
Deep autoencoders forATLASdata
compression

George Dialektakis

Google Summer of Code 2021

Mentors: Alex Gekow, Caterina Doglioni, Baptiste Ravina, Antonio
Boveia

Jun-Aug, 2021

Contents

1 Abstract 2

2 Project Description 3

3 Related Work 4

4 Data & Preprocessing 5

5 Autoencoders 10
5.1 Standard Autoencoder . 10
5.2 Variational Autoencoder . 11
5.3 Sparse Autoencoder . 12

6 Experiments 14
6.1 Setup & Parameter Tuning . 14
6.2 Autoencoders Results . 14

7 Conclusion & Future Work 22

References 22

1

Chapter 1

Abstract

Storage is one of the main limiting factors to the recording of information from proton-proton
collision events at the Large Hadron Collider (LHC), at CERN in Geneva. Hence, the ATLAS
experiment at the LHC uses a so-called trigger system, which selects and transfers interesting
events to the data storage system while filtering out the rest. However, if interesting events
are buried in very large backgrounds and difficult to identify as a signal by the trigger system,
they will also be discarded together with the background. To alleviate this problem, different
compression algorithms are already in use to reduce the size of the data that is recorded.
One of those state-of-the-art algorithms is an autoencoder network that tries to implement
an approximation to the identity, f(x) = x, and given some input data, its goal is to create
a lower-dimensional representation of those data in a latent space using an encoder network.
This way when collisions happen on the ATLAS Collider, we run the encoder on the produced
data and we save only the latent space representation. Then using this latent representation
offline the decoder network can reconstruct the original data.

The goal of this project is to experiment with different types of Autoencoders for data
compression in-depth and optimize their performance in reconstructing the ATLAS event
data. For this reason, three kinds of Autoencoders are proposed, and in specific, the Stan-
dard Autoencoder, the Variational Autoencoder, and the Sparse Autoencoder. The above
Autoencoders and thoroughly tested using different parameters and data normalization tech-
niques, as our ultimate goal is to obtain the best possible reconstructions of the original event
data. The proposed implementations will be a decisive contribution towards future testing
and analysis for the ATLAS experiment at CERN and will assist overcome the obstacle of
needing much more storage space than in the past due to the increase in the size of the
data generated by the continuous proton-proton collision events in CERN’s Large Hadron
Collider.

2

Chapter 2

Project Description

At CERN’s Large Hadron Collider (LHC) [1], proton collisions are performed to study the
fundamental particles and their interactions. To discover and record the outcome of these
collisions, the ATLAS detector [2] is used, which is one of many detectors that have been
developed at the LHC. Each second, there are roughly 109 collisions occurring inside the AT-
LAS detector and storage is one of the main limiting factors to the recording of information
from these events, since it is impossible to save all those events. To keep the most relevant
information, the ATLAS experiment uses trigger systems, which selects and transfers inter-
esting events to the data storage system while filtering out the rest. Storage of these events
is restricted by the amount of information to be stored and a decrease of the event size can
allow for an analysis of the events that was not previously possible.

Data compression is a solution to the above problem by encoding information using fewer
dimensions or a smaller size than the original representation [3]. One of the current state-of-
the-art data compression techniques is deep compression using Autoencoders [4]. Typically,
an Autoencoder (AE) is an Artificial Neural Network (ANN) that tries to implement an
approximation of the identity function. It consists of an encoder that performs data com-
pression by projecting the input high dimensional data to a lower-dimensional latent space,
and a decoder that performs the reversal of the process (decompression) by projecting the
latent space back to the dimensions of the original data, also known as the reconstruction
phase. The latent space representation can then be used as a compressed representation of
the input and can be stored along with the decoder network to reconstruct the data.

In this project, we examine and experiment on different types of Autoencoders as we try
to effectively compress the original data into lower dimensional spaces and learn meaningful
features.

The structure of this proposal is organized as follows. Section 3 presents related work
in the field of HEP data compression using Autoencoders. In section 4, we discuss the data
that we use for this analysis along with the preprocessing steps we follow. In section 5, we
explain the different types of Autoencoders that we use for this project. Section 6 presents
the experimental process and the results we obtain. Finally, the last section of this report
discusses some conclusions that are drawn and possible ideas for the future.

3

Chapter 3

Related Work

Previous work [5] examines the use of deep neural autoencoders to compress data for jets.
Jets are collimated streams of particles, mostly hadrons i.e. bound states of quarks, that can
be reconstructed as a single object by clustering all these particles together. Different autoen-
coder variants are tested with different widths and depths. The work shows promising results
as the AEs manage to successfully compress and decompress simple jet data and preliminary
results indicate that the reconstruction quality is good enough for certain applications where
high precision is not paramount. The work in [6] being the most relevant reference to this
work, further investigates the use of AEs for compression of trigger level analysis (TLA) data,
which come from an on-the-fly, rough analysis of the data, as compared to the offline anal-
ysis performed with carefully reconstructed and calibrated particles, as used by the ATLAS
experiment, while showing that it may however be difficult to generalize between different
datasets. Moreover, the use of different compression methods used sequentially, by so-called
float truncation then followed by autoencoder compression is evaluated.

4

Chapter 4

Data & Preprocessing

The data for this project originate from a file named 00992A80-DF70-E211-9872-0026189437FE.root
(http://opendata.cern.ch/record/6010) from JetHT primary dataset in AOD format
from RunB of 2012 from the Compact Muon Solenoid (CMS) Experiment at CERN [7]. This
dataset is a public dataset from the CMS experiments composed of mostly of jets, each one
described by 28 variables. The distribution of those 28 variables of our data can be seen in
fig. 4.2, 4.3.

Before feeding our data in any machine learning algorithm, we first need to preprocess
them. In specific, we first filter out those jets that have pT > 8 TeV and mass < 800 GeV,
as they are considered outliers. While this is not the full set of preprocessing that the CMS
collaboration performs to obtain a dataset ready for physics analysis, it is sufficient for our
purposes to remove events that could have originated from noise such as those ones with
extremely high energies. Then we remove variables fX, fY, fZ, and mPileupEnergy as they
consist of only zero values and therefore we do not need to compress them, leading to 24
variables in our data. Next, we consider two variations of the data, the 24D and the 19D
data. The 24D are the initial variables after we remove the four above variables. The 19D
data are composed of the same variables as the 24D data except for mChargedEmEnergy,
mChargedMuEnergy, mMuonEnergy, mMuonMultiplicity, and mElectronEnergy, which are
removed as the 99.5% of them in the data have a zero value.

The last step of our preprocessing procedure is normalizing the data. For this task, we
have considered three different techniques so as to evaluate which is the best suited for our
problem. The first one is standard scaling which standardizes features by removing the mean
and scaling to unit variance. The standard score of a sample x is calculated as:

z = (x− u)/s (4.1)

where u is the mean of the training samples, and s is the standard deviation of the training
samples. If the input distribution is Gaussian, Standard Scaling leads to a Normal distribu-
tion (mean=0, std=1) which is more suited for Machine Learning. However, as can be seen
from the plots in fig. 4.2, 4.3, most of the variables are not quite Gaussian, so it may not be
so effective.

5

http://opendata.cern.ch/record/6010

The second normalization technique we considered is MinMax Scaling which transforms
features by scaling each feature to a given range as shown in eq. 4.2. This estimator scales
and translates each feature individually such that it is in the given range on the training set,
in our case between zero and one.

x′ =
x−min(x)

max(x)−min(x)
(4.2)

The last normalization method we used is a combination of MinMax Scaling and a custom
normalization for the 4-momentum of our data (i.e. pT, phi, eta, and mass). In specific, we
pursued the following equations for the 4-momentum variables, while the rest of the variables
are scaled between the ranged of [0, 1]:

pT −→ log10 (pT − 1.3) /1.8

E −→ log10(E + 1)/1.2

η −→ η/5

φ −→ φ/3

(4.3)

In figure 4.1 we observe the correlation between the 28 initial variables in our data.

6

Figure 4.1: Correlation between the 28 variables of the initial raw data.

7

(a) eta (b) mass (c) phi

(d) pt (e) fX (f) fY

(g) fZ (h) mChargedEmEnergy (i) mChargedHadronEnergy

(j) mChargedHadronMulti-
plicity (k) mChargedMuEnergy (l) mChargedMultiplicity

Figure 4.2: Distributions of the 28 initial variables

8

(a) mElectronEnergy (b) mElectronMultiplicity (c) mHFEMEnergy

(d) mHFEMMultiplicity (e) mHFHadronEnergy (f) mJetArea

(g) mMuonEnergy (h) mMuonMultiplicity (i) mNeutralEmEnergy

(j) mNeutralHadronEnergy
(k) mNeutralHadronMulti-
plicity (l) mNeutralMultiplicity

(m) mPhotonEnergy (n) mPhotonMultiplicity (o) mPileupEnergy

Figure 4.3: Distributions of the 28 initial variables
9

Chapter 5

Autoencoders

5.1 Standard Autoencoder

Autoencoders are an unsupervised learning technique in which we leverage neural networks
for the task of representation learning [8]. Specifically, an Autoencoder is a neural network
architecture with a bottleneck layer in the middle of the network which forces a compressed
knowledge representation of the original input. If the input features were each independent of
one another, this compression and subsequent reconstruction would be a very difficult task.
However, in this work we deal with a physics dataset, where we know that structure exists
in the input data (i.e. correlations between input features). This structure can be learned
and consequently leveraged when forcing the input through the network’s bottleneck.

A simple Autoencoder consists of three components: an Encoder network, a Decoder
network, and a bottleneck layer called latent code, as shown in fig. 5.1

Figure 5.1: Standard Autoencoder architecture
[9]

10

First the input passes through the encoder, which is a fully-connected ANN, to produce
the code. The decoder, which has the same ANN structure with the Encoder but mirrored,
then produces the output only using the code. The goal is to get an output identical with the
input. To achieve such functionality, the Autoencoder uses the Mean Squared Error (MSE)
as a loss function which measures the distance between the input data and the predicted
(reconstructed) data. In that way, the network is penalized when producing predictions that
are far from the input data and forces the Autoencoder to learn better and more robust
lower-dimensional representations of the input.

5.2 Variational Autoencoder

Variational Autoencoder (VAE) forms a generative model composed of an encoder and a
decoder trained to minimize the reconstruction error between the output of the decoder and
the input of the encoder. However, it differs from standard autoencoders, as it performs
a regularization technique in the latent encoding. Specifically, every input of the VAE is
encoded as a distribution over the latent space rather than a single point. Next, a point from
the latent space is sampled from that distribution, which is then fed to the decoder to compute
the reconstruction error and backpropagate it through the network. The architecture of the
VAE is illustrated in Figure 5.2.

Figure 5.2: Variational Autoencoder architecture
[10]

The encoded distributions are chosen to be normal, described by a vector of means µ and
a vector of standard deviations σ. The vector of means controls the center around which an
input is encoded, and the standard deviation controls the space, how far from the mean the
encoding can be. VAE ideally wants to produce encodings that are as close as possible to each
other while still remaining separated. In this way, it allows smooth interference and enables

11

the generation of new samples. To achieve the regularization functionality, VAEs incorporate
the Kullback–Leibler [11] divergence into their loss function. The KL divergence is applied
between the distribution produced by the encoder and a standard Gaussian, in order to force
the encoder to create encodings that follow a normal distribution. The complete cost function
of VAEs is shown below:

Ex∼pd(x)[−log p(x)] < Ex[Eq(z|x)[−log(p(x|z)]] + Ex[KL(q(z|x)||p(z))]

= Ex[Eq(z|x)[−log(p(x|z)]]− Ex[H(q(z|x))] + Eq(z)[−log p(z)]

= Ex[Eq(z|x)[−log(p(x|z)]]− Ex[
∑
i

logσi(x)] + Eq(z)[−log p(z)] + const.

= Reconstruction− Entropy + CrossEntropy(q(z), p(z))

(5.1)

where the aggregated posterior q(z) is sampled from the output of the encoder q(z|x), and
p(z) is usually a standard Gaussian distribution.

5.3 Sparse Autoencoder

Sparse Autoencoder is a special type of Autoencoders which is able to maintain only the
variations in the data required to reconstruct the input without holding on to redundancies
within the input. This way the Sparse Autoencoder (SAE) can be sensitive enough to the
inputs to accurately build a reconstruction, and at the same time insensitive enough to the
inputs so that it doesn’t simply memorize or overfit the training data [12]. To achieve such
functionality, SAE uses a loss function composed of two terms as shown in eq. 5.2

L(x, x̂) + regularizer (5.2)

The first term is the reconstruction loss L(x,x̂) which encourages the model to be sensitive
to the inputs, while the second term discourages memorization/overfitting (i.e. an added
regularizer). The loss function of a Sparse Autoencoder is constructed so that it penalizes
activations within a layer. For any given observation, the network is encouraged to learn an
encoding and decoding which only relies on activating a small number of neurons. It’s worth
noting that this is a different approach towards regularization, as we normally regularize
the weights of a network, not the activations. One result of this fact is that we allow our
network to sensitize individual hidden layer nodes toward specific attributes of the input
data by selectively activating regions of the network depending on the input data. As a
result, we’ve limited the autoencoder’s capacity to memorize the input data without limiting
the its capability to extract features from the data. This allows us to consider the latent
state representation and regularization of the network separately, such that we can choose
a latent state representation (i.e. encoding dimensionality) in accordance with what makes
sense given the context of the data while imposing regularization by the sparsity constraint.

There are two main ways by which we can impose this sparsity constraint; both involve
measuring the hidden layer activations for each training batch and adding some term (the
regularizer in eq. 5.2) to the loss function in order to penalize excessive activations. These
terms are:

12

• L1 Regularization: We can add a term to our loss function that penalizes the absolute
value of the vector of activations a in layer h for observation i, scaled by a tuning
parameter λ.

L(x, x̂) + λ
∑
i

∣∣∣a(h)i

∣∣∣ (5.3)

• KL-Divergence: In essence, KL-divergence is a measure of the difference between
two probability distributions. We can define a sparsity parameter ρ which denotes the
average activation of a neuron over a collection of samples. This expectation can be

calculated as ρ̂j = 1
m

∑
i

[
a
(h)
i (x)

]
where the subscript j denotes the specific neuron in

layer h, summing the activations for m training observations denoted individually as
x. In essence, by constraining the average activation of a neuron over a collection of
samples we’re encouraging neurons to only fire for a subset of the observations. We can
describe ρ as a Bernoulli random variable distribution such that we can leverage the
KL divergence to compare the ideal distribution ρ to the observed distributions over
all hidden layer nodes ρ̂.

L(x, x̂) +
∑
j

KL (ρ‖ρ̂j) (5.4)

13

Chapter 6

Experiments

6.1 Setup & Parameter Tuning

For our experimental analysis, we constructed all our Autoencoders to have the same archi-
tecture in terms of layers and neurons per layer. In specific all networks share the following
architecture:

• input-200-100-50-15-50-100-200-output

where the output dimension is the same as the input dimension and it is either 19D or 24D
depending on the variables we want to compress. All layers in the Autoencoders are fully
connected and are followed by a LeakyRelu activation function. We used the Adam optimizer
with a learning rate of 0.001 and trained our networks for 50 epochs. The data are composed
of 716445 samples and they were split with a 15% ratio (85% for training and 15% for testing)
and a batch size of 512 was used.

6.2 Autoencoders Results

6.2.1 Data Normalization Comparison

In the first series of experiments we wanted to test how the different data normalization
methods affects the performance of our Autoencoders in compressing the data and producing
valuable reconstructions of the original input data. For this reason, we use the three different
techniques as described in Chapter 4, to normalize our data both the 19D and 24D and then
feed those normalized data into the Standard Autoencoder. In figure 6.1 we observe the
Mean Squared Error loss (MSE) of the Standard Autoencoder on the test data. It is shown
that Standard AE performs the worst (as it has the greatest MSE loss) when the normalized
data with the Standard Scaler is given as input, while it performs the best in the case of the
MinMax Scaling of the data in the range [0, 1]. This performance behaviour is consistent
in both cases, when the data consists of 19 variables and 24 variables. Apart from a quite
low MSE loss, MinMax scaled data provide the Standard AE a much smoother learning

14

process as illustrated in fig. 6.2. It is also proved that applying a custom normalization on
4-momentum variables did not help the Autoencoder.

A more detailed performance comparison of the normalization methods considered is
present in table 6.1, where apart from MSE loss, two more metrics are used to evaluate the
performance of the Standard Autoencoder, the Root Mean Squared Error (RMSE) and the
Residuals which is the difference between the input and the output of the network. As scaling
all the variables in our data in the range [0, 1] shows to help the Standard AE achieve the
minimum loss, we decide this method for the rest of the Autoencoders we consider in this
work so as to unlock their the full potential.

Figure 6.1: Data Normalization Technique Comparison.

15

(a) Standard Scaler (b) MinMax Scaler

Figure 6.2: Learning curves of Standard AE using Standard Scaled vs MinMax Scaled data.

Dimension Technique MSE RMSE Residuals

19
MinMax ALL 19D 0.000008 0.002677 0.001249

MinMax & Custom Norm 19D 0.000019 0.003854 0.002184
Standard Scaler 19D 0.000162 0.012496 0.007408

24
MinMax ALL 24D 0.000007 0.002460 0.001040

MinMax & Custom Norm 24D 0.000023 0.004306 0.002091
Standard Scaler 24D 0.000870 0.028226 0.011937

Table 6.1: Data Normalization Technique Comparison.

6.2.2 Sparse Autoencoder Results

In figure 6.3 we present the MSE loss comparison between the two variants of the Sparse
Autoencoder, the one that uses KL divergence (SAE KL) and the other that uses the L1
regularization (SAE L1) for the 19D and 24D data, as described in 5.3. The SAE with
L1 regularization performs much better than the one that utilizes KL divergence in both
data dimensions we considered. In specific, the MSE loss of the SAE with L1 is roughly 35
times smaller than that of the the SAE with KL divergence. A summary of the performance
results for the two Sparse Autoencoders are presented in Table 6.2, which confirms the better
performance of the SAE with L1 regularization.

16

Figure 6.3: MSE loss comparison for Sparse Autoencoder

Dimension Model MSE RMSE Residuals

19
SAE KL 19D 0.000104 0.009332 0.004724
SAE L1 19D 0.000003 0.001630 0.000933

24
SAE KL 24D 0.000088 0.008493 0.003868
SAE L1 24D 0.000004 0.001778 0.001247

Table 6.2: Sparse Autoencoder using KL vs L1 regularization loss for 19D and 24D data.
Bold shows the best results.

6.2.3 Variational Autoencoder Results

In figure 6.4 we illustrate the performance results of the Variational Autoencoder in terms of
MSE, RMSE loss and Residuals. VAE shows to perform a little better when it is given the 24D
data. However, the loss of the VAE is quite high compared to the previous results produced
by the Standard AE and the Sparse AE, showing a weakness of the VAE to learn meaningful
patterns of the input variables and effectively compress them in a lower dimensional space.
This results in poor reconstructions as depicted in fig. 6.5 (for the sake of brevity we present
only the plots of the 4-momentum, however the same performance behaviour stands for the
rest of the variables.)

17

Figure 6.4: Performance of Variational Autoencoder for 19D and 24D data.

(a) eta (b) mass

(c) phi (d) pT

Figure 6.5: VAE reconstructions of the 4-momentum variables.

18

6.2.4 Autoencoders Performance Comparison

In this section we summarize the overall performance results of the three different Autoen-
coder families we implemented and tested throughout this project. In Table 6.3 the MSE,
RMSE, and Residuals are presented for the three different Autoencoders, the Standard Au-
toencoder (AE), the Sparse Autoencoder (SAE), and the Variational Autoencoder (VAE) for
the 19D and 24D data. For the SAE we choose the network that utilizes the L1 regularization
as it proved to perform much better than the one with the KL divergence as discussed in
6.2.2. It is apparent that VAE shows quite poor performance compared to the other two AEs.
A reason for that could be the KL divergence term in its loss function which also showed to
degrade the performance in the case of the SAE.

Dimension Model MSE RMSE Residuals

19
SAE 19D 0.000003 0.001630 0.000933

AE 19D 0.000008 0.002677 0.001249
VAE 19D 0.015353 0.089885 0.070460

24
SAE 24D 0.000004 0.001778 0.001247

AE 24D 0.000007 0.002460 0.001040
VAE 24D 0.010223 0.073336 0.056343

Table 6.3: Performance comparison between all different Autoencoders considered. Best
result in bold.

Since the AE and the SAE have close performance results, we compare their MSE loss in
the bar plot in fig. 6.6. We observe that the SAE leads to lower MSE loss in both 19D and
24D data. Specifically, SAE’s loss is almost the half of the AE’s loss, proving that adding
the sparsity constraint in the Autoencoder helps the network to train better and learn to
compress the input data more effectively. Finally, in figures 6.7, 6.8 we present a comparison
between the reconstructions of the the Sparse and the Standard AE.

Figure 6.6: Sparse vs Standard Autoencoder MSE loss.

19

(a) AE eta (b) SAE eta

(c) AE mass (d) SAE mass

(e) AE phi (f) SAE phi

(g) AE pT (h) SAE pT

Figure 6.7: Comparison of the the AE and SAE reconstructions on the 4-momentum.

20

(a) AE mNeutralHadronEnergy (b) SAE mNeutralHadronEnergy

(c) AE mMuonMultiplicity (d) SAE mMuonMultiplicity

(e) AE mPhotonMultiplicity (f) SAE mPhotonMultiplicity

(g) AE mHFEMEnergy (h) SAE mHFEMEnergy

Figure 6.8: Comparison of the the AE and SAE reconstructions on other variables.

21

Chapter 7

Conclusion & Future Work

Autoencoders have been designed for, and trained to, encode and decode data containing
hadronic jets reconstructed at the trigger level from the ATLAS detector at CERN. Previous
work has experimented on the basic form of an Autoencoder, and presented great perfor-
mance in reconstructing the input data [5]. In this work, we initially investigated on the
Standard Autoencoder and different data normalizations techniques that could improve its
performance. As discussed in 6.1, scaling all the variables of the data to the same range shows
to aid the Autoencoder produce better reconstructions. Subsequently, we considered and ex-
perimented on two more advanced variants of Autoencoders. These were the Variational and
the Sparse Autoencoder. Moreover, two different regularization terms in the loss function of
the Sparse AE were tested, the KL divergence and the L1 regularization. In summary, the
Sparse AE with the L1 regularization outperformed all other networks even the Sparse AE
with KL divergence, while the Variational AE presented by far the worst performance.

Future work concerns further testing of the Variational Autoencoder and in specific deeper
investigation on the reason behind the KL divergence term in the loss function degrading the
performance of the Sparse AE and the Variational AE. Moreover, it would be very useful to
consider vizualizing on what parts of the network the Sparse AE has activated and deacti-
vated during training, so as to further understand what input features are most important
for the model. An interesting idea for the future would be to implement and experiment on
a new and advanced type of AEs, the Adversarial Autoencoder [13], to investigate the ability
of Adversarial learning in compressing and reconstructing trigger level data. To regularize
the latent code, the Adversarial Autoencoder replaces VAE’s KL-divergence with adversar-
ial loss, where an additional discriminator component is added and the encoder will act as
the generator. Finally, an important task for the ATLAS experiment at CERN is to detect
anamolies in the physics data. A recent work in [14] investigates Variational Autoencoders
for Anomaly detection on data produced at the Large Hadron Collider. In the future, we
would like to experiment on the Sparse Autoencoder, as discussed in this work, and the
Adversarial Autoencoder on task of anomaly detection, and compare our results with those
in [14].
Implementation code of this project: https://github.com/Autoencoders-compression-anomaly/
Deep-Autoencoders-Data-Compression-GSoC-2021.git

22

https://github.com/Autoencoders-compression-anomaly/Deep-Autoencoders-Data-Compression-GSoC-2021.git
https://github.com/Autoencoders-compression-anomaly/Deep-Autoencoders-Data-Compression-GSoC-2021.git

Bibliography

[1] CERN. The large hadron collider. https://home.cern/science/accelerators/

large-hadron-collider.

[2] CERN. The atlas detector. https://home.cern/science/experiments/atlas.

[3] Wikipedia. Data compression. https://en.wikipedia.org/wiki/Data_compression.

[4] Wang, Y., Yao, H. & Zhao, S. Auto-encoder based dimensionality reduction. Neuro-
computing 184, 232–242 (2016).

[5] Wulff, E. Deep autoencoders for compression in high energy physics (2020). Student
Paper.

[6] Wallin, E. Tests of autoencoder compression of trigger jets in the atlas experiment
(2020). Student Paper.

[7] Dertat, A. Cms collaboration (2017). jetht primary dataset in aod format from run of
2012 (/jetht/run2012b-22jan2013-v1/aod). cern open data portal.

[8] Kramer, M. A. Nonlinear principal component analysis using autoassociative neural
networks. AIChE journal 37, 233–243 (1991).

[9] Dertat, A. Applied deep learning - part 3: Au-
toencoders. URL https://towardsdatascience.com/

applied-deep-learning-part-3-autoencoders-1c083af4d798.

[10] Weng, L. From autoencoder to beta-vae. URL https://lilianweng.github.io/

lil-log/2018/08/12/from-autoencoder-to-beta-vae.html.

[11] Diederik, P. K. & Welling, M. Auto-encoding variational bayes. In Proceedings of the
International Conference on Learning Representations (ICLR), vol. 1 (2014).

[12] Ng, A. et al. Sparse autoencoder. CS294A Lecture notes 72, 1–19 (2011).

[13] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I. & Frey, B. Adversarial autoencoders.
arXiv preprint arXiv:1511.05644 (2015).

23

https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/experiments/atlas
https://en.wikipedia.org/wiki/Data_compression
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

[14] Cerri, O., Nguyen, T. Q., Pierini, M., Spiropulu, M. & Vlimant, J.-R. Variational
autoencoders for new physics mining at the large hadron collider. Journal of High
Energy Physics 2019, 1–29 (2019).

24

	Abstract
	Project Description
	Related Work
	Data & Preprocessing
	Autoencoders
	Standard Autoencoder
	Variational Autoencoder
	Sparse Autoencoder

	Experiments
	Setup & Parameter Tuning
	Autoencoders Results

	Conclusion & Future Work
	References

