
Understanding Derivative Couplings with Built-in

Electron-Translation Factors: Application to Benzene

Shervin Fatehi and Joseph E. Subotnik∗

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia,

Pennsylvania 19104, USA

E-mail: subotnik@sas.upenn.edu

∗To whom correspondence should be addressed

1



Abstract

Flaws in the Born-Oppenheimer approximation and the adiabatic wavefunction Ansatz can

lead to spurious transitions in nonadiabatic dynamics simulations, even when analytical deriva-

tive couplings are used as input. We showed recently that some of these anomalies can be

corrected by the inclusion of electron-translation factors (ETFs) in the atomic-orbital basis. In

the perturbative limit, these ETFs can be “built into” configuration-interaction theories: In-

cluding them actually reduces the cost of the derivative-coupling calculation. Here we explore

the properties of the associated correction in the context of configuration-interaction singles.

We conclude that built-in ETFs will be of greatest importance for very small systems; for

highly-symmetric molecules like benzene, which we discuss in depth; at low temperature; and

away from conical intersections. Even so, the intuitive physics and reduced computational cost

associated with built-in ETFs support their general use.
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Derivative (or nonadiabatic) couplings are the crucial ingredients for studies of nonadiabatic

dynamics.1 As such, there is a rich literature devoted to computing these couplings, especially in

the context of multi-reference configuration-interaction theory (MR-CI).2–4 Interest in the commu-

nity is trending toward the study of nonadiabatic dynamics in ever more complicated systems,5,6

and so there has also been some work on this problem within time-dependent density-functional

theory (TD-DFT).7–9 Research in our group, by contrast, has focused on working toward a unified

framework for studying nonadiabatic dynamics within the context of the simple and affordable

wavefunction theory of configuration-interaction singles (CIS);10 as a step in this direction, we

recently presented a self-contained treatment of an analytic-gradient theory for CIS derivative cou-

plings.11

In the course of that work, we became acquainted with a long-standing problem:9,12–14 Among

other strange properties, the couplings disrespect translational symmetry, such that constant-velocity

motion of the entire system can nevertheless induce an electronic transition. To see that this is

so, we consider a molecular system initially described by some arbitrary electronic wavefunction

|Ψ(0)〉 and governed by Hamiltonian H, which gives rise to adiabatic states {|ΨJ〉 ≡ |ΨJ(R)〉}

and potential energy surfaces {EJ ≡ EJ(R)} that depend parametrically on the nuclear configura-

tion R. If each nucleus Q follows a classical trajectory given by {XQ(t),PQ(t)}, it is straightfor-

ward to use the time-dependent Schrödinger equation to determine the equations of motion for the

wavefunction expanded in the adiabatic basis, |Ψ(t)〉 = ∑J cJ(t) |ΨJ〉. Suppressing the time and

configuration dependence of the various quantities involved, we obtain

ih̄ċI = cIEI− ih̄∑
J

cJ ∑
Q

d[Q]
IJ ·VQ, (1)

where we have defined the Cartesian derivative coupling between states I and J due to the motion

of Q,

d[Q]
IJ ≡ 〈ΨI|∇Q|ΨJ〉 . (2)

The form of Eq. (1) admits the following interpretation: At any moment in time, nuclear motion
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perturbs the electronic dynamics away from purely adiabatic evolution. Because the individual

derivative-coupling terms can have opposite signs, the size of this perturbation for a specific state

pair, εIJ , is bounded from above by

εIJ ≤∑
Q

h̄d[Q]
IJ VQ |cosθ | , (3)

We can estimate this quantity by making two simple approximations: First, we suppose that the

relative orientations of the derivative couplings and nuclear momenta are random, such that we can

replace |cosθ | with its average. Second, we set VQ to the root-mean-square speed drawn from the

Maxwell-Boltzmann distribution. Making these substitutions, we obtain

εIJ .
2h̄
π

√
3kT ∑

Q
d̃[Q]

IJ , (4)

where we have implicitly defined the mass-weighted derivative coupling d̃[Q]
IJ ≡

(
d[Q]

IJ /
√mQ

)
. We

can now use the energy-time uncertainty relation ∆E∆t & h to determine an instantaneous internal-

conversion lifetime for states I and J; at room temperature (T = 300 K) and in units appropriate to

our calculations, it is

τIJ &
191 fs ·

(
a−1

0 /
√

amu
)

∑Q

(
d[Q]

IJ /
√

AQ

) (5)

where AQ is the atomic mass. This relation is quite sensible — transitions should occur more

frequently when couplings are large and the temperature is high (such that atoms are fast).

Now, imagine that the initial wavefunction is one of the adiabats, |Ψ(0)〉 = |ΨJ〉, and that the

entire system translates through space at constant velocity, {VQ(t)=V}. Under these assumptions,
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the initial form of Eq. (1) is

ih̄ċJ = EJ (6a)

ċI = −V ·∑
Q

d[Q]
IJ (6b)

Intuition suggests that the system cannot “know” that it is moving, because an inertial reference

frame exists in which it is motionless. But if these equations are to admit a stationary solution,

such that the wavefunction simply accumulates a phase and τIJ diverges, the derivative couplings

must satisfy the sum rule

∑
Q

d[Q]
IJ

?
= 0. (7)

This expression implies that the electronic wavefunction should not be affected by the operator

corresponding to motion of the nuclear center of mass, PN =−ih̄∑Q ∇Q.

Here we have the crux of the problem: The Born-Oppenheimer approximation can be under-

stood to apply in the limit of infinite nuclear mass — that is, when the nuclear center of mass

coincides with that of the full system.15 But nuclei are not infinitely heavy, and the total center-of-

mass identity involving the nuclear and electronic momenta (Pe =−ih̄∑e ∇e) is the one that holds.

Thus, the proper sum rule for the derivative couplings is

∑
Q

d[Q]
IJ =−∑

e
〈ΨI|∇e|ΨJ〉 . (8)

The electronic matrix element in Eq. (8) can vanish for specific systems, rendering Eq. (7) valid as

a special case, but there is in general no guarantee that the nonadiabatic dynamics will respect the

simple principle of translational invariance, even if the states, energies, and derivative couplings

are exact. As a concrete example, consider the non-vanishing couplings between the 1s and 2p

states of hydrogen, 〈2p|∇H|1s〉=
(

16
√

2/81
)

,9 which suggest a finite timescale for transitions of

686 fs.

These and other anomalous couplings have been attributed to the neglect of electronic motion in
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the adiabatic Ansatz for the wavefunction; because the electronic states describe only bound-state

motion, any displacement of the electrons in tandem with the nuclei takes place because they are

forcibly dragged along. These center-of-mass-type motions contribute to the derivative couplings

in addition to “real” effects like distortion and polarization of the states.14 It was recognized very

early on that the former contributions could be removed by modifying the wavefunction to include

electron-translation factors (ETFs) — plane-waves that assign the electrons a time-dependent mo-

mentum and phase consistent with the velocity of at least one nucleus.14,16–18 These modifications

were frequently made at the molecular-orbital level, which introduced significant complications

related to interpolation between the orbitals appropriate to various asymptotic configurations.14,17

Similar modifications at the atomic-orbital level, though simpler because of the unambiguous as-

sociation between a given nucleus and an ETF, have typically been limited to the use of traveling-

atomic-orbital (TAO) basis functions

χµ(r;XQµ
)e

i
h̄ meVQµ , (9)

which complicates the self-consistent field (SCF) calculations for the adiabats.18 Note, however,

that Micha and co-workers incorporated a full treatment of ETFs into their Born-Oppenheimer

molecular dynamics approach to excitation-energy and electron transfer.19,20

Our contribution in this area was to develop a perturbative (low-nuclear-velocity) treament of

the ETFs in their guise as TAOs, yielding a correction operator for the derivative couplings.11 (This

approach is similar in spirit to that of Helgaker and Jørgensen, who derived perturbative correc-

tions to the Hamiltonian for the calculation of magnetic properties.21) The resulting correction can

be applied to couplings obtained from any theory based on linear combinations of atomic orbitals;

does not affect the energies and orthonormality of the adiabats, such that no complex SCF is re-

quired; takes the form of a commutator between the Hamiltonian and an electronic boost operator,

[H,W ], such that it can be extended trivially to systems in fields and other environments; and can

be shown to eliminate all translational invariance from couplings in CI-based theories, from CIS
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all the way up to MR-CI. The last property stems from the fact that the sole source of translational

invariance in the CI coupling due to atom Q is a term equal and opposite to that given by our

correction,

Corr[Q]
IJ =−Tr

[
SA[Q]DIJ

]
, (10)

where DIJ is the one-particle transition density matrix for the IJ state pair and SA[Q] is an antisym-

metric counterpart to the derivative of the overlap matrix. Consequently, the corrected couplings

dETF
IJ = dCI

IJ +CorrIJ (11)

can also be obtained by the replacement SA[Q] → 0, which we postulate as a general rule for

building ETFs into CI-based theories. And because our correction obviates the construction and

further manipulation of these 3N non-standard matrices, the ETF-corrected couplings will always

be cheaper to compute than their analytical counterparts.

One question raised by our previous work was whether molecules larger than diatomics can

exhibit ETF corrections of qualitative importance — that is, corrections comparable to or larger

than the analytical couplings themselves. In order to address this question, we developed a set of 20

planar molecules, including conjugated hydrocarbons (e.g., trans-butadiene), polycyclic aromatic

hydrocarbons (e.g, azulene), and heterocycles (e.g., thiophene), as well as the “inorganic benzene”

borazine. For each molecule, we optimized geometries (R1 and R2) for the two lowest-lying

singlet excited states (S1 and S2) at the CIS/6-31G** level, then computed the couplings (dCIS
12 )

between them, identifying qualitatively-important corrections by checking whether d12 ≤ Corr12.

(These calculations were performed in a development version of Q-Chem.22) Only two molecules,

ethylene and benzene, ever satisfied this condition — ethylene at the first-excited-state minimum

and benzene at both. We therefore focused our attention on benzene.

As described in Table 1, benzene structures R1 and R2 are nearly identical to each other and to

the optimum ground-state geometry R0; bond lengths differ by no more than a few percent. It is not

surprising, then, that the associated couplings and corrections are very similar, or that analyzing
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them should lead to similar conclusions. For brevity’s sake, we will discuss our findings for the R1

geometry in detail.

Table 1: Bond lengths for benzene optimized at the HF/6-31G** (R0) and CIS/6-31G** (R1,2)
levels of theory. All structures are regular hexagons with C–H bonds bisecting the angle
formed by any three adjacent carbons, as shown in Figure 1.

structure C–C length (Å) C–H length (Å)
R0 1.385910 1.075982
R1 1.413337 1.073835
R2 1.414175 1.074068

Benzene belongs to the D6h symmetry group. The ground state is totally symmetric (A1g),

while the first three singlets have symmetries corresponding to π→ π∗ transitions,23,24 as listed in

Table 2. Because CIS does not provide a balanced description of the ground and excited states,25

we do not consider couplings between them here. And because the lower-lying excited states are

well-separated energetically from the S3 pair, we do not consider those couplings either.

Table 2: Symmetries and excitation energies of the first three CIS singlet states of benzene at
R1. The ground-state Hartree-Fock energy is E =−230.704236 Eh.

state symmetry ECIS−E (eV)
S1 B2u 6.1175
S2 B1u 6.2969
S3 E1u 8.3275

We are left, then, with the problem of characterizing d12 before and after the ETF correction.

Comparison of the raw magnitudes (Table 3) shows that the correction reduces the strength of the

carbon couplings by more than a factor of two; inspection of Figure 1 shows that they also flip sign.

The hydrogen couplings, by contrast, are almost identical, and the total effect of our correction is

a change in internal-conversion lifetime of 39%. Note that both analytical and corrected couplings

satisfy the looser translational sum rule of Eq. (7); benzene exhibits sufficient symmetry in its

molecular-orbital coefficients and CIS transition amplitudes for the electronic matrix element in

Eq. (8) to vanish.

The collective motions most likely to induce a transition between the states can be “read off”

quite straightforwardly from Figure 1: The analytical couplings look like an overall rotation around
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Table 3: Magnitudes of the atomic derivative couplings for benzene at R1, as computed using
analytical theory (CIS) and corrected using built-in electron-translation factors (ETF), and
the associated estimated instantaneous internal-conversion lifetimes τ12 at 300 K.

theory d[C]
12 (a

−1
0 ) d[H]

12 (a−1
0 ) τ12 (fs)

CIS 0.104598 0.027844 549
ETF 0.048727 0.027676 764

CIS ETF

Figure 1: Mass-weighted derivative couplings d̃12 for benzene at R1, computed using analyti-
cal theory (solid blue arrows at left, CIS) and corrected using built-in electron-translation factors
(dashed red arrows at right, ETF). Black and grey points represent carbons and hydrogens, respec-
tively; dashed black lines indicate bond edges.
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the central axis, while their ETF-corrected counterparts involve in-plane counterrotation of the

carbons and hydrogens (“twist”). These motions correspond to the direct product of the S1 and

S2 state symmetries, B2u⊗B1u = A2g — in other words, both sets of couplings are completely

consistent with simple group theory.26,27 Of course, because rotation and twist have the same

symmetry, they can be mixed. We quantified this mixing by evaluating the projection and rejection

of the mass-weighted couplings d̃12 with the mass-weighted and normalized twisting-mode vectors

t̂ obtained from a ground-state frequency calculation,

projection = (d̃12 · t̂)t̂ (12)

rejection = d̃12− (d̃12 · t̂)t̂. (13)

Because the rejection consists entirely of rotation, the rejection:projection ratio corresponds to the

relative mixing. We found that rotation and twist were mixed 3:2 for the analytical couplings,

while the ETF-corrected couplings were formed from a 1:3 mix.

Note that we have depicted d̃12 in Figure 1; in doing so, we have visually encoded the relative

contribution of each atom to ε12 and, thus, its relative importance to the process of internal con-

version. It is clear to see that the analytical couplings suggest that carbon and hydrogen motions

are roughly equally important, while the ETF-corrected couplings indicate that hydrogen motions

are twice as important than those of the carbons. Given the severity of the approximations we have

made in obtaining τ12 — not least that we consider values of the couplings for only one configu-

ration — it is encouraging to see that our estimates for the internal-conversion lifetime are within

roughly an order of magnitude of the experimental lifetime (48±4 fs).28

We found that large corrections to the couplings are not unique to the minimum geometries

R0, R1, and R2: The line in configuration space connecting the two excited-state minima can be

understood as defining a crude reaction coordinate for internal conversion. Adopting a linear inter-

polation with parameter λ = R2−R1, we computed couplings for 50 additional structures in the

interval R1±625λ . Qualitative corrections were observed over the range [R1−450λ ,R1+250λ ],
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which corresponds to a 57% (16%) increase in C–C (C–H) bond lengths. The ETF correction is

clearly significant for a variety of structures — or, at least, for those that maintain D6h symmetry.

The extent to which D6h symmetry is crucial to our observations so far can be established

by computing couplings for plausible finite-temperature geometries of benzene. We used the all-

atom OPLS force field29 and the TINKER molecular dynamics package30 to generate structures

at three choices of temperature: 5000 at liquid-hydrogen temperature (14 K), for which symmetry

will be very weakly broken; 5000 at room temperature (300 K); and 10,000 structures at a very

high temperature (12,000 K), for which symmetry-breaking will be severe. The magnitudes of

the analytical couplings and the associated corrections are plotted with respect to the energy gap

in Figure 2. (Note that these plots are not histograms, and multiple data points can coincide for a

given value of the energy gap.) At liquid-hydrogen temperature, two-thirds of the structures exhibit

corrections larger than the couplings. At room temperature, by contrast, only one of the structures

does, and none do at 12,000 K. The symmetry of the benzene molecule is a key requirement for

qualitative corrections.

Because d12 is inversely proportional to the energy gap ∆E21 = E2−E1, we know that d12 and

Corr12 must converge as the gap widens. We do see this trend in the higher-temperature panels of

Figure 2, but the magnitudes never actually meet. It appears unlikely that any thermally-accessible

region of benzene’s configuration space can be characterized by an energy gap sufficiently large to

force such a convergence, which implies that qualitative corrections will appear exclusively at low

temperature. Note also that certain geometries at higher temperature have very large derivative cou-

plings to begin with, indicating proximity to a conical intersection; because Corr12 is independent

of the energy gap, the ETF correction will be progressively less important for these configurations

(and, thus, have only a very minor effect on the estimated internal-conversion lifetime).

We must conclude, therefore, that qualitative effects of the ETF correction will be observed

primarily in small, highly symmetric systems and at cryogenic temperatures. Even so, built-in

electron-translation factors will always repair any anomalous translational variance in the analyti-

cal derivative couplings obtained from configuration-interaction theories, rendering the associated
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Figure 2: d12 and Corr12 for structures generated from molecular dynamics simulations at 12,000
K (top), 300 K (middle), and 14 K (bottom). Insets in the top and middle panel demonstrate that
Corr12 is functionally independent of the energy gap (as it should be) and also the temperature.
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nonadiabatic dynamics consistent with physical intuition. Further, they save the effort involved in

constructing the 3N non-standard overlap-matrix derivatives SA[Q], which will become ever more

time-consuming as applications turn to truly large systems. These attractive qualities of our method

argue in favor of its general use.
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