sweden 

(bars) and upper control limits for three temporal aberration detection algorithms (TADAs) evaluated (colored 

lines). In the bottom of the figure the red dots represent each week in which the respective TADA generated an 

aberration detection alarm. 

 

The human data also reflected the big outbreak reported in 2016-2017, and all algorithms applied 

made alarms for the abnormal increase in case numbers during the outbreak period (red-highlighted 

in Figure 7). However, as highlighted in orange (Figure 7), there were alarms generated nearly every 

year when the number of cases exceeded the expected seasonal peak, warranting further 

improvement of the system and assistance in interpreting the generated alarms. 
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Based on the univariate SyS of broiler and human data, combined with more knowledge and better 

understanding of the data including weather data, following questions were generated, which are 

addressed in the same order. 

1) Can we improve the performance of univariate SyS by modeling the seasonal variation – in 
both broiler and human data– based on actual weather data (temperature, precipitation)?  
Temperature and rain fall has been found to be significantly associated with Campylobacter 

both in broilers and humans (Jore S. et al., 2010, Jorgensen F. et al., 2011). The seasonal 

patterns were modelled using sine and cosine waves in the previous univariate SyS, rather 

than actual weather data. We wanted to explore whether adding true weather data can 

potentially capture further noise. 

2) Can we reduce the number of false alarms or improve the sensitivity of temporal monitoring 
in the broiler data by breaking down the numbers by slaughterhouse of origin?  
There are seven major slaughterhouses for broilers in Sweden. We wanted to explore whether 

implementing monitoring in each of the slaughterhouses individually in parallel could increase 

the sensitivity, while combining the seven time-series using multivariate SyS methods could 

improve the confidence in the alarms.  

3) How can the current surveillance program in broilers complement and assist the surveillance 
activity in humans for campylobacteriosis? 
Campylobacteriosis is a zoonosis with broilers (chicken meat) as the main source of infection, 

strongly warranting a statistical and practical set up of joint analysis for an effective One Health 

Surveillance. Specifically, an investigation is needed to examine if the broiler data can serve as 

a predictor of the campylobacteriosis cases in humans, or at least the simultaneous monitoring 

of broiler data using TADAs can give the relevant support for public health authorities to make 

more timely decisions to declare an outbreak. 

 

Weather data in univariate SyS 
As previously described, the best TADAs for monitoring both broiler and human data were the 

Farrington algorithm and regression followed by detection using EWMA in the residuals. However, as 

shown in Figure 6, the presence of a large outbreak in 2016-2017 caused baseline “contamination”, 

making all algorithms to incorporate the increased number of cases in their baseline moving forward, 

which resulted in outbreak signal detection in weeks after the outbreak to deteriorate.  

For this reason, for all further univariate SyS, we chose to use regression + EWMA as coded in the freely 

available package {vetsyn} (Dórea et al. 2015) in statistical programming language R (R Core Team, 

2020), which provides users with the option of setting automated correction of the baseline. 

To evaluate the effect of incorporating weather as a predictor of Campylobacter incidence in both 

broilers and humans, the EWMA implementation of the {vetsyn} package was adapted to model 

seasonality based on provided precipitation and temperature data (daily observations from all the 

weather stations available in 2009-2019 transformed to the weekly average), and the results for the 

broiler data and human data are shown in Figures 8 and 9, respectively. 
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Figure 8. Outbreak signal detection applied to the broiler data using regression + EWMA with automated baseline 

correction. Seasonal modeling based on sine and cosine waves is compared to modeling using average weekly 

precipitation and temperature. 

 

 

 
Figure 9. Outbreak signal detection applied to the human data, using regression + EWMA with automated 

baseline correction. Seasonal modeling based on sine and cosine waves is compared to modeling using average 

weekly precipitation and temperature. 

 

In both cases the use of baseline correction was effective in preventing the upper detection limits from 

increasing after the outbreak in 2016-2017. Also, in both cases the use of sine and cosine waves 

resulted in detection of seasonal peaks that exceeded expectation at least one week before the first 

aberration signal in the model using weather data, thus outbreak detection was not improved by using 

weather data. 
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The weather data is explanatory, and therefore its use as a predictor variable in the regression models 

adjusts our expectation of that season’s number of cases. This can be beneficial if the goal is to reduce 

the number of false alarms. However, if we just want surveillance officials to be alerted when seasonal 

peaks are starting to appear, the sine + cosine option may be better. The third option could be to have 

both in use. In that way, surveillance officials will get an early warning based on the sine + cosine 

model, knowing “the season is really in full speed now”. Then they can watch the alarms generated 

with weather data to see whether it looks like it will be a heavy season, and weather alone explains 

that, or not, in which case they should get prepared for a possible continued increase. In this proposed 

scenario, sine + cosine model will be used to generate the alarm, and the weather model as an 

explanatory rather than detection model. 

 

Univariate & Multivariate SyS of the broiler data by slaughterhouse 
Univariate SyS of counts aggregated over large geographical areas can lead to dilution of outbreak 

signals (Dórea et al. 2013). We aimed to investigate whether sensitivity for detection of localized 

outbreaks could be increased by breaking down the weekly counts of positive slaughter batches by the 

seven different major slaughterhouses in Sweden. Monitoring all the seven time-series individually in 

parallel can, however, increase the false alarm rate (false discovery problem). Therefore, we wanted 

to investigate if the problem could be avoided by applying multivariate SyS methods.  

 

As we had been performing univariate analyses using EWMA, the natural choice for the multivariate 

SyS was the use of multivariate control charts – also preceded by regression to remove seasonal 

patterns. The multivariate cumulative sums (MCUSUM) and the multivariate EWMA implementations 

(MEWMA) from the R package {MSQC} (Santos-Fernandez, 2016) were tested and the results are 

shown in Figure 10. For comparison, the broiler data (total counts) and the alarms generated by 

regression based on sine + cosine is also shown in the figure. 

 

As shown in Figure 10, the application of multivariate SyS methods (MEWMA, MCUSUM) did not offer 

advantage over the univariate SyS counterparts – whether applied to the summed count series of all 

slaughterhouses or to all seven independently. The statistic for the MCUSUM grew to such a high value 

during the outbreak in 2016, that it stayed on “out of control state”, or alarm state, for over one year 

after the outbreak. This MCUSUM behavior has been repeatedly observed in different MCUSUM 

implementations we tested (results not shown), and a manual reset of the algorithm would be needed 

in case of outbreaks. The MEWMA first alerted for an outbreak signal in week 29, five weeks after the 

EWMA applied to the total counts for all of Sweden generated an alarm. 

 

Meanwhile, particularly in the case of the known outbreak in 2016-2017, the separation of counts by 

slaughterhouse of origin made it clear that the problem was localized to slaughterhouse F. The 

aberration detection applied to that slaughterhouse data individually would have signaled for the first 

time on week 23, and consistently signaled every week after that, while the first signal in the time-

series of counts for all of Sweden was in week 24. From this example, we can conclude that having a 

parallel univariate SyS implemented for all seven slaughterhouses, in complement to the time series 

of the total counts in Sweden, could lead to more timely alert with more information on the source.  
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Figure 10. Weekly number of Campylobacter-positive broiler slaughter batches in each of 7 major 

slaughterhouses in Sweden, as well as the total counts (bars). The bottom panel shows the alarms generated 

when applying syndromic surveillance with regression followed by EWMA independently in each of the 

slaughterhouses, combining all 7 time-series in multivariate control charts (MEWMA and MCUSUM) and, for 

comparison, the alarms previously described for the total counts in Sweden.  

 

 

Multivariate SyS of broiler and human data  
We further investigated whether the broiler and human data could be incorporated into the same 

temporal monitoring system to improve the timeliness of detection of outbreaks in humans. Based on 

the assumption that the presence of Campylobacter in chicken meat is the leading cause of 

campylobacteriosis in humans, we included the broiler data as a predictor in the regression model 

applied to the human data as a pre-processing step to remove temporal patterns before applying 

EWMA as a TADA. Two settings were tested: using the weekly number of positive slaughter batches 

directly, week by week aligned with the human data; applying a two-week lag, where the model 

prediction of the number of cases in humans in a given week is based on the number of broiler batches 

positive for Campylobacter two weeks prior. The time lag of two weeks was based on the preliminary 

result from an on-going national project in Sweden, which coincides with a similar study in Switzerland 

(Wei et al., 2015). The results are shown in Figure 11.  
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Figure 11. Outbreak signal detection applied to human data using regression + EWMA with 

automated baseline correction. Seasonal modeling alternatives previously presented are compared to 

the use of the broiler data as a predictor variable: first directly based on counts in the same week, and 

second with a two-week lag in-between. 

 

None of the settings used provided earlier detection compared to simply modeling the human data 

independently based on sine and cosine. First to scrutinize the behavior of the TADA settings in Figure 

11, we focused on other years and some smaller simulated outbreaks and concluded that the statistical 

behavior of the frameworks accurately reflects the biological expectation: the chicken data can serve 

as a better explanatory variable for the number of cases in humans, which is true in non-outbreak 

weeks as well as outbreak weeks. However, if we are focusing alarm detection only on the human data, 

this means that the pre-processing model is doing a better job of explaining a sudden increase in 

humans, if a sudden increase in broilers was also observed - an increase in human cases which follows 

a previous increase in broilers is expected by the model, and therefore the residuals delivered to the 

TADA “discount” that increase to whatever extent it has already been expected by the correlation 

learned between the two time-series.  

 

The implication is then that if the broiler data is used to retrospectively explain behavior in the human 

data, it reduces the number of alarms that the system generates. Instead, we should aim to use the 

broiler data in a prospective, predictor model. Thus, as best exemplified in the outbreak in 2016-2017, 

where an aberration could be already detected in week 24 in broiler data, while it was week 29 for 

human data, the One Health SyS should aim to use the broiler data independently to predict the weekly 

counts ahead for human cases.  
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Bayesian decision framework 
We also investigated using a Bayesian decision framework to combine broiler and human data, which 

outputs a “Value of evidence” that can be easily combined with a decision theory framework 

(Andersson et al., 2014). In collaboration with the original author (M.G. Andersson), we extended the 

original work to accommodate multiple time-series in parallel and examined two different scenarios – 

one by using the broiler data and human data in parallel, the other by using “posterior probability” of 

an outbreak from broiler data as a “prior probability” for human data. However, the first scenario also 

showed the same limitation as the previous explanatory model, as trend in humans were “explained” 

by the broiler data, thus reducing the sensitivity of alerts. Meanwhile, the second scenario (sequential) 

warranted further work, particularly in understanding the exact relationship between the two time-

series under outbreak and no-outbreak phases, so correct conversion of posterior probability (from 

broiler data) to prior probability for human data can be performed. However, even if further progress 

is made on this end, based on the work so far we conclude this approach will not add to the previous 

approaches in the sensitivity or timeliness. Still, as the extension of Andersson’s previous work to 

multiple time-series is an important research result of NOVA, we plan to make the statistical 

framework publicly available in shared code repositories in near future. 

 

Conclusion & future direction 
 

In this task (Task 3.3 Evaluation of multivariate syndromic surveillance for FBD), we used different SyS 

approaches to explore three datasets – broiler, human, and weather – separately and also in relation 

with each other, in search for the most optimal SyS for Campylobacter outbreak detection. While no 

framework investigated so far to statistically combine two sources of data (weather + broiler, weather 

+ human, broiler + human) offered a practical advantage over simply monitoring broiler and human 

data separately with univariate SyS, breaking down the broiler data into seven major slaughterhouses 

in Sweden showed a high potential of making more timely alerts when monitored with the total counts.  

Currently, the One Health surveillance for Campylobacter in Sweden relies on regular verbal meetings 

between authorities, mostly SVA and FOHM, without any automatic alert system in operation at either 

institution. And while there is delay in reporting for human cases at FOHM to sort out the domestic 

cases, there is data governance issue around the broiler data with the broiler industry (Svensk Fågel) 

that blocks SVA from sharing the slaughterhouse-level data (which is restricted to only a few 

surveillance officials even within SVA). Along with these hindrances, our result shows that there is no 

benefit of combining the two datasets in a statistical framework. Thus, one proposed way to use the 

outputs from this work for better One Health surveillance is to set up a separate SyS of Campylobacter 

at SVA and FOHM. At SVA, the SyS can be set up as shown in figure 10, where parallel univariate SyS 

for each slaughterhouse is shown along with one for the total counts, in addition to one with actual 

weather data. We expect having a parallel univariate SyS for individual slaughterhouse will be also 

beneficial to the broiler industry, as they are required to control the prevalence of Campylobacter in 

their premises (farm, slaughterhouse) and early notification of something abnormal in the counts for 

each slaughterhouse can facilitate more timely and effective control measures at the possible 

“source”. And if the system makes alert 2-3 weeks in a row, driven by one slaughterhouse (especially 

with high slaughter batch numbers), then the information could be relayed to the surveillance officials 

at FOHM that they need to monitor the human cases with increased alertness. At FOHM, the SyS could 

be set up like Figure 5, showing alerts from both sine + cosine and the actual weather data, so better 
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understanding of the temporal trend can be easily achieved. If the alert continues both in the broiler 

and human data in the subsequent week(s), then sample collection can be started at the human side 

from the regional clinical laboratories, so a joint investigation on the WGS data of Campylobacter 

isolates from humans and broilers can be initiated, along with epidemiological investigations. The 

exact parameters, like time between steps, will have to be further adjusted based on continuous 

dialogue between surveillance officials at SVA and FOHM, but overall, we strongly believe that the 

outputs from this task will promote more effective One Health surveillance and better control of 

Campylobacter in Sweden.  
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4. SURVEILLANCE OF CAMPYLOBACTERIOSIS IN NORWAY 
In Norway, we made a One Health surveillance based on the use of gastrointestinal consultations in 

human (NorSySS) and Campylobacter surveillance data from broiler flocks. This was based on the 

availability of the data and the Campylobacter status of chicken flocks is associated with 

Campylobacter occurrence in humans in the same geographical area (Jonsson M.E. et al, 2010; Jore S. 

et al., 2010). Also, the NorSySS data was already in daily use for syndromic surveillance for people in 

Norway and any improvements found can be implemented in the day to day surveillance activities. We 

combined the data sources with weather data to improve detection and prediction of outbreaks 

(Jonsson M.E. et al, 2012). We did both univariate and multivariate analysis of the data and we made 

a dashboard so that the stakeholders could to get access to the surveillance data and the results of the 

models. 

Data sources 

Gastrointestinal consultations 

The Norwegian System for Syndromic Surveillance (NorSySS) was used for the number of outpatient 

consultations for gastrointestinal symptoms as classified by ICPC-2 diagnosis codes. We included 

weekly aggregated numbers of consultations per municipality in 5 age groups. The modelling parts 

discussed in the multivariate section focuses on the 30-65 age group, which is the largest age stratum 

and avoids the noise potentially introduced by gastrointestinal symptoms in younger age strata.  All 

GPs and out-of-hours GPs are required to submit all consultations with ICPC-2 codes within two weeks 

of the consultation to receive compensations from the Ministry of Health (note that the amount of 

reimbursement is independent of the diagnostic code). The data has little missingness and mean 

reporting time is 12 days. NorSySS data was chosen as it is already in daily use for syndromic 

surveillance for people in Norway. Any improvements in univariate or multivariate surveillance can be 

implemented in NorSySS and will be of importance for the stakeholders in the day to day surveillance 

activities. 

Campylobacter data from broiler flocks 

The Campylobacter surveillance data includes the results from the Norwegian surveillance programme 

for Campylobacter spp. in broiler flocks from 2006 to 2021. From 2006 to 2008 all broiler flocks that 

were slaughtered before 50 days of age should be sampled. From 2009 and onwards all broiler flocks 

that were slaughtered between 1 May and 31 October were sampled. The sample is collected by the 

owner and one sample consists of ten pooled swabs from fresh faecal/caecal droppings. The samples 

are analysed for Campylobacter spp. by real-time PCR at the Norwegian Veterinary Institute. The data 

is extracted from the Laboratory Information System at the Norwegian Veterinary Institute. The data 

is cleaned for registrations where the municipality of the broiler flock is unknown (n = 12) and samples 

originating from flocks where the species and/or production type were not specified (n = 141). 

Altogether 39,872 samples from 2006 to 26.06.2021 were included in the data. The samples are 

aggregated on year, week and municipality. The municipality borders of 220 was used for aggregating 

on municipality. For each year, week ,municipality, the total number of chicken farms and the number 

of samples categorized into positive, negative, rejected, and received are reported.  
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Transfer of data to the Norwegian Public Health Institute once a week is automized. At the end of each 

week, data is extracted from the Norwegian Laboratory Information System, cleaned, aggregated and 

sent automatically from the Norwegian Veterinary Institute to the Norwegian Public Health Institute. 

Routines to detect if the report fails have been established.  

Weather data  

Daily high/low/average temperature and total amount of rain in each municipality from gridded data 

are provided by the Norwegian meteorological institute. Based on measurements and models the 

meteorological institute creates a daily raster with 1x1km resolution of rain and temperature. We then 

aggregated this to the municipality geographic level.  We calculate additional transformations of these 

data including precipitation variation within a week, temperature variation within a week, 

temperature range within a week, and presence of freezing temperatures.  Average weekly 

temperatures and precipitation are calculated to model the weekly gastrointestinal consultations 

outcome. 

Univariate Sys 
In Norway univariate surveillance is used in the NorSySS to detect signals in the number of 

consultations with gastro-intestinal symptoms reported from GPs and out-of-hours GPs. The data used 

in this report is for the whole of Norway, while the surveillance system also raises signals on the county 

and municipality level. The main method used in this surveillance system is a quasi-poison (QP) 

regression model. This model takes into account seasonality, time trends and holidays and uses the 

total number of consultations as a population offset. To reduce the effect of pervious outbreaks a 

reweighting scheme similar to the Farrington method is used.  Here we show an alarm threshold 

corresponding to a z-value of 2.   

 In figure 12, we compare the alarms generated by this method with the set of surveillance algorithms 

used for Campylobacter in Sweden as described above.  It seems like taking into account the total 

number of consultations lead to better alarm thresholds. This is likely due to differing reporting 

practises throughout the year and especially during holidays. There are clear similarities in which 

weeks alarms are raised for the different algorithms, but also clear differences. For example, the Holt-

Winter approach without normalisation seem to give a significantly higher threshold than the other 

algorithms. One interesting finding is that there seems to be an increase in consultations in early 

autumn every year that gives alarms in the quasi-poison method that we do not see in the Farrington 

methods. The main difference between them is that the QP method models the seasonality explicitly, 

while the Farrington method implicitly model seasonality by restricting the data used to derive the 

threshold. For this specific increase every year, it would seem that the Farrington methods perform 

better and that the alarms raised by the QP method might be spurious.  

Further evaluation of surveillance methods for potential use in NorSySS need to take into account that 

the current surveillance system is multivariate since we do surveillance in each of 435 municipalities 

for each disease. This gives multivariate surveillance problem even if we only consider one data source. 

Due to likely correlations between data from different municipalities, issues of multiple testing and it 

being likely that better performance can be reached using partial pooling, it is important that 

algorithms, and optimisation criteria are chosen such that the multivariate nature is taken into 

account.  
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Figure 12: The top chart shows weekly gastro-intestinal consultations and detection thresholds for a 

range of surveillance algorithms. The second chart shows where the algorithms would raise an alarm 

due to the number of consultations being above the detection threshold. 

 

 

Multivariate Analysis  
Two main approaches to multivariate surveillance were identified, we call them explanatory and 

predictive approaches. The explanatory approach aims to include covariates to “explain” variation in 

the main time-series of interest. This would allow us to de-prioritise outbreak signals that seem to be 

explained by known covariates. In our example, it might be less important to investigate a signal in 

gastrointestinal symptoms if it can be explained by an increase in cases from animal surveillance. Since 

we aim to maximise the probability of detecting real outbreaks while keeping the false positive rate 

low this can lead to a better surveillance system. The “explanatory” approach can also provide 

significant insight into the epidemiology of the disease or symptoms.  
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In certain circumstance such as in Norway, the context means that we are mainly interested in 

improving the surveillance of human cases since any positive tests in chickens are dealt with locally. 

Therefore, we want to use the data from Campylobacter testing in chicken to predict future number 

of human cases. This would allow the construction of risk scores and potentially provide opportunities 

to intervene before an outbreak and not just detect the outbreak.  We implemented such a risk score 

using a two-stage approach, whereby we partition variation in the outcome into a “baseline”, or first 

stage model, and a “deviation”, or second stage model, which are described as follows.   

First stage model 

NorSySS weekly gastrointestinal consultations are used as a proxy indicator for Campylobacter case 

burden, while the total number of weekly physician consultations is the denominator for preliminary 

adjustment for seasonality, variation due to holidays, etc. From a statistical perspective, 

gastrointestinal consultations are the negative-binomial distributed outcome with offset of total 

consultations, explained in a first-stage model by (linear) time, (linear) time since beginning of the 

corona “era” (approximately week 9 2020), indicator for pre/post corona era, seasonality on 6 degrees 

of freedom, an indicator for residual holiday variation not explained by the offset formulation, and a 

municipality-specific random intercept to account for the tendency of some municipalities to have 

higher gastro proportions than others. Recent iterations of the first-stage model have included 1 week 

lag autoregressive term, which has been excluded for multiple reasons including a lack of fully 

populated data within the timeframe needed for the forecast.  The holiday status indicator variable 

has also been dropped because of non-significance in the model—the offset term likely fully controls 

for gastrointestinal variation due to holiday status for any week being modelled. 

Second stage model 

Two second stage logistic regression models are used to model extreme deviations of the proportion 

of gastrointestinal consultations from the first-stage, baseline model, where the threshold is variable 

but currently chosen between 2.1 and 2.3 standard deviations higher than expected, where deviations 

are calculated municipality-specific. These models are used to predict “outbreak” events on a weekly 

basis, though deviations at the thresholds we examine should not necessarily be considered outbreaks. 

The two different models are oriented around 1-week and 2-week forecasts, respectively. The 1-week 

forecast model uses only 1 or greater (up to 5) week lagged variables, while that for the 2-week model 

uses only 2 or greater week lagged variables. Variables searched and optimized over via AIC 

minimization in a variation on backwards-stepwise search included the proportion of farms within a 

municipality testing positive for Campylobacter, total number of farms positive with Campylobacter, 

total number of farms in the municipality, average temperature over the week, average rainfall, within-

week temperature variation and range, and an indicator of below freezing temperatures. Variables 

which showed statistically significant in the forecast models included 2 weeks lagged Campylobacter 

municipality proportion, temperature and precipitation data, and depending on the time frame of the 

particular forecast model, number of farms in the municipality. 

 

Output of the Campylobacter prediction model 

The first stage model produces a one week forecast of the proportion of gastro consultations (the 

count of consultations cannot be forecast, because the offset is not known in advance), while the 1- 

and 2-week second stage models produce a probability of an outbreak event. Both first and second 
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stage models have strong season trends either because it is explicitly modelled or because of the 

influence of temperature, precipitation, and Campylobacter surveillance covariates, the latter being 

not monitored in winter. These forecasts currently are made for 43 municipalities in Norway that have 

regular Campylobacter surveillance, but will be expanded as weather-only models are developed 

which also leverage spatial information. 

 

Dashboard 
The surveillance data and model results are being displayed on a closed R Shiny dashboard. 
 
This surveillance platform contains visualisations of the raw data used for the models (Fig. 13), as well 
as model results, in the form of a graph of the forecasted ratio of gastro-intestinal consultations and a 
map of the risk of outbreak per municipality (Fig. 14 and Fig. 15). It also hosts background information 
on the nature of the project, the data sources and the forecasting process. 
 

 
Fig 13. Precipitation and temperature graph as an example of an interactive visualisation of the raw 

data on the website. The user can choose the location and the time frame of the graph. 
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Fig 14. Municipality map of the risk of a gastro-intestinal event occuring one week ahead. These 

forecasts currently are made for 43 municipalities in Norway that have regular Campylobacter 

surveillance, but will be expanded as weather-only models are developed which also leverage spatial 

information. 

 

 
Fig 15. Forecasted ratio of doctor consultations linked to gastro-intestinal symptoms in a given 

municipality, one week ahead. The user can choose the municipality they wish to display. 

 

Conclusion & future direction 
In Norway, we think the work done in the NOVA project has been very fruitful. The data from the 
veterinary, meteorological and human side has been explored and there has been development of 
models and a website for the stakeholders. We had a presentation of the One Health infrastructure 
and the website in the ASM Sattelite workshop in June 2021. 
 
The covid-19 pandemic has unfortunately delayed the NIPH part of the project a lot. This is because 
the NIPH team in the NOVA project is the ones also responsible for the Sykdomspulsen infrastructure 
and website (Including NorSySS) which is one of the main surveillance infrastructures in the NIPH.  
Therefore, we needed to put a lot of effort into the national Covid-19 surveillance.  
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The pilot website was originally planned to be accessible to the stakeholders (Norwegian Veterinary 
institute, The Norwegian Food Safety Authority and The Norwegian Institute of Public Health) in early 
May 2020, but because of Covid-19 it was postponed to early May 2021. However, due to difficulties 
regarding the sharing of sensitive data on this platform and the validation of a ROS analysis, and some 
technical difficulties regarding the implementation of a log-on system, we are currently planning for 
the website to be accessible and usable by the relevant institutions in August 2021. 
 

The website and the models will continue to live beyond the OHEJP NOVA project and also be extended 
further in the OHEJP MATRIX project. We have sent an abstract to the One Health in the 21st Century 
2021 Conference who is going to be held the 3rd of November 2021 (not received feedback yet) and 
we are planning to write an article about the One Health surveillance and website.  
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