
1

Joint Planning of Network Slicing and Mobile
Edge Computing: Models and Algorithms

Bin Xiang, Jocelyne Elias, Fabio Martignon, and Elisabetta Di Nitto

Abstract—Multi-access Edge Computing (MEC) facilitates the deployment of critical applications with stringent QoS requirements,
latency in particular. This paper considers the problem of jointly planning the availability of computational resources at the edge, the
slicing of mobile network and edge computation resources, and the routing of heterogeneous traffic types to the various slices. These
aspects are intertwined and must be addressed together to provide the desired QoS to all mobile users and traffic types still keeping
costs under control. We formulate our problem as a mixed-integer nonlinear program (MINLP) and we define a heuristic, named
Neighbor Exploration and Sequential Fixing (NESF), to facilitate the solution of the problem. The approach allows network operators to
fine tune the network operation cost and the total latency experienced by users. We evaluate the performance of the proposed model
and heuristic against two natural greedy approaches. We show the impact of the variation of all the considered parameters (viz.,
different types of traffic, tolerable latency, network topology and bandwidth, computation and link capacity) on the defined model.
Numerical results demonstrate that NESF is very effective, achieving near-optimal planning and resource allocation solutions in a very
short computing time even for large-scale network scenarios.

Index Terms—Edge computing, network planning, node placement, network slicing, joint allocation.

F

1 INTRODUCTION

N EXT generation mobile networks aim to meet different
users’ Quality of Service (QoS) requirements in several

demanding application scenarios and use cases. Among the
others, controlling latency is certainly one of the key QoS
requirements that mobile operators have to deal with. In
fact, the classification devised by the International Telecom-
munications Union-Radio communication Sector (ITU-R),
shows that mission-critical services depend on strong la-
tency constraints. For example, in some use cases (e.g.,
autonomous driving), the tolerable latency is expected to
reach less than 1 ms [1].

To address such constraints various ingredients are
emerging. First of all, through Network Slicing, the physical
network infrastructure can be split into several isolated
logical networks, each dedicated to applications with spe-
cific latency requirements, thus enabling an efficient and
dynamic use of network resources [2].

Second, Multi-access Edge Computing (MEC) provides an
IT service environment and cloud-computing capabilities at
the edge of the mobile network, within the Radio Access
Network and in close proximity to mobile subscribers [3].
Through this approach, the latency experienced by mobile
users can be consistently reduced. However, the computa-
tion power that can be offered by an edge cloud is quite
limited in comparison with a remote cloud. Fortunately, this
problem can be addressed by enabling cooperation among

• B. Xiang and E. Di Nitto are with the Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy, 20133.
E-mail: {bin.xiang, elisabetta.dinitto}@polimi.it.

• J. Elias is with the Department of Computer Science and Engineering
(DISI), University of Bologna, Bologna, Italy, 40126.
E-mail: jocelyne.elias@unibo.it.

• F. Martignon is with the Department of Management, Information and
Production Engineering, University of Bergamo, Bergamo, Italy, 24044.
E-mail: fabio.martignon@unibg.it.

multiple edge clouds, scenario that can be realized in next-
generation mobile networks (5G and beyond) as they will be
likely built in an ultra-dense manner, where the edge clouds
attached to base stations will also be massively deployed
and connected to each other in a specific topology.

In this line, we study the case of a complex network
organized in multiple edge clouds, each of which may be
connected to the Radio Access Network of a certain location.
All such edge clouds are connected through an arbitrary
topology. This way, each edge cloud can serve end user
traffic by relying not only on its own resources, but also
offloading some traffic to its neighbors when needed. We
specifically consider multiple classes of traffic and corre-
sponding requirements, including voice, video, web, among
others. For every class of traffic incoming from the corre-
sponding Radio Access Network, the edge cloud decides
whether to serve it or offload it to some other edge cloud.
This decision depends on the QoS requirements associated
to the specific class of traffic and on the current status of the
edge cloud.

Our main objective is to ensure that the infrastructure
is able to serve all possible types of traffic within the
boundaries of their QoS requirements and of the available
resources.

In this work, therefore, we propose a complete approach,
named Joint Planning and Slicing of mobile Network and edge
Computation resources (JPSNC), which solves the problem of
operating cost-efficient edge networks. The approach jointly
takes into account the overall budget that the operator uses
in order to allocate and operate computing capabilities in its
edge network, and allocates resources, aiming at minimizing
the network operation cost and the total traffic latency of
transmitting, outsourcing and processing user traffic, under
the constraint of user tolerable latency for each class of
traffic.

2

This turns out to be a mixed-integer nonlinear program-
ming (MINLP) optimization problem, which is an NP-
hard problem [4]. To tackle this challenge, we transform it
into an equivalent mixed-integer quadratically constrained
programming (MIQCP) problem, which can be solved more
efficiently through the Branch and Bound method. Based on
this reformulation, we further propose an effective heuristic,
named Neighbor Exploration and Sequential Fixing (NESF),
that permits to obtain near-optimal solutions in a very short
computing time, even for the large-scale scenarios we con-
sidered in our numerical analysis. Furthermore, we propose
two simple heuristics, based on a greedy approach. They
provide benchmarks for our algorithms, obtain (slightly)
sub-optimal solutions with respect to NESF, and are still
very fast. Finally, we systematically analyze and discuss
with a thorough numerical evaluation the impact of all
considered parameters (viz. the overall planning budget
of the operator, different types of traffic, tolerable latency,
network topology and bandwidth, computation and link
capacity) on the optimal and approximate solutions ob-
tained from our proposed model and heuristics. Numerical
results demonstrate that our proposed model and heuristics
can provide very efficient resource allocation and network
planning solution for multiple edge networks.

This work takes the root from a previous paper [5] where
we focused exclusively on minimizing the latency of traffic
in a hierarchical network, keeping the network and com-
putation capacity fixed. In this paper, we have completely
revised our optimization model to cope with a joint network
planning, slicing and edge computing problem, aimed at
minimizing both the total latency and operation cost for
arbitrary network topologies.

The remainder of this paper is organized as follows.
Section 2 introduces the network system architecture we
consider. Section 3 provides an intuitive overview of the
proposed approach by using a simple example. Section 4
illustrates the proposed mathematical model and Section 5
the heuristics. Section 6 discusses numerical results in a
set of typical network topologies and scenarios. Section 7
discusses related work. Finally, Section 8 concludes the
paper.

2 SYSTEM ARCHITECTURE

Figure 1 illustrates our reference network architecture. We
consider an edge network composed of Edge Nodes. Each of
such nodes can be equipped with any of the following three
capabilities:
• the ability of acquiring traffic from mobile devices

through the Remote Radio Head (RRH), such nodes are
those we call Ingress Nodes;

• the ability of executing network or application level
services requiring computational power, this is done
thanks to the availability of an Edge Cloud on the node;

• the ability to route traffic to other nodes.
Not all nodes must have all the three capabilities, so, in this
respect, the edge network can be constituted of heteroge-
neous nodes.

Each link (i, j) between any two edge nodes, i and j, has
a fixed bandwidth, denoted by Bij . Each Ingress Node k has
a specific ingress network capacity Ck, which is a measure

of its ability to accept traffic incoming from mobile devices.
Nodes able to perform some computation have a computa-
tion capacity Si. One of the objectives of the planning model
presented in this paper is to determine the optimal value of
the computation capacity that must be made available at
each node.

We assume that users’ incoming data in each Ingress
Node is aggregated according to the corresponding traffic
type n ∈ N . Examples of traffic types can be video, game,
data from sensors, and the like. They group demands or
services having the same requirements. We assume that
the network has a set of slices of different types and that
each slice aggregates traffic of the same type. Therefore,
all demands or services in the same slice could be treated
in the same manner and could share network resources
in a soft way like the concept of soft slicing introduced in
[6]. Our slicing model is also similar in part to the one
introduced in [7], where the authors assume that mobile
subscribers consume a variety of heterogeneous services
and the operator owning the infrastructure implements a
set of slices where each slice is dedicated to a different subset
of services.

In Figure 1 traffic of different types is shown as arrows of
different colors. From each Ingress Node, traffic can be split
and processed on all edge clouds in the network; the dashed
arrows shown in the figure represent possible outsourcing
paths of the traffic pieces from different Ingress Nodes.
Different slices of the ingress network capacity Ck and the
edge cloud computation capacity Si are allocated to serve
the different types of traffic based on the corresponding
Service Level Agreements (SLAs), which, in this paper are
focused on keeping latency under control. Thus, another
objective of our model is to find the allocation of traffic to
the edge clouds that allows us to minimize the total latency,
which is expressed in terms of the latency at the ingress
node, due to the limitations of the wireless network, plus
the latency due to the traffic processing computation, plus
the latency occurring in the communication links internal to
the network system architecture.

Outsourcing

Ingress

Ingress

Ingress

Ingress

Edge Cloud

Incoming traffic

RRH Forwarding

Edge Node

Fig. 1: Network system architecture.

We assume that the edge network is controlled by a
management component which is in charge of achieving the
optimal utilization of its resources, in terms of network and
computation, still guaranteeing the SLA associated to each
traffic type accepted by the network. This component mon-
itors the network by periodically computing the network

3

4

8

10

2

9

6
5

7

1

3

(a) Minimizing both latency
and computation costs

4

8

10

2

9

6
5

7

1

3

(b) With the same settings,
but a change λn5,t2 = 40Gb/s

Fig. 2: Toy example for a network with 10 nodes and 20
edges (average degree: 4.0).

capacity of each ingress node (through broadcast messages
exchanged in the network) and the bandwidth of each link
in the network topology. Moreover, it knows the maximum
available computation capacity of all computation nodes.
With these pieces of information as input, and knowing
the SLA associated to each traffic type, the management
component periodically solves an optimization problem that
provides as output the identification of a proper network
configuration and traffic allocation. In particular, it will
identify: i) the amount of computational capacity to be
assigned to each node so that, with the foreseen traffic, the
node usage remains below a certain level of its capacity;
ii) which node is taking care of which traffic type; and iii)
the nodes through which each traffic type must be routed
toward its destination.

For simplicity, the optimization problem is based on the
assumption that the system is time-slotted, where time is
divided into equal-length short slots (short periods where
network parameters can be considered as fixed and traffic
shows only small variations). We observe that our proposed
heuristic (NESF) exhibits a short computing time so that it
is feasible to run the problem periodically and to adjust the
configuration of the system network based on the actual
evolution of the traffic.

In the next section, we give an intuition of the solu-
tion applied by the management component in the case
of a simple network, while in Section 4 we formalize the
optimization problem and in Section 5 we present some
heuristics that make the problem tractable in realistic cases.

3 OVERVIEW OF PLANNING AND ALLOCATION

In this section we refer to a simple but still meaningful edge
network and we show how the management component be-
haves in the presence of two types of traffic. In Section 4 we
present in detail the optimization model that computes the
allocation of computational and network resources as well
as the optimal routing paths and we show how all values are
computed. Here the goal is to provide the intuition beyond
the proposed optimization approach.

The example we consider is shown in Figure 2 and
consists of 10 nodes, two of which are ingress nodes (labeled
as n3 and n5 in the figure and colored in orange), connected
together with an average degree of 4. For simplicity, we
assume that the bandwidth of all links is Bl = 100Gb/s,
and the wireless network capacity of the two ingress nodes

is, respectively, Cn3 = 50Gb/s and Cn5 = 60Gb/s. Every
node in the network has a computation capacity that can
take one of the following values: D0 = 0Gb/s (i.e., no
computation capacity is made available at the current time),
D1 = 30Gb/s, D2 = 40Gb/s, and D3 = 50Gb/s1. Given the
above edge network, let us assume the management com-
ponent estimates that node n3 will receive traffic of type t1
at rate λn3,t1 = 25Gb/s and type t2 at rate λn3,t2 = 20Gb/s,
while node n5 will receive the two types of traffic with
rates λn5,t1 = 15Gb/s and λn5,t2 = 35Gb/s, respectively.
Finally, let us assume that the network operator has set an
upper bound on the power budget to be used (i.e., the total
amount of computational power) P = 300Gb/s and has
defined in its SLA a tolerable latency for the two types of
traffic, respectively, to the following values: τt1 = 1ms and
τt2 = 2ms.

Under the above assumptions and constraints, the man-
agement component will solve the optimization problem,
and will decide to offload part of the traffic from the two
ingress nodes to an intermediate node as shown in Fig-
ure 2(a). More specifically, the management component will
assign at ingress node n3 a wireless network capacity slice
of 27Gb/s (out of the total 50Gb/s) to t1 and of 23Gb/s to
t2, while at ingress node n5 it will assign 22Gb/s (out of the
total 60Gb/s) to t1 and 38Gb/s to t2. Moreover, it will assign
a computation capacity D2 to nodes n3 and n5 and D3 to
n7, while it will switch off the computation capacity of the
other nodes. This will lead to a total computation capacity
of 130Gb/s, which is well below the available computation
capacity budget P . Given that t1 is the traffic type with
the most demanding constraint in terms of latency, the
management component decides to use the full D2 capacity
of n3 to process traffic t1 from n3. Applying the same
strategy within node n5 would result in a waste of resources
because the t1 traffic of n5 will take only 15Gb/s of the
available computation capacity, and the remaining one will
not be sufficient to handle the expected total amount of t2
traffic. Since moving the t1 traffic of one hop would still
allow the system to fulfill the SLA, the decision will be then
to configure the network to route such traffic to n7. The
reason for choosing n7 is mainly because it is one of the
nearest neighbors of both n3 and n5 (with 2 hops to n3 and
1 hop to n5) and, with its D3 capacity, will be able to handle
both t2 traffic from n3 and t1 traffic from n5. Specifically,
the percentage of computation capacity of n7 allocated for
n3, t2 and n5, t1 is 64% and 36%, respectively. t2 traffic from
n5 is, instead, processed locally at n5 itself.

Let us now assume that the management component
observes a change in the λn5,t2 traffic rate, which increases
to λn5,t2 = 40Gb/s. It will then run again the optimization
algorithm that will output the configuration illustrated in
Figure 2(b). The slicing of the wireless network capacity for
ingress node n3 will not vary, while the total wireless ca-
pacity at ingress node n5 will be redistributed as follows: a
slice of 42Gb/s will be assigned to t2 and, as a consequence,
a slice of 18Gb/s, smaller than before, to t1. Moreover, the
computation capacity to be allocated to each node will be

1Note that computation capacity is often expressed in cycles/s. As
discussed in Section 6, for homogeneity with the other values, we have
transformed it into Gb/s.

4

recomputed. Capacity D2 will be allocated to n3, which will
process t1 locally, and D1 will be allocated to the neighbor
node n4, which will handle the t2 traffic from n3. Capacity
D3 will be allocated to n5 to process t2 locally and, finally,
D1 will be allocated to n7 to process t1 incoming from n5.
Both ingress nodes will offload part of their traffic to the
nearest 1-hop neighbor and the total computation capacity
will be equal to 150Gb/s.

Notice that, by manually analyzing the initial configu-
ration of Figure 2(a), we may think that a better solution
to the increase of λn5,t2 would be to simply increase the
computation capacity of n5 toD3 as in this way the network
configuration will remain almost the same as before and the
total computation capacity will be 140Gb/s, smaller than
the one of Figure 2(b). However, a more in-depth analysis
shows that, even if this solution is certainly feasible, it is
less optimal than the one of Figure 2(b) in terms of t1 total
latency, which, as described in detail in Section 4, depends
on both the wireless network latency and the outsourcing
latency. The main reason for this increase in the latency is
that traffic t1 from node n5 will suffer from a larger latency
in the wireless ingress network due to a smaller allocated
slice, and also from a relatively high latency due to the traffic
computation on n7. According to the model we formalize
in the next section, the total latency for t1 in this case is
0.72ms, while, as it will be shown in Section 6.4, it is 0.47ms
in the case of Figure 2(b), thanks to the fact that node n5 has
the computation capacity of n7 entirely dedicated to the t1
traffic it introduces in the network.

4 PROBLEM FORMULATION

In this section we provide the mathematical formulation
of our Joint Planning and Slicing of mobile Network and edge
Computation resources (JPSNC) model. Table 1 summarizes
the notation used throughout this section. For brevity, we
simplify expression ∀n ∈ N as ∀n, and apply the same rule
to other set symbols like E ,K,L, etc. throughout the rest of
this paper unless otherwise specified.

TABLE 1: Summary of used notations.

Parameters Definition

N Set of traffic types
E Set of edge nodes in the edge networks
K Set of ingress nodes, where K ⊆ E
L Set of directed links in the networks
Bij Bandwidth of the link from node i to j, where (i, j) ∈ L
Ck Network capacity of ingress edge node k ∈ K
Da Levels of computation capacities (a ∈ A = {1, 2, 3 . . .})
P Planning budget of computation capacity
λkn User traffic rate of type n in ingress node k
τn Tolerable delay for serving the total traffic of type n
κi Cost of using one unit of computation capacity on node i
w Weight to balance among total latency and operation cost

Variables Definition

ckn Slice of the network capacity for traffic kn
bkni Whether traffic kn is processed on node i or not
αkn
i Percentage of traffic kn processed on node i
βkn
i Percentage of i’s computation capacity sliced to traffic kn
δai Decision for planning computation capacity on node i
Rkn

i Set of links for routing the traffic piece αkn
i from k to i

The goal of our formulation is to minimize a weighted
sum of the total latency and network operation cost for

serving several types of user traffic under the constraints
of users’ maximum tolerable latency and network planning
budget. This allows the network operator to fine tune its
needs in terms of quality of service provided to its users and
cost of the planned network. Different types of traffic, with
heterogeneous requirements, need to be accommodated,
and may enter the network from different ingress nodes.

In the following, we first focus on the network planning
issue and its related cost, as well as on the traffic routing
issue, and then detail all components that contribute to the
overall latency experienced by users, which we capture in
our model.

4.1 Network Planning and Routing

Network Planning: We assume that, in each edge node,
some processing capacity can be made available, thus en-
abling MEC capabilities. This action will result in an oper-
ation cost that will increase at the increase of the amount
of processing capacity. To model more closely real network
scenarios, we assume that only a discrete set of capacity
values can be chosen by the network operator and made
available. Therefore, we adopt a piecewise-constant function
Si for the processing capacity of an edge node, in line
with [8]. This is defined as:

Si =
∑

a∈A
δaiDa, ∀i, (1)

where Da is a capacity level (a ∈ A) and δai ∈ {0, 1} is
a binary decision variable for capacity planning, satisfying
the following constraint (only one level of capacity can be
made available on a node, including zero, i.e., no processing
capability): ∑

a∈A
δai = 1− δ0i , ∀i, (2)

where δ0i is a binary variable that indicates whether node i
has currently available some computation power or not.
This constraint implies that Si can be set as either 0 (no
computation power) or exactly one capacity level, Da.

To save on operation costs, in the case an edge node
is not supposed to be exploited to process some traffic,
then no processing capacity is made available on it. We
introduce binary variable bkni to indicate whether traffic kn
is processed on node i (we will use the expression “traffic
kn” in the following, for brevity, to indicate the user traffic of
type n from ingress point k). Then the following constraint
should be satisfied:

bkni 6 1− δ0i 6
∑
k′∈K

∑
n′∈N

bk
′n′

i , ∀k, ∀n, ∀i, (3)

We also consider a total planning budget, P , for the
available computation capacity, introducing the following
constraint: ∑

i∈E
Si 6 P. (4)

Then, the total operation cost can be expressed as:

J =
∑

i∈E
κiSi, (5)

where κi is the cost of using one unit of computation
capacity (in the example of Section 3 this will be 1Gb/s)
on node i.

5

Network Routing: We assume that each type of traffic
can be split into multiple pieces only at its ingress node.
Each piece can then be offloaded to another edge computing
node independently of the other pieces, but it cannot be
further split (we say that each piece is unsplittable).

The reason for using unsplittable routing in our opti-
mization model is twofold: first of all, network slicing in
the 5G architecture should be performed in an isolated
manner for security and privacy reasons, especially for
specific customer services [6, 9, 10]. Hence, considering
unsplittable routing is, in practice, reasonable. Second, this
choice is beneficial to reduce the complexity of our op-
timization problem since splitting the traffic across edge
nodes could significantly increase the complexity without
a strong justification, especially for the kind of user services
mentioned above (with security and privacy requirements).
In general, we consider that the user traffic or the virtual
operator traffic passes through a predefined set of nodes
along a given (unique) path, like a given chain of nodes
providing services to the user/virtual provider.

Each link l ∈ Lmay carry different traffic pieces, αkni (we
denote by αkni the percentage of traffic kn processed at node
i, and with βkni the percentage of computation capacity Si
sliced for traffic kn). Then, the traffic flow kn on l, fknl ,
can be expressed as the sum of all pieces of traffic that pass
through such link:

fknl =
∑

i∈E: l∈Rkn
i

αkni , ∀k, ∀n, ∀l, (6)

where Rkni ⊂ L denotes a routing path (set of traversed
links) for the traffic piece αkni λkn from ingress k to node i.
The following constraint ensures that the total traffic on each
link does not exceed its capacity:

Bij >
∑
k∈K

∑
n∈N

fknij λ
kn, ∀(i, j) ∈ L. (7)

The traffic flow conservation constraint is enforced by
the following constraint:∑
j∈Ii

fknji −
∑
j∈Oi

fknij =

{
αkni − 1, if i = k,
αkni , otherwise,

∀k, ∀n,∀i, (8)

where Ii = {j ∈ E | (j, i) ∈ L} andOi = {j ∈ E | (i, j) ∈ L}
are the set of nodes connected by the incoming and outgoing
links of node i, respectively. The fulfillment of this constraint
guarantees continuity of the routing path. Moreover, the
routing path Rkni should be acyclic.

To sum up, we consider at each ingress node aggregates
of traffic, each corresponding to a type of traffic/service; an
aggregate of type n at ingress node k has a total rate λkn.
We split such aggregate (only) at ingress node k into several
pieces {αkni λkn, i ∈ E}, where αkni represents the percent-
age of traffic kn processed at node i. We then determine for
each piece αkni λkn a single path Rkni between ingress node
k and edge node i. Note that αkni may be null for some
edge nodes i and the selection of processing nodes depends,
among other factors, on latency constraints specified in the
next section since not all nodes are used to process a given
traffic. In practice, since we deal with large aggregates, each
single demand inside the aggregate follows a single path,
(since it largely “fits” in the fraction of traffic that follows a
single path).

4.2 Latency Components
The latency in each ingress edge node is modeled as the
sum of the wireless network latency and the outsourcing latency
which, in turn, is composed of the processing latency in some
edge cloud and then link latency between edge clouds.

Wireless Network Latency: We model the transmission
of traffic in each user ingress point as an M |M |1 processing
queue. The wireless network latency for transmitting the user
traffic of type n from ingress point k, denoted by tknW , can
therefore be expressed as:

tknW =
1

ckn − λkn , ∀k, ∀n, (9)

where ckn is the capacity of the network slice allocated for
traffic kn in the ingress edge network (a decision variable
in our model) and λkn is the traffic rate. The following
constraints ensure that the capacity of all slices does not
exceed the total capacity Ck of each ingress edge node, and
ckn is higher than the corresponding λkn value:∑

n∈N
ckn 6 Ck, ∀k, (10)

λkn < ckn, ∀k,∀n. (11)

Processing Latency: We assume that each type of traffic
can be segmented and processed on different edge clouds,
and each edge cloud can slice its computation capacity to
serve different types of traffic from different ingress nodes.
As introduced before, we indicate with αkni the percentage
of traffic kn processed at node i, and with βkni the per-
centage of computation capacity Si sliced for traffic kn. The
processing of user traffic is described by an M |M |1 model.
Let tkn,iP denote the processing latency of edge cloud i for
traffic kn. Then, based on the computational capacity βkni Si
sliced for traffic kn, with an amount αkni λkn to be served,
∀k, ∀n,∀i, tkn,iP is expressed as:

tkn,iP =

{
1

βkn
i Si−αkn

i λkn , if αkni > 0,

0, otherwise.
(12)

In the above equation, when traffic kn is not processed on
edge cloud i, the corresponding value is 0; at the same time,
no computation resource of i should be sliced to traffic kn
(i.e., βkni = 0). The corresponding constraint is written as:{

αkni λkn < βkni Si, if αkni > 0,
αkni = βkni = 0, otherwise.

(13)

αkni and βkni also have to fulfill the following consistency
constraints: ∑

i∈E
αkni = 1, ∀k,∀n, (14)∑

k∈K

∑
n∈N

βkni 6 1, ∀i. (15)

Link Latency: Let tkn,iL denote the link latency for routing
traffic kn to node i. In each ingress node, the incoming traffic
is routed in a multi-path way, i.e., different types or pieces of
the traffic may be dispatched to different nodes via different
paths. ∀k, ∀n, ∀i, tkn,iL is defined as:

tkn,iL =


∑

l∈Rkn
i

1
Bl−

∑
k′∈K

∑
n′∈N

fk′n′
l λk′n′ , if αkni > 0& i 6= k,

0, otherwise.
(16)

6

Recall thatRkni is a routing path for the traffic piece αkni λkn

from ingress k to node i. The link latency is accounted for
only if a certain traffic piece is processed on node i (i.e.
αkni > 0) and i 6= k.

Total Latency: Now we can define the outsourcing latency
for traffic kn, which depends on the longest serving time
among edge clouds:

tknPL = max
i∈E
{tkn,iP + tkn,iL }, ∀k,∀n. (17)

The latency experienced by each type of traffic coming from
the ingress nodes, can therefore be defined as tknW + tknPL, and
also should respect the tolerable latency requirement:

tknW + tknPL 6 τn, ∀k,∀n. (18)

For each traffic type n, we consider the maximum value
among different ingress nodes with respect to the wireless
network latency and outsourcing latency, i.e., maxk∈K{tknW +
tknPL}. Then, we define the total latency as follows:

T =
∑
n∈N

max
k∈K
{tknW + tknPL}. (19)

The way we model latency and delay is aligned with
other approaches in the literature. The work of Ma et al. [11]
presents a system delay model which has the same com-
ponents adopted in our paper; the communication delay in
the wireless access is modeled as in our work (using an
M |M |1-like expression). Moreover, this work also assumes
that traffic is processed across a subset of computing nodes
and the service time of edge hosts and cloud instances are
exponentially distributed, hence the service processes of
mobile edge and cloud can be modeled as M |M |1 queues
in each time interval. The same assumption is made in [12].
In [13], the authors assume that both the congestion delay
and the computation delay at each small-cell Base Station
(by considering a Poisson arrival of the computation tasks)
can be modeled as an M |M |1 queuing system; the work in
[14] assumes that the baseband processing of each Virtual
Machine (VM) on each User Equipment packets can be
described as an M |M |1 processing queue, where the service
time at the VM of each physical server follows an exponen-
tial distribution. Finally, the works [15–18] also adopt similar
choices concerning the delay modeling.

4.3 Optimization Problem - JPSNC
Our goal in the Joint Planning and Slicing of mobile Network
and edge Computation resources (JPSNC) problem is to min-
imize the total latency and the operation cost, under the
constraints of maximum tolerable delay for each traffic type
coming from ingress nodes and the total planning budget
for making available processing-capable nodes:

P0 : min
ckn,bkn

i ,αkn
i ,

βkn
i ,δai ,R

kn
i

T + wJ,

s.t. (1)− (19),

where w ≥ 0 is a weight that permits to set the desired bal-
ance between the total latency and operation cost. Problem
P0 contains both nonlinear and indicator constraints, there-
fore, it is a mixed-integer nonlinear programming (MINLP)
problem, which is hard to be solved directly [4], as discussed
in Section 4.4.

We observe that we can give priority to one component
of the objective function (latency T or operational cost J)
with respect to the other by setting the weight w. This is ob-
tained by setting w such that (if T is privileged) improving
latency is preferred even if this increases the operational cost
of the planned network at its maximum (a similar reasoning
is applied if the cost J is privileged over T).

To this aim, we first compute the bounds for the values
of T and J approximately as follows:

1) min(κi) ·
∑
λkn 6 J 6 max(κi) · P ;

2) |N | · (1
max(Ck)

+ 1
max(Da)

) < T 6
∑
τn.

For the lower bound of J =
∑

(κi ·Si) > min(κi)·
∑

(Si),
we observe that the total computation power should cover
the total traffic rate, to avoid infeasibility, hence we have:
min(κi) ·

∑
λkn. For computing the bounds of T , we use its

definition and the tolerable latency to get the upper bound,
while for the lower bound, we use the definitions (wireless
latency and computation latency, for link latency, we get 0
due to the lower bound) and let the denominators reach the
maximum. The values of w that enforce the desired priority
in the optimization process can therefore be computed as
wL = Tmin

Jmax
and wU = Tmax

Jmin
.

4.4 JPSNC Reformulation
Problem P0 formulated in Section 4 cannot be solved di-
rectly and efficiently due to the following reasons:
• We aim at identifying the optimal routing (the routing

path Rkni is a variable in our model, since many paths
may exist from each ingress node k to a generic node i
in the network); furthermore, we must ensure that such
routing is acyclic and ensures continuity and unsplitta-
bility of traffic pieces.

• Variables Rkni and αkni are reciprocally dependent: to
find the optimal routing, the percentage of traffic pro-
cessed at each node i should be known, and at the same
time, to solve the optimal traffic allocation, the routing
path should be known.

• The processing latency, defined in the previous sections,
depends on three decision variables in our model and
the corresponding formula (12) is (highly) nonlinear.

• P0 contains indicator functions and constraints, e.g.
(12), (13), (16), which cannot be directly and easily
processed by most solvers.

To deal with the above issues, we propose an equivalent
reformulation of P0 (called Problem P1), which can be
solved very efficiently with the Branch and Bound method.
Moreover, the reformulated problem can be further relaxed
and, based on that, we propose in the next section an
heuristic algorithm which can get near-optimal solutions
in a shorter computing time. More specifically, in P1, we
first reformulate the processing latency and link latency
constraints (viz., constraints (12) and (16)), and we deal,
at the same time, with the computation planning problem.
Then, we handle the difficulties related to variables Rkni
and the corresponding routing constraints. Appendix A
contains all details about the problem reformulation. Since
some constraints are quadratic while the others are linear,
P1 is a mixed-integer quadratically constrained program-
ming (MIQCP) problem, for which commercial and freely
available solvers can be used, as we will illustrate in the
numerical evaluation section.

7

5 HEURISTICS

Hereafter, we illustrate our proposed heuristic, named
Neighbor Exploration and Sequential Fixing - NESF, which
proceeds by exploring and utilizing the neighbors of each
ingress node for hosting (a part of) the traffic along an
objective descent direction, that is, by trying to minimize the
objective function (which, we recall, is a weighted sum of
the total latency and operation cost). During each step where
we explore potential candidates for computation offloading,
we partially fix the main binary decision variables in the
reformulated problem P1 and then solve the so-reduced
problem by using the Branch and Bound method. Our
exploring strategy provides excellent results, in practice,
achieving near-optimal solution in many network scenarios,
as we will illustrate in the Numerical Results Section.

|Nodes|

Objective function

I

II

III

yA

xA

A

yB

xB

B

yC

xC

C

yD

xD

D

yE

xE

E

Fig. 3: Three typical variations of the objective function
value versus the number of computing nodes made avail-
able.

The detailed exploring strategy is illustrated in Figure 3,
which shows three typical variation paths of the objective
function value versus the number of computing nodes
made available in the network (note that these 3 trends
are independent from each other, in the sense that either
of them, or a combination of them, can be experienced in
a given network instance). Point A represents the stage
where a minimum required number of computing nodes
(xA) is opened to ensure the feasibility of the problem.
For instance, if the ingress nodes can host all the traffic
under all the constraints, xA = |K|. Point E indicates the
maximum number of computing nodes that can be made
available in the network; any point above xE will violate
the computation budget or tolerable latency constraints.

During the search phase of our heuristic, which is ex-
ecuted in Algorithms 1 and 3, detailed hereafter, we first
try to obtain (or get as closer as possible to) point A and
the corresponding objective value yA. If A can not be found
within the computation budget, the problem is infeasible.
Otherwise, we continue to explore computation candidates
from the h-hop neighbors of each ingress node, and allocate
them to serve different types of traffic. The objective value is
obtained by solving P1 with new configurations of the deci-
sion variables. The change of the objective value may hence
exhibit one of the three patterns (I, II and III) illustrated in
Figure 3.

The objective value increases monotonically in path I. In
path II, it first decreases to pointC then increases to pointE;
finally, path III shows a more complex pattern which has
one local maximum point B and one minimum point D.

Input network parameters, topology

Try to host traffic by ingress nodes only (Algorithm 1)

Check whether candidate edge nodes can
be found to process outsourced traffic

Set up allocation plan, solve P1, update solution.
Is the best one achieved so far? (Algorithm 3)

Yes

Output recorded best solution

Yes

No

No
Algorithm 2

Fig. 4: Flowchart of our NESF heuristic.
In case I, the network system has just enough computation
power to serve the traffic. Hence, adding more computation
capacity to the system does not guarantee to decrease delay,
while it will increase on the other hand computation costs.
In case II, few ingress nodes in the system may support a
relatively high traffic load. Equipping some of their neigh-
bors with more computation capabilities (with total amount
less than xC) can still decrease the total system costs. After
point C , the objective value shows a similar trend to case I.
In case III, several ingress nodes may serve high traffic load.
At the beginning, adding some computing nodes (with total
amount less than xB) may be not enough to decrease the
delay costs to a certain degree, and this will also increase
the total installation costs. After point B, the objective value
varies like in case II and has a minimum at point D.

To summarize, our heuristic aims at reaching the min-
imum points A (I), C (II) and D (III) in Figure 3, and
its flowchart is shown in Figure 4. The main idea behind
Algorithm 1 is to check whether the ingress nodes can
host all the traffic without activating additional MEC units,
thus saving some computation cost. Algorithm 2 aims at
searching the h-hop neighbors of each ingress node for
making them process part of the traffic (the outsourced
traffic), while Algorithm 3 aims at setting up the allocation
plan for outsourced traffic and try to solve P1 to obtain the
best solution. The three proposed algorithms are described
into detail in the following subsections. The definition of the
new notation introduced in these algorithms is summarized
for clarity in Table 2.

5.1 Attempt of serving traffic without additional MEC
units
In Algorithm 1, the main idea is to check whether ingress
nodes can host all the traffic, without using other MEC

TABLE 2: Notations used in the algorithms.

Notation Definition

Se
k Estimated available computation of ingress node k ∈ K
Ku Ingress nodes that cannot host all traffic (Se

k 6 0)
H Maximum searching depth of our heuristic
Ghk h-hop neighbors (h 6 H) of ingress node k ∈ K
Qk Candidates for computing traffic from ingress node k ∈ K
So
k Overall computation of ingress node k ∈ K
Sl
i Maximum left computation of node i ∈ E
Kb

i Ingress nodes who booked computation from node i ∈ E
dik Count of hops from node i to ingress node k ∈ K
OP Objective function value of problem P

8

Algorithm 1 Attempt of serving traffic with ingress nodes only

1: Sek = Dm −
∑
n∈N λ

kn, ∀k ∈ K;
2: Ku = {k ∈ K | Sek 6 0};
3: Compute k’s h-hop neighbors Ghk , h 6 H, ∀k ∈ K;
4: Qk = {k}, ∀k ∈ K, Ot = −1;
5: for k ∈ Ku do
6: X = {k′ ∈ [(K−Ku) ∩ (

⋃H
h Ghk)] | Sek′ + Sek > 0};

7: Qk = Qk ∪X , rank Qk by increasing hop count to k;
8: Rank N as Nk by descending (λkn, τn),∀k ∈ K;
9: if Ku = ∅ or

∧
k∈Ku(|Qk| > 1) then

10: Allocate Qk to Nk in order and repeatedly, ∀k ∈ K;
11: Solve P1 by B&B to obtain obj. fct. value OP1;
12: if OP1 > 0 then Ot = OP1;

units in order to save both computation cost and latency.
To this end, we first individuate the subset of ingress nodes
(denoted asKu) that cannot host all the traffic that enters the
network through them. This is done by checking if Sek (=
Dm−

∑
n∈N λ

kn) 6 0 (lines 1-2), that is, if some computing
capacity is still available or not at ingress nodes (recall that
Dm is the maximum computation capacity that can be made
available). Then, if Ku 6= ∅, ∀k ∈ Ku, we try to find the set
of its neighbor ingress nodes k′ ∈ [(K − Ku) ∩ (

⋃H
h Ghk)]

that can cover Sek (i.e., Sek′ + Sek > 0), where Ghk ⊂ E is the
set of node k’s h-hop neighbor nodes (h = 1, . . . ,H). If
found, they are stored as candidates in a list, Qk, ordered
with increasing distance (hop count) from k (lines 3-7). If
Ku = ∅ or sufficient nodes in Qk have been found to
process the extra traffic from Ku (line 9), then ∀k ∈ Ku,
the corresponding traffic is allocated to nodes in Qk starting
from the top (choosing the closest ones) and repeatedly
(covering all the traffic types), beginning with less latency
to more latency-tolerant traffic.

This is implemented by setting the corresponding vari-
ables bkni , δai and γkn,il in P1 to save the costs and also
accelerate the algorithm. Finally, P1 with the fixed variables
is solved by using Branch and Bound method to obtain the
solution (lines 10-11). If P1 is feasible with these settings,
the objective value OP1 is stored to be used in the next
searching and resource allocation phases of Algorithm 3.

5.2 Neighbor search for computation candidates

This section describes Algorithm 2, upon which Algorithm 3
is based to provide the final solution. Algorithm 2 proceeds
as follows. We first assign a rank (or a priority value) to each
ingress node taking into account the amount of incoming
traffic and the computation capacity. Then, we handle the
outsourced traffic offloading task (i.e., choose the best subset
of computational nodes) starting from the ingress node with
the highest priority.

In more detail, set Ks is set K sorted by the ascending
value of the tuple (Sek,−λkn), i.e., the ingress node with
the lowest estimated available (left) computation Sek and the
higher amount of traffic of type n has the highest rank/pri-
ority in our Algorithm 2, where n represents the traffic
type having the maximum tolerable latency (lines 1-2). The
process of determining the best subset of computation nodes
for processing the outsourced traffic of each ingress node is
executed hop-by-hop, starting with ingress node k̂ = Ks(0),
until any one of the following three conditions is satisfied:

Algorithm 2 Priority searching of computation candidates

1: Rank ingress nodes as Ks by ascending (Sek,−λkn);
2: k̂ = Ks(0), hk = 1, Sok = Sek (∀k ∈ K),Kbi = ∅ (∀i ∈ E);
3: while |⋃k∈KQk| < b P

min(Da)
c and Ks 6= ∅ do

4: B = ∅;
5: for i ∈ (Ghk̂

k̂
− [K ∪Qk̂]) do

6: Sli = Dm +
∑
k∈Kb

i
Sek

7: if Sli + Se
k̂
> 0 then B = B ∪ {i};

8: if B = ∅ then
9: hk̂++, update Ks, k̂ when hk̂>H and continue;

10: Rank B by descending (Sli,−dik :k ∈ Ks), ı̂ = B(0);
11: Qk̂ = Qk̂ ∪ {ı̂}, Kbı̂ = Kbı̂ ∪ {k̂}, Sb = Dm;
12: for k∈Ks\{k̂}, if (̂ı∈⋃Hh Ghk)& (Sb>λk) do
13: Qk = Qk ∪ {ı̂}, Kbı̂ = Kbı̂ ∪ {k}, Sb = Sb − λk;
14: Sok = Sok + (Dm +

∑
k′∈Kb

ı̂∩Ku−{k} S
e
k′), ∀k∈Kbı̂ ;

15: k̂ = argmink∈Ks Sok ;
16: if So

k̂
6 0 then continue; else skip := (So

k̂
6rDm);

17: Run (Algorithm 3) to obtain Ot;
18: Return Ot;

(1) the number of computation nodes opened for processing
traffic exceeds the maximum budget b P

min(Da)
c, or

(2) all ingress nodes are completely scanned (line 3), or
(3) the algorithm could not improve further the solution
(Algorithm 3, lines 8, 10).

In the searching phase, we first try to identify the set
of temporary candidate computation nodes B for ingress k̂
(B ⊆ (Ghk̂

k̂
− [K ∪ Qk̂])), by checking if the maximum

available computation capacity of i ∈ B, Sli could help k̂
to cover Se

k̂
(lines 4-7). Sli is computed as the difference

between i’s maximum installable computation capacity Dm

and the total computation booked from i by ingress nodes
in Kbi ⊆ K, i.e.,

∑
k∈Kb

i
Sek, where Kbi is the set of ingress

nodes that booked computation from node i. If B = ∅, we
increase the number of hops hk̂ for ingress k̂. If not (we are
done with k̂), we move to the next ingress node in the set
Ks (lines 8-9).

At this point we rank B by descending values of tuple
(Sli,−dik : k ∈ Ks), where dik is the count of hops from
node i to ingress node k ∈ Ks. The first computation node
ı̂ is selected as the one to compute the traffic of k̂, and k̂
is added into the corresponding set Kbı̂ . To make full use
of computation node ı̂, we further spread it to help other
ingress nodes Ks\{k̂}, if ı̂ is their neighbor within H hops
and has sufficient computation budget (lines 10-13). Then,
given such computation node ı̂ and for each ingress node k,
we update the value of the overall computation, Sok , due
to the full use of computation nodes ı̂ (line 14). Hence,
ingress k with the minimum support Sok will be chosen
as the next searching target and Algorithm 2 continues as
follows.

The next searching target k̂ is set to k ∈ Ks with the
minimum Sok value (lines 15-16). If So

k̂
6 0, this means that

the current computation configuration could not host all the
traffic; hence, the algorithm will go back to the while loop
and continue to the next searching. Otherwise, we set a flag
skip := (So

k̂
6 rDm) where r is set to a small value (i.e.,

9

Algorithm 3 Allocating resources and obtaining the solution

1: Relax bkni , δai , γ
kn,i
l to continuous ones (P1→ P̃1);

2: Allocate Qk to Nk partially and solve P̃1 to obtain b̃kni ;
3: if OP̃1 > 0 then
4: Rank candidates as Qsk by descending

∑
n∈N b̃

kn
i ;

5: Revert to the original problem P1;
6: if Ot > 0 then set Ot as P1’s upper bound;
7: Allocate Qsk to Nk and solve P1;
8: if 0<Ot&(Ot<OP1||OP1<0)&skip then break;
9: if 0<OP1&(OP1<Ot||Ot<0) then Ot=OP1;

10: else if Ot > 0 & skip then break;

0.1). If skip is true, it indicates that k̂ has a high traffic load,
and this may cause the processing latency to increase. This
flag is used in Algorithm 3. In fact, this step implements the
strategy of skipping point B to avoid the local minimum
(point A) in path III shown in Figure 3. Finally, based on
Qk, we run Algorithm 3 to obtain the objective value Ot
and the corresponding solution.

5.3 Resource Allocation and Final Solution
In Algorithm 3, we first relax problem P1 to P̃1, replacing
binary variables bkni , δai and γkn,il with continuous ones.
Given the setQk (by Algorithm 2) of candidate computation
nodes for processing the outsourced traffic of ingress node k,
the goal is to allocate node k’s different traffic types to
the computation nodes in Qk starting with the traffic with
the most stringent constraint in terms of latency. Unused
computation nodes are turned off. These two steps (lines
1-2) provide a partial guiding information and also an
acceleration for solving the relaxed problem, thus obtaining
quite fast the relaxed optimal values of b̃kni .

If P̃1 is infeasible (OP̃1 < 0), we check whether both the
previous best solution exists (Ot > 0) and the algorithm
does not skip. If yes, the searching process breaks and
returns Ot (line 10). Otherwise, the algorithm will continue
searching to avoid getting stuck in a local optimum point in
path III (see Figure 3), according to the following.

Hence, if P̃1 is feasible (line 3), the obtained b̃kni value
can be regarded as the probability of processing traffic kn at
node i. Based on this, for each ingress k, we rank the can-
didates in descending order of the probabilities

∑
n∈N b̃

kn
i .

Then we revert to the original problem P1, set the upper
bound for P1 if possible, allocate the candidates to host all
types of traffic in order and repeatedly for each ingress node,
and also turn off the unused nodes (lines 5-7). By solvingP1,
we obtain the current solution and compare it with the
previous best one (Ot). If the solution gets worse, the whole
searching process breaks out and returns the recorded best
result (line 8). Otherwise (if the solution is improving), the
current solution is updated as the best one and the searching
process continues.

5.4 Summary and Acceleration Technique
Essentially, the proposed heuristic described in the above
subsections exploits the P1 formulation limiting the search
space only to the nodes that are within a limited number
of hops h < H from the ingress nodes. We expect this is
a realistic assumption based on the consideration that the
main purpose of edge networks is to keep the traffic as

close as possible to the ingress nodes and, therefore, to the
users. Thanks to this approach, we are able to make the P1
problem more tractable and solvable in a short time even in
the case of complex edge networks (see Section 6).

We can further improve the solution time by eliminating
from the problem formulation all unneeded variables. In
particular, we modify P1 by adding a scope k (where k
is the ingress node) to E and L. Ek ⊆ E represents the set
of h-hop neighbor nodes (h 6 H) of k and Lk ⊆ L the set
of links inside this neighborhood. This way, the solver will
be able to skip all variables outside the considered k scope,
thus reducing the time needed to load, store, analyze and
prune the problem. Such modification does not change the
result produced by the heuristic but it results in a consistent
improvement (up to 1 order of magnitude) in the computing
time needed to obtain the solution in our numerical analysis.

6 EVALUATION

The goal of this evaluation is to show that: i) our P1
model offers an appropriate solution to the edge network
optimization problem we have discussed in this paper, ii)
our NESF heuristic computes a solution which is aligned
with the optimal one, and iii) when compared with two
benchmark heuristics, Greedy and Greedy-Fair, NESF offers
better results within similar ranges of computing time.

Consistently, the rest of this section is organized as
follows: Section 6.1 describes the heuristics we have com-
pared with; Section 6.2 presents the network topologies we
have considered in the experiments; Section 6.3 describes
the setup for our experiments; Section 6.4 discusses about
optimal solution and the results obtained by the heuristics
in the small network scenario presented in Section 3; Sec-
tion 6.5 analyzes the results achieved by the heuristics when
the network parameters vary; Finally, Section 6.6 discusses
about the computing time needed to find a solution.

6.1 Benchmark Heuristics
We propose two benchmark heuristics, based on a greedy
approach, which can be naturally devised in our context:

Greedy: With this approach, each ingress node uses its
neighbor nodes computation facilities to guarantee a low
overall latency for its incoming traffic. Hence, each ingress
node first tries to locally process all incoming traffic. If
its computation capacity is sufficient, a feasible solution is
obtained; otherwise, the extra traffic is split and outsourced
to its 1-hop neighbors, and so on, until it is completely
processed (if possible).

Greedy-Fair: It is a variant of Greedy which performs
a sort of “fair” traffic offloading on neighbor nodes. More
specifically, it proceeds as follows: 1) compute the maximum
number of available computing nodes, based on the power
budget and the average computation capacity of a node;
2) divide such maximum number (budget) into |K| parts
according to the ratio of the total traffic rate among ingress
nodes, and choose for each ingress node the corresponding
number of computing nodes from its nearest h-hop neigh-
bors. Each ingress node spreads its load on its neighbors
proportionally to the corresponding distance (1

hop+1), for
example, if the load is outsourced to two 1-hop neighbors,
the ratio is (1 : 1

2 : 1
2) = (0.5 : 0.25 : 0.25).

10

6.2 Network Topologies
We experimented with our optimization approach using
multiple network topologies.

6.2.1 Random graphs
We exploited Erdös-Rényi random graphs [19] by specifying
the number of nodes and edges. As the original Erdös-Rényi
algorithm may produce disconnected random graphs with
isolated nodes and components, to generate a connected
network graph, we patched it with a simple strategy that
connects isolated nodes to randomly sampled nodes (up
to 10 nodes) in the graph. We generated several kinds
of topologies with different numbers of nodes and edges,
shown in Figure 5, that span from a quasi-tree shape topol-
ogy (Figure 5(c)) to a more general, highly connected one
with 100 nodes and 150 edges (Figure 5(f)). The structural
information for all topologies is shown in Table 3. All topol-
ogy datasets are publicly available in our repository2. These
topologies can be considered representative of various edge
network configurations where multiple edge nodes are dis-
tributed in various ways over the territory. Due to space
constraints, in the following we present and discuss the
results obtained for a representative topology, i.e., the one
in Figure 5(e), as well as those for the small topology of
Figure 2, used to compare our proposed heuristics to the
optimal solution. The full set of results is available online3.

TABLE 3: Structural information of the topologies used in
the experiments.

Topology #Node #Edge #Ingress Degree (Min, Max, Avg) Diameter

10N20E 10 20 2 (3.0, 5.0, 4.0) 3
20N30E 20 30 3 (1.0, 5.0, 3.0) 6
40N60E 40 60 3 (1.0, 7.0, 3.0) 8
50N50E 50 50 3 (1.0, 4.0, 2.0) 15
60N90E 60 90 3 (1.0, 6.0, 3.0) 7
80N120E 80 120 3 (1.0, 6.0, 3.0) 9
100N150E 100 150 3 (1.0, 7.0, 3.0) 9
Città Studi 30 35 6 (1.0, 6.0, 2.3) 10

6.2.2 A real network scenario
We further considered a real network scenario, with the
actual deployment of Base Stations (BSs) collected from
the open database OpenCellID4. Specifically, we considered
the “Città Studi” area around Politecnico di Milano and
selected one mobile operator (Vodafone) with 133 LTE cells
falling in such area (see Figure 6(a)). The BSs deployment
shows where the BSs are located but it does not show their
interconnection topology nor where the edge clouds are
deployed. The reader should note that it is not easy to have
access to such piece of information as it is both sensitive for
the mobile operator and in continuous evolution. To the best
of our knowledge, there is no publicly available true BSs
interconnection topology, and for this reason, we decided
to infer one as described below. We performed a clustering
on the LTE cells, as illustrated in Figure 6(b), obtaining 30
clusters. Finally, we generated the network topology which,
as in real mobile scenarios, has a fat tree-like shape with

2https://github.com/bnxng/Topo4EdgePlanning
3http://xiang.faculty.polimi.it/files/SupplementaryResults.pdf
4https://www.opencellid.org

TABLE 4: Parameters setting - Initial (reference) values (for
the case of high traffic load with low tolerable latency)

Parameter Initial value

Link bandwidth Bl (Gb/s) 100 (l ∈ L)
Network capacity Ck (Gb/s) 60, 50, 40 (k ∈ K)
Computation level Da (Gb/s) 30, 40, 50 (a ∈ A)
Computation budget P (Gb/s) 300

Traffic rate λkn (Gb/s)

 5 20 7 9 15
16 4 12 8 6
7 9 3 12 5

 (K×N)

Tolerable latency τn (ms) 1, 1.5, 2, 3, 3.5 (n ∈ N)
Weights κi, w 0.1, 0.1 (i ∈ E)

nodes connecting to other nodes. More specifically, starting
from the cluster centroids, we connected any two nodes if
the distance is lower than a given threshold (800 meters). By
doing so, note that some “leaf” nodes become connected
to more than one aggregation node – i.e., a node that is
reached by multiple other nodes – to increase redundancy
and hence reliability of the final topology, as it happens in
real networks; finally, we generated the Minimum Spanning
Tree of the geometric graph weighted by the distance and
cluster size, while preserving redundant links. The resulting
topology is illustrated in Figure 6(c); the average node
degree resulting from the above procedure is 2.33 and edge
clouds can be installed in all nodes (as suggested by 5G
specifications). The structural information for this topology
is shown in the last row of Table 3.

6.3 Experimental Setup
We implement our model and heuristics using SCIP (Solving
Constraint Integer Programs)5, an open-source framework
that solves constraint integer programming problems. All
numerical results presented in this section have been ob-
tained on a server equipped with an Intel(R) Xeon(R) E5-
2640 v4 CPU @ 2.40GHz and 126 Gbytes of RAM. The
parameters of SCIP in our experiments are set to their
default values.

The illustrated results are obtained by averaging over 50
instances with random traffic rates λkn following a Gaussian
distribution N(µ, σ2), where µ is the value of λkn shown
in Table 4 and σ = 0.1 (we recall that the optimization
problem is solved under the assumption that the traffic
shows only little random variations during the time slot
under observation. For this reason, the choice of a Gaus-
sian distribution is appropriate). We computed 95% narrow
confidence intervals, as shown in the following figures.

In Table 4 we provide a summary of the reference values
we define for each parameter for the experiments with
the random topologies. Such values are representative of a
scenario with a high traffic load and low tolerable latency
relative to the limited communication and computation
resources. Referring to the computation capacity levels and
budget in Table 4, it is worth noticing that unit “cycles/s” is
often used for these metrics; for simplicity we transform it
into “Gb/s” by using the factor “8bit/1900cycles”, which
assumes that processing 1 byte of data needs 1900 CPU
cycles in a BBU pool [17].

The number of traffic types is set to five. Each traffic
type can be dedicated to a specific application case (e.g.,

5http://scip.zib.de

https://github.com/bnxng/Topo4EdgePlanning
http://xiang.faculty.polimi.it/files/SupplementaryResults.pdf
https://www.opencellid.org
http://scip.zib.de

11

1

8

9

12

15

18

2

3

5

13

4

14

11

20

6

7

10

17

19

16

(a) 20 nodes 30 edges
1

2

5

14

23

3

417

24

31

32

12

16

15

27

35

38

6

29

7 18

8

25
34

9

10

11

22

21

13

40

33

3036

19

20

39

37

26
28

(b) 40 nodes 60 edges

1

49

2

7

13

3

19

27

35

4

26

5

10

14

6
47

8

32

9

12

43

25

31
11

20

23

48

15

30

16

40

17

18
28

29

39

2122

38

44

24

45

50
36

42

33

34

46

37

41

(c) 50 nodes 50 edges

1

20

33

53

2

46

60

3
37

52

54

4

38
50

5

31

6

19

29

41 7

10

30

42

8

15

45

9

35

22

24
11

47

12

26

49

13

51

14

18

55

21

25

36

16

17

23

56

32

59

34

58

27

28

43

40

57

39

44

48

(d) 60 nodes 90 edges

1

6

31

70

73

77

2

23

27

3

46

67

4

37

5

42

64

66

18

7

68

8 13

45

539

69

10

15

35
11

58

80

12

54

17

14

19

29

57

71

78
16

24

49 50

30

51

20

21

22

43

56

75

55

25

26

36

32

3348

28

59

79

34

41
74

65

72

62

38 60

39

40

76

44

63

47

52

61

(e) 80 nodes 120 edges

1

6674

2

52

7284

3
58

97

4

63

70

5

37

65

80

6

24

88

757

76

8
31

92

9

10

86

11

33

12

43

62

13

14

21

98

15

36

85

89

16
17

45

54

61

75

90

18

32

19
46 51

67

69

20

56

68

22

23

81

100

49

25

59

83

26

78

27

64

28

9329

71

30

42

87
50

82

48

34

99

35

38

44 39 96

40

41

47

53

60

55

95

91

77

73

79

94

(f) 100 nodes 150 edges

Fig. 5: Network topologies. Ingress nodes for each graph are colored in red.

1.0250 1.0255 1.0260 1.0265 1.0270 1.0275 1.0280 1.0285 1.0290
1e6

5.6955

5.6960

5.6965

5.6970

5.6975

5.6980

5.6985
1e6

25

50

75

100

125

150

175

200

Sa
m

pl
es

(a) Vodafone LTE cells

1.0250 1.0255 1.0260 1.0265 1.0270 1.0275 1.0280 1.0285 1.0290
1e6

5.6955

5.6960

5.6965

5.6970

5.6975

5.6980

5.6985
1e6

1

2

3

4

5

6

7

8

NO
. o

f c
el

ls
in

 e
ac

h
clu

st
er

(b) Cell clusters

1.0250 1.0255 1.0260 1.0265 1.0270 1.0275 1.0280 1.0285 1.0290
1e6

5.6955

5.6960

5.6965

5.6970

5.6975

5.6980

5.6985
1e6

1

2

3

4

5

6

7

8

NO
. o

f c
el

ls
in

 e
ac

h
clu

st
er

(c) Topology on clusters

Fig. 6: Città Studi topology with 30 nodes, 35 edges and 6 ingress nodes (marked with gray shadow).

0.2 0.4 0.6 0.8 1.0
Scale of bandwidth

24

25

26

27

28

29

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(a) Link bandwidth (Bl)

0.8 0.9 1.0 1.1 1.2
Scale of computation capacity

24

25

26

27

28

29

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(b) Computation capacity (D3)

Fig. 7: Selected numerical results for Città Studi topology.

1.0 1.2 1.4 1.6 1.8 2.0
Scale of network capacity

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF
Optimal

(a) Network capacity (Ck)

0.0 0.2 0.4 0.6 0.8 1.0
Trade-off weight

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF
Optimal

(b) Trade-off weight (w)

Fig. 8: Comparison with the optimum varying two selected
parameters (Ck and w) in the example network scenario
10N20E of Figure 2.

video transmission for entertainment, real-time signaling,
virtual reality games, audio). Our traffic rates result from the
aggregation of traffic generated by multiple users connected
at a certain ingress nodes. We select rate values that can
be typical in a 5G usage scenario and that almost saturate
the wireless network capacity at the ingress nodes that we
assume to vary from 40 to 60 Gb/s. The tolerable latency
for each traffic type aims at challenging the approach with
quite demanding requirements ranging from 1 to 3.5 ms.
More specifically, the values of traffic rate λkn and tolerable
latency τn are designed to cover several different scenarios,
i.e., mice, normal and elephant traffic load under strict, nor-
mal and loose latency requirements. For simplicity, in this
paper we fix the number of ingress nodes to three. An
in-depth analysis of the impact of the number of ingress
nodes on the performance of the optimization algorithm
is the subject of our future research. To make the problem
solution manageable, we assume to adopt links of the same
bandwidth (100 Gb/s) that are representative of current
fiber connections. As in the example of Section 3, we assume
three possible levels for the computation capacity (30, 40 and
50 Gb/s), under the assumption that, as it happens in typical
cloud IaaS, users see a predefined computation service offer.
The maximum computation budget is set to 300 Gb/s,

12

3 8 7 5

α3,1
8 :1

α3,2
3 :1

α5,1
8 :1

α5,2
5 :1

β3,2
3 :1

D1

c3,1 :27, c3,2 :23

β5,2
5 :1

D2

c5,1 :22, c5,2 :38

D3

β3,1
8 :0.65

β5,1
8 :0.35

(a) Optimal

3 4 7 5

1
1

1
1

β3,1
3 :1

D2

c3,1 :27, c3,2 :23

β5,2
5 :1

D2

c5,1 :22, c5,2 :38

D1

β3,2
4 :1

D1

β5,1
7 :1

(b) Greedy

3 8 7 5

1

1
1

1

β3,1
3 :1

D2

c3,1 :27, c3,2 :23

β5,2
5 :1

D2

c5,1 :22, c5,2 :38

D3

β3,2
7 :0.64

β5,1
7 :0.36

(c) NESF

3 4

1

7

5

0.67

0.67

0.33

0.33
0.25, 0.2

5

0.25, 0.25 0.5

0.5

β3,1
3 :0.54

β3,2
3 :0.46

D2

c3,1 :27, c3,2 :23

β5,1
5 :0.33

β5,2
5 :0.67

D1

c5,1 :20, c5,2 :40

D1

β3,1
4 :0.53

β3,2
4 :0.47 β5,1

1 :0.6

β5,2
1 :0.4

D1

β5,1
7 :0.22

β5,2
7 :0.78 D1

(d) Greedy-Fair

Fig. 9: Comparison of the solutions achieved by the heuristics and the optimum for the 10N20E topology.

which is a relatively low value considering the traffic rates
we use in the experiments and the number of available
nodes in the considered topologies. Finally, by assigning the
same values to weights κi, w, we make sure that the two
components of the optimization problem, the total latency
and the operation cost, have the same importance in the
identification of the solution.

In the network scenario of Section 6.2.2, we set the
network capacity of each edge (i, j) proportionally to the
size of nodes/clusters to make it scale by a factor K
(set according to the specific parameters of our network
scenario to 12.5, more precisely using expression 12.5 ·
maxn∈{i,j}{#{Node}n}) so that, as in real mobile access
networks, it can accommodate aggregate traffic coming from
edge/leaf nodes to aggregation nodes. Finally, we select 6
ingress nodes (marked by gray shadow in Figure 6(c)), and
the traffic rates in Table 4 are correspondingly duplicated
from 3 to 6, while the planning budget is increased to
P = 600Gb/s for this scenario.

On such topology, we run the numerical experiments,
and the results show very similar trends as those illustrated
in Figure 10. In Figure 7 we chose a subset of the results
(the objective function value of our optimization model)
obtained by scaling the link bandwidth Bl and the com-
putation capacity D3 (those for the network capacity Ck are
shown in Fig. 12(c)).

6.4 Analysis of the optimization results for a small net-
work
We first compare the results obtained by our proposed
heuristic, NESF, against the optimum obtained solving
model P1 in the simple topology illustrated in Figure 2,
Section 3. Note that the original model could be solved
only in such a small network scenarios due to a very high
computing time. In Figure 8 we show the variation of the
objective function (the sum of total latency and operation
cost) with respect to two parameters, the network capac-
ity Ck and the weight w in the objective function. In these
cases, it can be observed that NESF obtains near-optimal
solutions, practically overlapping with the optimum curve,
for the whole range of the parameters, while both Greedy
and Greedy Fair perform worse. The results achieved when
the other parameters vary show the same trend. For the sake
of space, we do not show them, but they are reported in the
supplementary results available here3.

Figure 9 shows the configuration of nodes and routing
paths for the network (10N20E) with the parameter values
defined in Section 3. Each sub-figure refers to one of the four
considered solutions. Here we highlight the ingress nodes
(i.e., 3 and 5) and the other nodes which offer computation
capacity or support traffic routing. The remaining nodes are
not shown for the sake of clarity. The black arrows represent
the enabled routing paths. The traffic flow allocation of
each solution is marked in red for traffic type 1 and blue
for type 2, respectively. The values of all relevant decision
variables (see Section 4) are shown as well.

Comparing Figures 9(a) and 9(c), we notice that both
Optimal and NESF enable the computation capacity on the
ingress nodes and an intermediate node, with one type of
traffic kept in the ingress nodes and the other offloaded to
the intermediate. The obvious differences between Optimal
and NESF include: i) planning of the computation capacity
on ingress node 3 (i.e., D1 by Optimal while D2 by NESF),
and ii) the intermediate node selected and the consequent
routing paths. However, the obtained objective function
values (trade-off between the total latency and operation
cost) by Optimal and NESF are respectively 2.25 and 2.28,
and very close to each other. To further check the reasons
behind, we found that the latencies for the traffic of type 1
and 2 are, respectively, 0.49ms and 0.55ms for Optimal,
while 0.50ms and 0.47ms for NESF. Since in this case
NESF can acquire less total latency at the expense of a little
bit higher computation cost, compared with Optimal, their
corresponding objective function values are close. Note that
the computing time needed to obtain the optimal solution
is around 10 hours (35724 seconds) while NESF is able to
compute the approximate solution in only about 1 second.

The Greedy and Greedy-Fair approaches tend to enable
computation capacity on more nodes. Greedy-Fair also splits
each type of traffic following multiple paths. Both aspects
result in a higher objective function value.

When increasing the network capacity Ck by the scale
factor 1.2, the resulting solutions remain almost the same,
except for the allocation of the wireless network capacity
and computation capacity.

6.5 Analysis of the heuristic results for larger networks

We investigate the effect of several parameters on the ob-
jective function value, with respect to link bandwidth Bl,

13

0.2 0.4 0.6 0.8 1.0
Scale of bandwidth

10.0

10.5

11.0

11.5

12.0

Ob
je

ct
iv

e
fu

nc
tio

n
Greedy-Fair
Greedy
NESF

(a) Bandwidth (Bl)

1.0 1.2 1.4 1.6 1.8 2.0
Scale of network capacity

4

6

8

10

12

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(b) Network capacity (Ck)

0.6 0.7 0.8 0.9 1.0
Scale of computation capacity budget

10.0

10.5

11.0

11.5

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(c) Computation capacity budget (P)

0.8 0.9 1.0 1.1 1.2
Scale of computation capacity

9.5

10.0

10.5

11.0

11.5

12.0

12.5

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair Greedy NESF

(d) Computation capacity (D1)

0.8 0.9 1.0 1.1 1.2
Scale of computation capacity

9.5

10.0

10.5

11.0

11.5

12.0

12.5

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair Greedy NESF

(e) Computation capacity (D2)

0.8 0.9 1.0 1.1 1.2
Scale of computation capacity

8

10

12

14

16

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(f) Computation capacity (D3)

0.5 0.6 0.7 0.8 0.9 1.0
Scale of traffic rate

4

6

8

10

12

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(g) Traffic rate (λkn)

1.0 1.1 1.2 1.3 1.4 1.5
Scale of tolerable latency

9.5

10.0

10.5

11.0

11.5

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(h) Tolerable latency (τn)

0.0 0.2 0.4 0.6 0.8 1.0
Trade-off weight

10

15

20

25

30

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(i) Trade-off weight (w)

Fig. 10: Numerical results for the large-scale network topology 5(e), 80N120E (averaged over 50 instances).

network capacity Ck, computation capacity Da and corre-
sponding total budget P , traffic rate λkn, tolerable latency τn
and trade-off weight w. We conduct our simulations by
scaling one parameter value at a time, starting from the
initial values in Table 4. Since the goal is to minimize the
weighted sum of total latency and operation cost, lower
values for the objective function are preferable.

In Figure 10 we report all results referring to the topol-
ogy with 80 Nodes and 120 links (Figure 5(e)). All results
obtained considering the other topologies in Figure 5 are
available here3 and show similar trends.

6.5.1 Effect of the link bandwidth Bl
Figure 10(a) illustrates the variation of the objective function
value (costs w.r.t. latency and computation) versus the link
bandwidth Bl,∀l ∈ L, the values of which are scaled with
respect to its initial ones in Table 4 from 0 to 1.0 with a step
of 0.05. In all cases, the problem instance is unfeasible below
a certain threshold bandwidth value. As Bl increases above
the threshold, the cost value achieved by each approach
decreases and converges to a smaller value, i.e., around 9.7
for NESF (achieved at 0.9), 10.84 for Greedy at 0.3 and 11.48
for Greedy-Fair at 0.4. In all cases, NESF performs the best
among all the approaches, with the following gains: around
11% to Greedy and 16% to Greedy-Fair. Greedy and Greedy-
Fair show little flexibility to the variation of link bandwidth.

6.5.2 Effect of the wireless network capacity Ck
Figures 10(b) demonstrates the variation of the objective
function value with respect to the wireless network capac-
ity Ck,∀k ∈ K, scaled with respect to the initial values
reported in Table 4 from 1.0 to 2.0, which corresponds to
the case in which the wireless network shows a capacity
comparable to the one of the internal network links. When
Ck increases, the objective function value obtained by each
approach decreases quite fast (more than 2 times) and con-
verges to a specific value. For NESF, the cost decreases from
9.70 and converges to 3.73; Greedy and Greedy-Fair exhibit
close performance, i.e., Greedy from 10.84 to 4.45, Greedy-
Fair from 11.48 to 4.76. NESF still has the best performance
among all the approaches, with consistent gaps: around
16% to Greedy and up to 22% for Greedy-Fair. This trend
reflects the strong effect of the wireless network capacity
increase on the minimization of the overall system cost and
performance.

6.5.3 Effect of the computation capacity budget P
Figures 10(c) shows the trend of the objective function
value at the variation of the computation capacity budget
P , whose value is scaled with respect to the initial one in
Table 4 from 0.5 to 1.0 with a step of 0.0125. Clearly, a low
power budget challenges the optimization approach that
must ensure the available computation capacity is always

14

within this budget. The figure shows that each heuristic
has a limit budget value below which it is unable to find
a feasible solution (0.738 for Greedy-Fair, 0.675 for Greedy
and 0.60 for NESF). Thus, NESF is the most resilient in this
case. As P increases, the cost values obtained by NESF and
Greedy monotonically decrease like staircases, and finally
fast converge to specific points, i.e., 9.70 for NESF and
10.84 for Greedy. The staircase pattern is due to the fact
that the optimal solution remains constant when P varies
in a small range, and the decreasing trend is also consistent
with the real world case. However, the cost value for Greedy-
Fair exhibits an opposite trend. This is due to its strategy
that tries to use the maximum number of nodes that the
budget P can cover, and distribute the traffic load on all of
them. This scheme, thus, results in a waste of computation
capacity and cost increase in some situations. Finally, NESF
still achieves the best performance, with the following gaps:
around 11% to Greedy and 16% to Greedy-Fair.

6.5.4 Effect of the computation capacity Da

Figures 10(d), 10(e), and 10(f) illustrate the variations of
the objective function value with respect to the three levels
of computation capacity Da, which are scaled from 0.8 to
1.2 w.r.t. the initial values in Table 4 with a step of 0.01,
still keeping the relation D1 < D2 < D3. In Figures
10(d) and 10(e), the objective function values obtained by
the three approaches show very small variation when the
computation capacity is scaled. In Figure 10(f), there is
a clear decreasing trend for the objective function values
achieved by both Greedy and Greedy-Fair. The reason is that
many edge nodes are enabled with the D3 computation
level, and the increased D3 capacity reduces much of the
total latency while not adding much operation cost. The
objective function value achieved by NESF, on the other
hand, almost does not change. To summarize, NESF could
provide better and more stable solutions, compared with the
other approaches.

6.5.5 Effect of the traffic rate λkn

Figure 10(g) shows the objective function value variation
versus the traffic rate. Values λkn, kn ∈ K × N are scaled
from 0.5 to 1.0 with respect to the initial value in Table 4,
with a step of 0.025. As traffic λkn increases, the objective
function values for all the approaches increase. We observe
that NESF is characterized by a smooth curve, which
indicates stability in the solving processing, while both
Greedy and Greedy-Fair exhibit larger fluctuations. When the
scale is 6 0.55, i.e., the traffic rate is relatively low, the cost
values for all the approaches are the same since the best
configuration, i.e., locally computing of the traffic, is easily
identified by all of them. After that point, NESF exhibits
a better performance with a clear gap (around 14%) with
respect to the other approaches.

6.5.6 Effect of the tolerable latency τn
Figure 10(h) illustrates the objective function value with
respect to the tolerable latency τn, n ∈ N scaled from 1.0
to 1.5 on the initial value in Table 4. When τn increases,
the objective function values obtained by all the approaches
decrease and converge to specific points, i.e., around 9.48

TABLE 5: Impact of the weight w (solution computed by the
NESF heuristic).

w T + wJ T J

Scaling link bandwidth
Bl (factor 0.6)

0.003 8.15 8.01 47.76
0.1 12.58 8.43 41.57
0.4 24.35 9.18 37.94

Scaling network capacity
Ck (factor 1.5)

0.003 2.21 2.07 47.08
0.1 6.60 2.86 37.47
0.4 17.72 2.92 37.00

for NESF, 10.15 for Greedy, and finally 10.64 for Greedy-Fair.
Parameter τn serves in our model as an upper bound (see
constraint (18)), and limits the solution space. In fact, with
a low τn value, the feasible solution set is smaller and the
total cost increases, and vice versa. Finally, NESF performs
the best, with the following gaps: around 7% with respect
to Greedy, and 11% to Greedy-Fair.

We further considered more stringent scenarios where
we extended the scaling range of the tolerable latency, τn,
from 0.75 to 1.5. The results are shown in Figure 11, and are
related to the Città Studi topology (see Figure 6(c)) and show
that, when latency requirements are very stringent (the left
part in these figures) the total cost of the network planned to
accommodate such stringent requirements sharply increases
(see Figure 11(c)). Please also note that, for some of these
extreme values of the scaling parameter, the Greedy and
Greedy-Fair benchmark algorithms were unable to find a
feasible solution, while our proposed heuristics (NESF) is
always able to find a solution.

6.5.7 Effect of the trade-off weight w
This parameter permits to express, in the objective function
computation, the relevance of the overall operation cost
with respect to the total latency experienced by users. Lower
values of w correspond to a lower relevance of the operation
cost w.r.t. latency. In Figure 10(i) w is changed from 0 to 1.0
with a step of 0.05. When w = 0, the optimization focuses
almost exclusively on the total latency. As w increases, the
objective function values increase almost linearly for all
the approaches. The NESF algorithm still achieves the best
performance, with gaps around 7% with respect to Greedy
and 16% w.r.t. Greedy-Fair.

Hereafter we present (Table 5) numerical results ob-
tained in the “Città Studi” topology, to illustrate the impact
of the trade-off weightw. Following the setting of the weight
parameter w discussed in Section 4.3, which permits to
privilege the optimization of the network cost J or the
delay T , we obtain in this scenario (based on the parameters
values), wL ≈ 0.003 and wU ≈ 0.4. For simplicity, we select
three values for w (viz., 0.003, 0.1, 0.4) to give different
priorities to the overall latency and planning cost.

Let us analyze the results for scaling network capac-
ity Ck as an example. If we set w = 0.003, thus giving
priority in the optimization to the minimization of the
experienced overall latency T , we see that such value is,
in average, 2.07, while the cost of the planned network J
is 47.08. In this case, we tend to plan costlier networks
but we can satisfy more stringent latency requirements of
users. If on the other hand we set w = 0.4, thus privileging
cost minimization and then reducing latency as second step,
we observe that, in average, the latency T is 2.92 while

15

0.8 1.0 1.2 1.4
Scale of tolerable latency

24

26

28

30

32
Ob

je
ct

iv
e

fu
nc

tio
n

Greedy-Fair
Greedy
NESF

(a) Objective function

0.8 1.0 1.2 1.4
Scale of tolerable latency

8.5

9.0

9.5

10.0

10.5

To
ta

l L
at

en
cy

Greedy-Fair
Greedy
NESF

(b) Total latency

0.8 1.0 1.2 1.4
Scale of tolerable latency

40

45

50

55

60

Co
m

pu
ta

tio
n

Co
st

Greedy-Fair
Greedy
NESF

(c) Total network cost

Fig. 11: Scaling tolerable latency τn from 0.75 to 1.5, Città Studi topology.

the average cost of the planned network J is 37.00. By
comparing these two extreme situations we observe that the
latency increases of 41%, passing from the first scenario to
the second, while in parallel the cost reduces of about 21%.
Finally, Figure 12 shows for completeness the whole set of
results, that is, the objective function value for the three w
settings considered in the previous Table, and for all Ck
scaling factors.

6.5.8 Robustness analysis
In the same scenario illustrated in Section 3, we further
quantify the robustness of our proposed model and al-
gorithms. To this aim, we increase the traffic from one
ingress node (λn5,t2) first from 35 to 36Gb/s and then from
35 to 40Gb/s. In both cases, the original scenario, with
λn5,t2 = 35Gb/s, is denoted by the symbol “◦” in Tables 6
and 7, while the changed one is denoted by “∗”.

We compare the solutions computed by three ap-
proaches, where Optimal solves the problem optimally,
NESF is the solution provided by our heuristic, ◦NESF
represents the solution computed for the original instance
(◦) by directly applying it to the changed one (∗). The Margin
row is computed as ◦NESF - NESF. We observe that ◦NESF
can directly provide a feasible solution also for the modified
scenario with λn5,t2 = 36Gb/s, very close to the original
one in terms of objective function value.

In the second scenario, since traffic increases more con-
sistently (from 35 to 40 Gb/s), we consider a further ap-
proach (named M◦NESF) to avoid the infeasibility that can
be experienced when applying directly, as ◦NESF does,
the solution computed for the original instance (◦) to the
changed one (∗). Indeed, all allocation and routing solutions
taken for the original problem are still valid (including deci-
sions ckn, bkni , αkni , βkni and also routing pathRkni), and we
just need to re-optimize planning decisions of computation
capacity levels δai . This permits to avoid infeasibility and
to obtain very good solutions: in this scenario the objective
function of Optimal is 2.415, NESF 2.479 and M◦NESF 2.524,
just 1.8% higher than NESF.

6.6 Computing Time
Figure 13 compares the average computing time of the pro-
posed approaches under all considered network topologies.
The computing time for P1 is shown only for the smallest
topology and it is already significantly larger than the oth-
ers. For the tree-shaped network topology (Figure 5(c)), all
approaches are able to obtain the solution very fast, in less

TABLE 6: Robustness analysis for instance 10N20E (◦: original,
λn5,t2 = 35Gb/s; ∗: changed scenario with λn5,t2 = 36Gb/s).

T + wJ T J Computing time (s)
◦ ∗ ◦ ∗ ◦ ∗ ◦ ∗

Optimal 2.249 2.256 1.049 1.056 12.0 12.0 38463 48521
NESF 2.277 2.281 0.977 0.981 13.0 13.0 1.307 1.169
◦NESF - 2.318 - 1.018 - 13.0 - 0.291

Margin 0.037 0.037 0

TABLE 7: Robustness analysis for instance 10N20E (◦: original,
λn5,t2 = 35Gb/s; ∗: changed scenario with λn5,t2 = 40Gb/s).

T + wJ T J Computing time (s)
◦ ∗ ◦ ∗ ◦ ∗ ◦ ∗

Optimal 2.249 2.415 1.049 1.115 12.0 13.0 38463 581077
NESF 2.277 2.479 0.977 0.979 13.0 15.0 1.307 1.273

◦NESF directly applying ◦ solution to ∗: Infeasible

M◦NESF - 2.524 - 1.224 - 13.0 - 0.339

Margin 0.045 0.245 -2

than 10s. This is due to the fact that routing optimization
is indeed trivial in such topology. The computing time is
ordered as: Greedy<NESF<Greedy-Fair. When considering
standard deviation, the order is: NESF<Greedy<Greedy-Fair,
and this shows the stability of our proposed approach in
the solving process. As for the network topology with 100
nodes and 150 edges (a general large scale network), NESF
is able to obtain a good solution in around 100s, and remains
below this value in the other considered cases. This gives
us an indication that the network management component
can periodically run NESF as a response to changes in the
network or in the incoming traffic, and optimize nodes com-
putation capacities and routing paths accordingly. This is a
key feature for providing the necessary QoS levels in next-
generation mobile network architectures and for updating it
dynamically.

7 RELATED WORK

Several works have been recently published on the resource
management problem in a MEC environment; most of them
consider a single mobile edge cloud at the ingress node and
do not account for its connection to a larger edge cloud
network [20–22]. The following of this section provides a
short overview on the various areas that are relevant to
the problem we consider. As discussed in the Summary
part, ours is the first approach that considers at the same
time multiple aspects related to the configuration of an edge
cloud network.

16

1.0 1.2 1.4 1.6 1.8 2.0
Scale of network capacity

2

4

6

8

10
Ob

je
ct

iv
e

fu
nc

tio
n

Greedy-Fair
Greedy
NESF

(a) w = 0.003

1.0 1.2 1.4 1.6 1.8 2.0
Scale of network capacity

6

8

10

12

14

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(b) w = 0.1

1.0 1.2 1.4 1.6 1.8 2.0
Scale of network capacity

18

20

22

24

26

28

Ob
je

ct
iv

e
fu

nc
tio

n

Greedy-Fair
Greedy
NESF

(c) w = 0.4

Fig. 12: Scaling network capacity Ck under different weight w settings.

10N20E 20N30E 40N60E 50N50E 60N90E 80N120E 100N150E Città Studi
Problem

100

101

102

103

104

105

Co
m

pu
tin

g
tim

e
(s

)

Greedy-Fair
Greedy
NESF
Optimal

Fig. 13: Computing time.

Network planning: The network planning problem in a
MEC/Fog/Cloud context tackles the problems concerning
nodes placement, traffic routing and computation capacity
configuration. The authors in [23] propose a mixed integer
linear programming (MILP) model to study cloudlet place-
ment, assignment of access points (APs) to cloudlets and
traffic routing problems, by minimizing installation costs of
network facilities. The work in [8] proposes a MILP model
for the problem of fog nodes placement under capacity and
latency constraints. [11] presents a model to configure the
computation capacity of edge hosts and adjust the cloud
tenancy strategy for dynamic requests in cloud-assisted
MEC to minimize the overall system cost.

Service/content placement: The service and content
placement problems are considered in several contexts in-
cluding, among others, micro-clouds, multi-cell MEC etc.
The work in [24] studies the dynamic service placement
problem in mobile micro-clouds to minimize the average
cost over time. The authors first propose an offline algorithm
to place services using predicted costs within a specific
look-ahead time-window, and then improve it to an online
approximation one with polynomial time-complexity. An
integer linear programming (ILP) model is formulated in
[25] for serving the maximum number of user requests in
edge clouds by jointly considering service placement and
request scheduling. The edge clouds are considered as a
pool of servers without any topology, which have share-
able (storage) and non-shareable (communications, com-
putation) resources. Each user is also limited to use one
edge server. In [26], the authors extend the work in [25]
by separating the time scales of the two decisions: service
placement (per frame) and request scheduling (per slot) to
reduce the operation cost and system instability. In [27],
the authors study the joint service placement and request
routing problem in multi-cell MEC networks to minimize

the load of the centralized cloud. No topology is considered
for the MEC networks. A randomized rounding (RR) based
approach is proposed to solve the problem with a provable
approximation guarantee for the solution, i.e., the solution
returned by RR is at most a factor (more than 3) times
worse than the optimum with high probability. However,
although it offers an important theoretical result, the guar-
antee provided by the RR approach is only specific to the
formulated optimization problem. [28] studies the problem
of service entities placement for social virtual reality (VR)
applications in the edge computing environment. [29] ana-
lyzes the mixed-cast packet processing and routing policies
for service chains in distributed computing networks to
maximize network throughput.

The work in [30] studies the edge caching problem in
a Cloud RAN (C-RAN) scenario, by jointly considering the
resource allocation, content placement and request routing
problems, aiming at minimizing the system costs over time.
[31] formulates a joint caching, computing and bandwidth
resources allocation model to minimize the energy con-
sumption and network usage cost. The authors consider
three different network topologies (ring, grid and a hypo-
thetical US backbone network, US64), and abstract the fixed
routing paths from them using the OSPF routing algorithm.

Cloud activation/selection: The cloud activation and
selection problems are studied as a way to handle the con-
figuration of computation capacity in a MEC environment.
The authors in [32] design an online optimization model for
task offloading with a sleep control scheme to minimize the
long term energy consumption of mobile edge networks.
The authors use a Lyapunov-based approach to convert
the long term optimization problem to a per-slot one. No
topology is considered for the MEC networks. [33] proposes
a model to dynamically switch on/off edge servers and
cooperatively cache services and associate users in mobile
edge networks to minimize energy consumption. [34] jointly
optimizes the active base station set, uplink and downlink
beamforming vector selection, and computation capacity
allocation to minimize power consumption in mobile edge
networks. [35] proposes a model to minimize a weighted
sum of energy consumption and average response time in
MEC networks, which jointly considers the cloud selection
and routing problems. A population game-based approach
is designed to solve the optimization problem.

Network slicing: The authors in [36] study the resource
allocation problem in network slicing where multiple re-
sources have to be shared and allocated to verticals (5G

17

end-to-end services). [37] formulates a resource allocation
problem for network slicing in a cloud-native network
architecture, which is based on a utility function under
the constraints of network bandwidth and cloud power
capacities. For the slice model, the authors consider a sim-
plified scenario where each slice serves network traffic from
a single source to a single destination. For the network
topology, they consider a 6x6 square grid and a 39-nodes
fat-tree.

Other perspectives: Inter-connected datacenters also
share some common research problems with the multi-
MEC system. The work in [38] studies the joint resource
provisioning for Internet datacenters to minimize the total
cost, which includes server provisioning, load dispatching
for delay sensitive jobs, load shifting for delay-tolerant jobs,
and capacity allocation. [39] presents a bandwidth alloca-
tion model for inter-datacenter traffic to enforce bandwidth
guarantees, minimize the network cost, and avoid potential
traffic overload on low cost links.

The work in [40] studies the problem of task offloading
from a single device to multiple edge servers to minimize
the total execution latency and energy consumption by
jointly optimizing task allocation and computational fre-
quency scaling. In [41], the authors study task offloading
and wireless resource allocation in an environment with
multiple MEC servers. [42] formulates an optimization
model to maximize the profit of a mobile service provider
by jointly scheduling network resources in C-RAN and
computation resources in MEC.

Summary: To the best of our knowledge, our paper is the
first to propose a complete approach that encompasses both
the problem of planning cost-efficient edge networks and
allocating resources, performing optimal routing and mini-
mizing the total traffic latency of transmitting, outsourcing
and processing user traffic, under a constraint of user tol-
erable latency for each class of traffic. We model accurately
both link and processing latency, using non-linear functions,
and propose both exact models and heuristics that are able
to obtain near-optimal solutions also in large-scale network
scenarios, that include hundreds of nodes and edges, as well
as several traffic flows and classes.

8 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the problem of jointly planning
and optimizing the resource management of a mobile edge
network infrastructure. We formulated an exact optimiza-
tion model, which takes into accurate account all the el-
ements that contribute to the overall latency experienced
by users, a key performance indicator for these networks,
and further provided an effective heuristics that computes
near-optimal solutions in a short computing time, as we
demonstrated in the detailed numerical evaluation we con-
ducted in a set of representative, large-scale topologies, that
include both mesh and tree-like networks, spanning wide
and meaningful variations of the parameters’ set.

We measured and quantified how each parameter has
a distinct impact on the network performance (which we
express as a weighted sum of the experienced latency and
the total network cost) both in terms of strength and form.
Traffic rate and network capacity have the stronger effects,
and this is consistent with real network cases. Tolerable

latency shows an interesting effect: the lower requirements
on latency (or equivalently: the higher value of tolerable
latency) the system sets, the lower latency and costs the
system will have. This information can be useful for net-
work operators to design the network indicators of services.
The computation capacity has relatively smaller effect on the
network performance, compared with the other parameters.
Another key observation that we draw from our numerical
analysis is that as the system capacities (including link band-
width, network capacity and computation capacity budget)
increase, the system performance converges to a plateau,
which means that increasing the system capacity over a
certain level (which we quantify for each network scenario)
will have small effectiveness, and on the contrary, it will
increase the total system cost.

Finally, we observe that our models can be extended
within the theoretical framework of stochastic optimization,
which can be used to guarantee robustness of the solution
with respect to the uncertainty in the probabilistic descrip-
tion of traffic demands. Possible extensions of our model
could further include explicit modeling of resource scaling
across clusters, of VM state and storage synchronization as
well as IaaS internal traffic across edge facilities.

ACKNOWLEDGMENT
This research was supported by the H2020-MSCA-ITN-2016
SPOTLIGHT under grant agreement No. 722788 and the H2020-
ICT-2020-1 PIACERE under grant agreement No. 101000162.

REFERENCES
[1] W. Xiang, K. Zheng, and X. S. Shen, 5G mobile communications.

Springer, 2017.
[2] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C.

Leung, “Network slicing based 5G and future mobile networks:
mobility, resource management, and challenges,” IEEE Communi-
cations Magazine, vol. 55, no. 8, pp. 138–145, 2017.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing–A key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[4] R. Kannan and C. L. Monma, “On the computational complexity
of integer programming problems,” in Optimization and Operations
Research, Springer, 1978, pp. 161–172.

[5] B. Xiang, J. Elias, F. Martignon, and E. Di Nitto, “Joint Network
Slicing and Mobile Edge Computing in 5G Networks,” in IEEE
International Conference on Communications (ICC), 2019, pp. 1–7.

[6] L. Geng, J. Dong, S. Bryant, K. Makhijani, A. Galis, X. de Foy,
and S. Kuklinski, “Network Slicing Architecture,” IETF, Internet-
Draft, Jul. 2017.

[7] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-
Perez, “How should i slice my network? a multi-service empirical
evaluation of resource sharing efficiency,” in Proc. of the 24th An-
nual International Conference on Mobile Computing and Networking,
2018, pp. 191–206.

[8] A. Santoyo-González and C. Cervelló-Pastor, “Latency-aware
cost optimization of the service infrastructure placement in 5G
networks,” Journal of Network and Computer Applications, vol. 114,
pp. 29–37, 2018.

[9] R. Rokui, S. Homma, X. de Foy, L. M. Contreras, P. Eardley, K.
Makhijani, H. Flinck, R. Schatzmayr, A. Tizghadam, C. Janz, and
H. Yu, “IETF Network Slice for 5G and its characteristics,” IETF,
Internet-Draft, Nov. 2020.

[10] K. Sparks, M. Sirbu, J. Nasielski, L. Merrill, K. Leddy, P. Krish-
naswamy, W. Johnston, R. Gyurek, B. Daly, M. Bayliss, J. Barnhill,
and K. Balachandran, “5G Network Slicing Whitepaper,” FCC
Technological Advisory Council, 5G IoT Working Group, 2018.

[11] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. S. Shen, “Cost-
efficient resource provisioning for dynamic requests in cloud
assisted mobile edge computing,” IEEE Transactions on Cloud
Computing, 2019.

18

[12] Y. Niu, B. Luo, F. Liu, J. Liu, and B. Li, “When hybrid cloud meets
flash crowd: Towards cost-effective service provisioning,” in IEEE
INFOCOM, 2015, pp. 1044–1052.

[13] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4,
pp. 1619–1632, 2018.

[14] P. Luong, F. Gagnon, C. Despins, and L.-N. Tran, “Joint virtual
computing and radio resource allocation in limited fronthaul
green C-RANs,” IEEE Transactions on Wireless Communications,
vol. 17, no. 4, pp. 2602–2617, 2018.

[15] C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee, “5G ultra-reliable and
low-latency systems design,” in European Conference on Networks
and Communications (EuCNC), IEEE, 2017, pp. 1–5.

[16] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjec-
tive optimization for computation offloading in fog computing,”
IEEE Internet of Things Journal, vol. 5, no. 1, pp. 283–294, 2017.

[17] J. Tang, W. P. Tay, T. Q. Quek, and B. Liang, “System cost
minimization in cloud RAN with limited fronthaul capacity,”
IEEE Trans. on Wireless Commun., vol. 16, no. 5, pp. 3371–3384,
2017.

[18] B. Zhuang, D. Guo, and M. L. Honig, “Energy-efficient cell
activation, user association, and spectrum allocation in heteroge-
neous networks,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 4, pp. 823–831, 2016.

[19] P. Erdős and A. Rényi, “On Random Graphs I,” Publicationes
Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.

[20] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 16, no. 8, pp. 4924–4938, 2017.

[21] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user
mobile-edge computing systems,” IEEE Transactions on Wireless
Communications, vol. 16, no. 9, pp. 5994–6009, 2017.

[22] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, “Cost-
efficient workload scheduling in cloud assisted mobile edge com-
puting,” in Quality of Service (IWQoS), IEEE/ACM 25th Interna-
tional Symposium on, 2017, pp. 1–10.

[23] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud net-
work design optimization,” IEEE/ACM Transactions on Networking
(TON), vol. 25, no. 3, pp. 1818–1831, 2017.

[24] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K.
Leung, “Dynamic service placement for mobile micro-clouds with
predicted future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 4, pp. 1002–1016, 2016.

[25] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources,” in IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
2018, pp. 365–375.

[26] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S.
Wang, and K. S. Chan, “Service placement and request scheduling
for data-intensive applications in edge clouds,” in IEEE INFO-
COM, 2019, pp. 1279–1287.

[27] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in IEEE INFOCOM, 2019, pp. 10–18.

[28] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service
entity placement for social virtual reality applications in edge
computing,” in IEEE INFOCOM, 2018, pp. 468–476.

[29] J. Zhang, A. Sinha, J. Llorca, A. Tulino, and E. Modiano, “Optimal
control of distributed computing networks with mixed-cast traffic
flows,” in IEEE INFOCOM, 2018, pp. 1880–1888.

[30] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online
resource allocation, content placement and request routing for
cost-efficient edge caching in cloud radio access networks,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 8, pp. 1751–
1767, 2018.

[31] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “Joint
resource allocation for software-defined networking, caching, and
computing,” IEEE/ACM Transactions on Networking, vol. 26, no. 1,
pp. 274–287, 2018.

[32] S. Wang, X. Zhang, Z. Yan, and W. Wang, “Cooperative edge
computing with sleep control under non-uniform traffic in mobile
edge networks,” IEEE Internet of Things Journal, 2018.

[33] Q. Wang, Q. Xie, N. Yu, H. Huang, and X. Jia, “Dynamic Server
Switching for Energy Efficient Mobile Edge Networks,” in IEEE
International Conference on Communications (ICC), 2019, pp. 1–6.

[34] J. Opadere, Q. Liu, N. Zhang, and T. Han, “Joint Computation and
Communication Resource Allocation for Energy-Efficient Mobile
Edge Networks,” in IEEE International Conference on Communica-
tions (ICC), 2019, pp. 1–6.

[35] B. Wu, J. Zeng, L. Ge, Y. Tang, and X. Su, “A game-theoretical ap-
proach for energy-efficient resource allocation in MEC network,”
in IEEE International Conference on Communications (ICC), 2019.

[36] F. Fossati, S. Moretti, P. Perny, and S. Secci, “Multi-resource allo-
cation for network slicing,” IEEE/ACM Transactions on Networking,
vol. 28(3), pp. 1311–1324, 2020.

[37] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat,
“A resource allocation framework for network slicing,” in IEEE
INFOCOM, IEEE, 2018, pp. 2177–2185.

[38] D. Xu, X. Liu, and Z. Niu, “Joint resource provisioning for internet
datacenters with diverse and dynamic traffic,” IEEE Transactions
on Cloud Computing, vol. 5, no. 1, pp. 71–84, 2017.

[39] W. Li, K. Li, D. Guo, G. Min, H. Qi, and J. Zhang, “Cost-
minimizing bandwidth guarantee for inter-datacenter traffic,”
IEEE Transactions on Cloud Computing, 2016.

[40] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading
in mobile edge computing: Task allocation and computational
frequency scaling,” IEEE Transactions on Communications, vol. 65,
no. 8, pp. 3571–3584, 2017.

[41] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-
efficient joint offloading and wireless resource allocation strategy
in multi-mec server systems,” in IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[42] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang, and S. Ou,
“Dynamic resource scheduling in mobile edge cloud with cloud
radio access network,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 11, pp. 2429–2445, 2018.

19

APPENDIX A
PROBLEM REFORMULATION

Problem P0 formulated in Section 4 cannot be solved di-
rectly and efficiently due to the reasons detailed in Sec-
tion 4.4.

To deal with these problems, we propose in this Ap-
pendix an equivalent reformulation of P0, which can be
solved very efficiently with the Branch and Bound method.
Moreover, the reformulated problem can be further relaxed
and, based on that, we propose an heuristic algorithm which
can get near-optimal solutions in a short computing time.

To this aim, we first reformulate the processing latency
and link latency constraints (viz., constraints (12) and (16)),
and we deal at the same time with the computation plan-
ning problem. Then, we handle the difficulties related to
variables Rkni and the corresponding routing constraints.

A.1 Processing Latency
In equation (12), the variable βkni and the function Si
connect the computation capacity allocation and planning
problem together, and the processing latency tkn,iP has there-
fore a highly nonlinear expression. To handle this problem,
we first introduce an auxiliary variable pkn,ai = βkni δai .
Then, βkni Si is replaced by a linearized form βkni Si =∑
a∈A p

kn,a
i Da. Furthermore, we linearize pkn,ai = βkni δai ,

which is the product of binary and continuous variables, as
follows:{

0 6 pkn,ai 6 δai ,

0 6 βkni − pkn,ai 6 1− δai ,
∀k,∀n, ∀a,∀i. (20)

According to the definitions of αkni and bkni , we have the
following constraint:

αkni 6 bkni 6Mαkni , ∀k,∀n, ∀i, (21)

where M > 0 is a big value; such constraint implies that
if αkni = 0, the traffic kn is not processed on node i, i.e.
bkni = 0.

Based on the above, we can rewrite constraint (13) as:{
αkni λkn − (1− bkni) <

∑
a∈A p

kn,a
i Da,

βkni 6 bkni ,
∀k,∀n, ∀i. (22)

Note that the term (1 − bkni) permits to implement
condition αkni > 0 in Eq. (13).

In equation (12), we observe that if bkni = 1, we have:

1

βkni Si − αkni λkn
>

1

Si
>

1

maxj∈E Sj
,

otherwise βkni Si − αkni λkn = 0 resulting in tkn,iP → ∞.
To handle this case, we first define a new variable tkn,iP ′ as
follows:

tkn,iP ′ =
1∑

a∈A p
kn,a
i Da − αkni λkn + (1− bkni)Dm

, (23)

where Dm is the maximum computation capacity that can
be installed on a node (Dm = maxa∈ADa).

From this equation, we have bkni = 1 ⇒ tkn,iP ′ = tkn,iP >
1
Dm

and bkni = 0 ⇒ tkn,iP ′ = 1
Dm

, tkn,iP = 0. Hereafter,
we prove that this reformulation has no influence on the
solution of our optimization problem.

The outsourcing latency is defined as the maximum of
the processing latency tkn,iP and link latency tkn,iL among all
nodes. Equation (17) can be transformed as tknPL > tkn,iP +

tkn,iL ,∀k, ∀n,∀i. When bkni = 0, tkn,iP = tkn,iL = 0. Thus,
based on above, the inequality is equivalent to tknPL > tkn,iP ′ +

tkn,iL ,∀k, ∀n,∀i.

A.2 Link Latency
As we stated before, to compute the link latency, we need
to determine the routing path Rkni , and this problem will
be specifically handled in the next subsection. Assuming
Rkni has been determined, we first introduce a binary vari-
able γkn,il defined as follows:

γkn,il =

{
1, if l ∈ Rkni ,
0, otherwise, ∀k, ∀n, ∀i,∀l.

which indicates whether l is used in the routing path Rkni
or not. Note that only if traffic kn is processed on node i
(i.e., bkni = 1) and i 6= k, the corresponding routing path is
defined. Then we have:{

γkn,kl = 0, ∀k, ∀n, ∀l,
γkn,il 6 bkni , ∀k, ∀n, ∀i,∀l. (24)

We now introduce variable vl, defined as follows:

vl =
1

Bl −
∑
k′∈K

∑
n′∈N

fk
′n′

l λk′n′ , ∀l. (25)

This permits to transform equation (16) as tkn,iL =∑
l∈L γ

kn,i
l vl. We then need to linearize the product of the

binary variable γkn,il and the continuous variable vl, and to
this aim we introduce an auxiliary variable gkn,il = γkn,il vl,
thus also eliminating tkn,iL . Specifically, we first compute the
value range of vl as follows:

B−1l 6 vl 6 Vl =
1

max{Bl −
∑
k∈K

∑
n∈N

λkn, ε} ,

where ε > 0 is a small value. Based on the above, the
linearization is performed by the following constraints.{

γkn,il B−1l 6 gkn,il 6 γkn,il Vl,

(1− γkn,il)B−1l 6 vl − gkn,il 6 (1− γkn,il)Vl.
(26)

At the same time, the link latency is rewritten as
∑
l∈L g

kn,i
l .

A.3 Routing Path
Based on the definitions introduced in the previous subsec-
tion, the traffic flow fknl can be transformed as:

fknl =
∑

i∈E
γkn,il αkni . (27)

Due to the product of binary and continuous variables,
hkn,il = γkn,il αkni is introduced for linearization, as follows:{

0 6 hkn,il 6 γkn,il ,

0 6 αkni − hkn,il 6 1− γkn,il .
(28)

Now we need to simplify the traffic flow conserva-
tion constraint (see Eq. (8)). To this aim, and to simplify
notation, we first introduce in the network topology a

20

“dummy” entry node 0 which connects to all ingress nodes
k ∈ K. All traffic is coming through this dummy node
and going to each ingress node with volume λkn, i.e.
fknl = 1,∀k, ∀n, ∀l ∈ F , where F is the dummy link set
defined as F = {(0, k) | k ∈ K}. Then, we extend the
definition of Ii to Ii = {j ∈ E | (j, i) ∈ L∪F}. Equation (8)
is hence transformed as:∑

j∈Ii

fknji −
∑
j∈Oi

fknij = αkni , ∀k,∀n, ∀i. (29)

Correspondingly, we add the following constraints to the
set F of dummy links:{

γkn,i0k = bkni , ∀k,∀n, ∀i,
γkn,i0k′ = 0, ∀k,∀n, ∀i,∀k′ 6= k.

(30)

The final stage of our procedure is the definition of the
constraints that guarantee all desirable properties that a
routing path must respect: the fact that a single path (traffic
is unsplittable) is used, the flow conservation constraints
that provide continuity to the chosen path, and finally the
absence of cycles in the routing path Rkni . We would like
to highlight that the traffic kn can be only split at ingress
node k, and each proportion of such traffic is destined to
an edge node i; this is why we have multiple routing paths
Rkni , i ∈ {1, 2, · · · }.

To this aim, we introduce the following conditions,
and prove that satisfying them along with the constraints
illustrated before can guarantee that such properties are
respected:
• For an arbitrary node i, the number of ingress links

used by a path Rkni′ is one, and thus variables γkn,i
′

ji

should satisfy the following condition:∑
j∈Ii

γkn,i
′

ji 6 1, ∀k,∀n, ∀i, i′. (31)

• The flow conservation constraint (see Eq. (29)) imple-
ments the continuity of a traffic flow.

• Every routing path should have an end or a destination
to avoid loops. This can be ensured by the following
equation:

γkn,iij = 0, ∀k, ∀n, ∀(i, j) ∈ L. (32)

The proof is as follows:
a) Substitute Eq. (27) into (29) and make the transforma-

tion: ∑
j∈Ii

∑
i′∈E

γkn,i
′

ji αkni′ −
∑
j∈Oi

∑
i′∈E

γkn,i
′

ij αkni′

=
∑
i′∈E

αkni′
∑
j∈Ii

γkn,i
′

ji −
∑
i′∈E

αkni′
∑
j∈Oi

γkn,i
′

ij

=
∑
i′∈E

αkni′ (
∑
j∈Ii

γkn,i
′

ji −
∑
j∈Oi

γkn,i
′

ij) = αkni

b) Based on constraints (24) and (30), we have:

if αkni′ = 0, then
∑
j∈Ii

γkn,i
′

ji −
∑
j∈Oi

γkn,i
′

ij = 0.

c) From a) and b), we have:
∑
j∈Ii

γkn,iji −
∑
j∈Oi

γkn,iij = 1, ∀k, ∀n, ∀i | αkni > 0,

∑
j∈Ii

γkn,i
′

ji −
∑
j∈Oi

γkn,i
′

ij = 0, ∀k, ∀n, ∀i,∀i′ 6= i.

d) Based on c), constraint (30), conditions (31) and (32)
can be written as:

∑
j∈Ik

γkn,ijk = 1, ∀k, ∀n,∀i | αkni > 0,∑
j∈Ii

γkn,iji = 1, ∀k, ∀n, ∀i | αkni > 0,

∑
j∈Ii

γkn,i
′

ji =
∑
j∈Oi

γkn,i
′

ij 6 1, ∀k,∀n, ∀i,∀i′ 6= i.

(33)

(34)

(35)

Their practical meaning is explained as follows:
• (33) ensures (0, k) to be the first link in any routing path
Rkni if αkni > 0,

• (34) ensures i to be the end node of the last link in any
routing path Rkni if αkni > 0,

• (35) ensures that if i ∈ E\{i′} is an intermediate node in
a routing path Rkni′ , i should have only one input link
and one output link. It also indicates the continuity of
a traffic flow.

e) Given a non-empty routing pathRkni′ (αkni′ > 0), check
the validity by using the following conditions:
• Let i = k in (35), then based on (33),

∑
j∈Ok

γkn,i
′

kj = 1;

• Assume (k, j′) is a link of Rkni′ , then γkn,i
′

kj′ = 1.
• If j′ = i′, then the path is found, otherwise, continue

with the following steps:
• Let i = j′ in (35), due to γkn,i

′

kj′ = 1,
∑

j∈Oj′

γkn,i
′

j′j = 1;

• Assume (j′, j′′) is a link of Rkni′ , then γkn,i
′

j′j′′ = 1.
• Check j′′ = i′ in the same way as the above steps, the

whole path k → i′ must be found.
Thus, if all the conditions are satisfied, Rkni′ must be a

valid routing path having the three properties (unsplittabil-
ity, traffic continuity, absence of cycles).

A.4 Final Reformulated Problem

Based on the reformulation of routing and the demon-
strations in the above subsections, the flow conservation
constraints can be further improved and the flow variable
fknij can be eliminated as follows:

∑
j∈Ii

γkn,iji = bkni , ∀k,∀n, ∀i,
∑
j∈Ii

γkn,i
′

ji =
∑
j∈Oi

γkn,i
′

ij , ∀k,∀n, ∀i,∀i′ 6= i.

(36)

(37)

Equation (19) contains a maximization form, to get rid
of which we use a standard technique by introducing
variable Tn = maxk∈K{tknW + tknPL} and linearize it as
Tn > tknW + tknPL,∀k,∀n (in Section A.1, a similar transfor-
mation has been performed on tknPL (see Eq. (17))). Since the
arguments of the two maximizations are independent, based
on the reformulation of processing latency, equation (18) can
be transformed as:

tknW + tkn,iP ′ +
∑

l∈L
gkn,il 6 Tn 6 τn, ∀k, ∀n, ∀i. (38)

Finally, the equivalent reformulation of P0 can be writ-
ten as:

21

P1 : min
ckn,bkn

i ,αkn
i ,

βkn
i ,δai ,γ

kn,i
l

∑
n∈N

Tn + w
∑
i∈E

κiSi,

s.t. (1)− (4), (9)− (11), (20)− (26),
(28), (30)− (32), (36)− (38).

In problem P1, ckn, bkni , αkni , βkni , δai and γkn,il are the
main decision variables, while other auxiliary variables like
Tn, Si, h

kn,i
l , vl, etc. are not shown here for simplicity. All the

variables are bounded. Since constraints (9), (23) and (25) are
quadratic while the others are linear, P1 is a mixed-integer
quadratically constrained programming (MIQCP) problem,
for which commercial and freely available solvers can be
used, as we discussed in the numerical evaluation section.

	Introduction
	System Architecture
	Overview of Planning and Allocation
	Problem Formulation
	Network Planning and Routing
	Latency Components
	Optimization Problem - JPSNC
	JPSNC Reformulation

	Heuristics
	Attempt of serving traffic without additional MEC units
	Neighbor search for computation candidates
	Resource Allocation and Final Solution
	Summary and Acceleration Technique

	Evaluation
	Benchmark Heuristics
	Network Topologies
	Random graphs
	A real network scenario

	Experimental Setup
	Analysis of the optimization results for a small network
	Analysis of the heuristic results for larger networks
	Effect of the link bandwidth Bl
	Effect of the wireless network capacity Ck
	Effect of the computation capacity budget P
	Effect of the computation capacity Da
	Effect of the traffic rate kn
	Effect of the tolerable latency n
	Effect of the trade-off weight w
	Robustness analysis

	Computing Time

	Related Work
	Conclusion and Future Directions
	Appendix A: Problem Reformulation
	Processing Latency
	Link Latency
	Routing Path
	Final Reformulated Problem

