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Abstract; In this paper, we are showing study of biorthogonal
polynomials associated with generalization of Laguere
polynomials of Srivastava and Singhal [14]. It happens to
generalized Konhauser. here we are trying to obtain the
generating functions, recurrence relations, biorthogonality
relations, integral representations and also bilinear and bilateral
generating relations for the new class of biorthogonal system.
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l. INTRODUCTION

The concept of two polynomials explain by Didon [1]
and Deruyts [2] considered this concept in some detail. For
example, given the set {Pn(x)} the set {Qn(x)} is uniquely
determined and conversely over the different interval.
considered this concept in some detail, and claimed that for
these two polynomials. the set of polynomialsin x, { Pn (X)}
and {Qn(X)}, deg. Qn (X)=n, (N=0,1,2,.....) are said to be
biorthogonal with respect to distribution dot (x) on interval
[ab] if:

j P (

where o (X) isadistribution function on interval (finite or
infinite) with infinitely many points of increase and such

(x)da(x)=0,m=n =0,m=n

b
that :J. x"dau(x) < oo, for all n=0, 1,2,....

Not much attention was paid to the study of biorthogonal
system of polynomials, till Spencer and Fano [3]
encountered a pair of biorthogonal polynomials, while
dealing with a problem related to the study of penetration
and diffusion of X-Rays, and subsequently studies were
made by Preiser [4] in ordinary differential equation of the
third order and it aso recommend for higer order form
.Konhauser [5] , Carlitz [6] , Prabhakar and Kashyap [7] and
Prabhakar & Tomar [9] describe some results on
biorthognal function suggested by the Laguerre
polynomials. Rahman [8] aso expressed some explicit
function of unearization coefficient of the product of Jacobi
polynomias,
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Madhekar and Thakare [10] has work on Biorthogonal
polynomials suggested by the Jacobi polynomials and Al-
Salam and Verma [11] also described Analogues of some
biorthogonal function. Both Didon and Deruyts paid special
attention to the situation in which P, (X) isapolynomial of
degree nin x* (k fixed)

In this paper, we shal study the generalization of
biorthogonal Polynomials suggested by Konhauser
polynomials over the interval (0, o) with respect to the
distribution function W(X)=x“ exp(— prr)dx and also
Obtain associated generating rel ations for
Y 9(x,r,p,k)and Z\¢ (x,r,p,k). We recal the

polynomials Gﬁf")(x,r,p,k), which are introduced by

Srivastava and Singhal [14] and in attempt to provide an
elegant unification of various known generalized of
classical Hermite and Laguerre polynomials. These
polynomials are defined by the generalized Rodrigues’s
formula

G (x,r,p,k)=x p(pxr(rlﬂj(xk”Dx)n {x“exp(—pxr)},

where D, =d/dX and parameters o,K,p and r are
unrestricted in general. The explicit expansion is given as

oW ] o

It is worth mentioning here that Srivastava and Singhal [14],
Chandel [1] and Srivastava, P.N. [16] also consider the
polynomials defined

“(x,k)=k "G (x,1LK) %)

Thus, we observe that (2) provides a generalization of one
member of the pair of Konhauser biorthogonal polynomials.
This leads usto consider pair biorthogonal polynomials, one
of which is connected with (1)

. PRELIMINARIES

A. Generalized konhauser polynomials

In this section, we included the different kind of relation
which are pair of biorthogonal sets of polynomials see
[12,13,15].

Y@(x,r,p,k) and 2 (x,r,p,k)., where Z*) (x,r,p,k) is a
polynomia of degree n in Xk, (k is fixed integer) while
Y *)(x,r,p,k) is a polynomial of degree n in, X", (ris

fixed integer

km/r, km

200 (1 ok a+1+kn/r L _PXE (@
v banpk) = == Z o) Tts o]
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Generalization of Konhauser Polynomials

Y™ (x,r,p,k) =

g 55 i), @

where (o +1)/r > 0 and k/r isa positive integer.

B. First biorthogonal relation

The polynomials sets

Yﬁ“)(x,r,p,k) and Z&“)(X,r,p,k) are biorthogonal
with respect to the distribution function w (x) = X(O‘) exp
(-px") over theinterval (0, o0)

The biorthogonal relation is given by (4)
'Tx“exp(px) (%, r,p;k) 2% (z,r,pik) dx = "
0

where dM, N is Kronecker delta and k/r is a positive
integer. We shall prove thisrelation later on.

2\ (x, 1, p; k)

{((x +1+kn)/r}

(a+Lrkn)/T

om,n

C. Generating function for and

Y (%, 1, i K)
use (2), we have

n km/r, km
n (X r,p ) pkn/r mz:o {(0( +1+ km)/ r}
n km/r, km
7(@) " _ (f+1/r)a, - P X
n (erlp! ) pkn/rn| oo ( n)m miT {(a+l+ km)/l’}
(fa+gir)q, & px )" ©)
S (o)

79 (x,r,p:k) 1@+4ir) a, -
o m!qqrn [] [{le+Dir+s-1iq]
sl

Lilrjgn .
- w F Fn (o0 o+ 141 (-0 oo g
thus, Zf{‘) (x,r,p;k) isin the hypergeometric form.

where k/r=q, a positive integer.
Now,

. t ) 5 [ pqukm
b G-t kbl

(il

I i

n=0. m-0 (n+mypemm H [{((e+2)/r)+s-1/0]
B - (_ t)n - (_1)mkatm
- nz;l pkn/r Z

=e(-t/p)”" F, |..... ;(a+1)/rq........{(x+1+r(q—l)}/rq,(—x/q)'qt]

which isthe generating function for Z7 (X, r,p; q).
use (1) and (2), we observe that

Y (x,r,p k) =k "GE (x,r,pik) 0
Henceyn“ (X,r'p; k):)((”mlif:lp(r»(r) (Xk+1D)n [Xa+1exp(_ pxr)]

Now using the analogues result, we get a generating
functionfor Y (x,r,p; k) as.

> Ve (rpk) O =(1-1) " e px i-(1-1) ™|
n=0
(8
D. Second biorthogonal relation
We have to prove relation (4)
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Consider,,,

=iiTX“@Kp (e (e,r, i)z (x r,p;k){
0

n=0 m=0

({1+a1}/r)m] s
o) 5 v HZZ"“” L{m}/r) } m}’x

[ ) ({1r)/K} exp[ X { 1t }]] exp(—t/p)k/r

= oF, [ ..... (a+2)/rq,....{a+1+r(q—2)}/ rg;(x/q)" u]
[Using (4) and (5)]

A g (Curol S (u" ™ oo Lot -t
bt/ eptunt s, o e enbee oy

after some simplification, we get; (9)

fx exp(px){ZY (x,r,pk)t MZZ xrpk){({ +11}/r)w}uﬂdxz
e e ) S i sl

= r.p{(m)/r} ~ (9)

™t" on both sides of (9) we

| oo
]'x“exp
0

Comparing the coefficient of U

see that the coefficient of U™t" when n # m, then the right
hand member of (9) is zero and when n=m then the right
hand member is non zero.

1. INTEGRAL REPRESENTATIONS

A. integral representation for v (x,r, p, k)
Osdler [5] has given afractiond derivative formula as:

o f(2) - iy | 1) (=t 1

h(z) \ g(z)-g(w)
where DM ff(2)} denotes the fractional derivation of

order o Wlth respect to g (2).
Foro. = m and

D), {f(2)}=D" {f (2)o(2) (Q(ZZ);V(W)H vme [012.........)
(10)

For the relatively more familiar derivative of order m now
from (10), we have

Y(x,r,p.k)=

h(z) =z, we have

—l+nk-a

" e o), e o)

kx;l‘l - exp ( px’) (Dx)' [x‘“*” exp(— px’)ﬁx)k(:ykjm “ (11)

y

from (11), we get integral representation as:

Kk ~orkn J- {@(p {p(ur fx')}u“*"" } du (12
2mi [lu* =)™
taking u=y (1+t) and after smple manipulation, we get
Ye(x,rpk) = o DF {(1”)“” ep - px (Lt tf _1}tml}

2ni (o -2y 3

Yo (o pk) =

(13)
from (15), we easily write the integral representation for
Yi(x,r,p k) &
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Yy Oorpk) == | @+ )" exp { px"(1+1t) —1} at.

(@+o< -2y
(14)

which C is a closed contour enclosing t=0, but excluding
t=1 and the roots of the equation (t+1)k -1=0

27'c|

B. Integral representation for z¢ (x,r,p;k)
We consider,
]O' exp (— psx")tPz* (x,r,p; k) dt
o
/ n
'3

F{(a +1+ kn)/ n
= knefd/ T 1 P z
p r.nl =
(15)
T {kn+a+)/r}, -n,B+Y/ 1. B+ 14 1(q-2)}/ rg
T st 9 (g4 0) g (+ 14 1)/ g fu 14 1(g - 1)/ rq)
particular for o =3, (15) reduces to the following form :

kel k_ k n
j e (- psx’) 2 (x,r,p;k)dt:F{(a+1+kn)/r}(s 4
: P(kn+a+1)/ rnl Sl+u+kn
(16)

now applying inverse Laplace transform techniques to
(16),we get the integral representation for () (x,r,p; k)

( Ur L k) o J p( )[(t/p)k“ ]” dt

t{(1+a+kn}/ r}

km/r ki ©
pmer t[5+km

" mi{o+1+ km)/r}-[ ep [-psx o

T{(km+pB+1)/r}
™ mT {(o+1+km)/r

_T{a+1+kn)ir} kn

kn/r

} (x/s)¢

: (X/S)Tn

r n| Sl+a+kn

L+a-r

miu Z(
T{L+o+kn)/r} "
(17)
puttingu=x"and t = ps’in (17), we get:
nl p(1+o¢7r+kn)/rxocfr+1 Z( (X o k) J_ exp (pSX )[S _1] ds

2mi

Tlararkyr T

(18)

where ¢ is contour enclosing s=0 when o,r,k and n are
integers.

p(1+ufr+kn)lv N +1

We aso have differential formulafor z (x,r, p; k) @
oo

) forpk)= T pers {mp(los%)[sk —1]"}
(29) :

Mro-rrkn) ° oot
In particular, the above result reduces to the corresponding
result Spencer and Feno (3) and Konhauser (5).

V. RECURRENCE RELATIONS
The polynomids Y/!* (x,r,p;k) and Z© (x,r,p;k)

satisfy the recurrence relation

(x,r,p k)
Y x,r,prk) = (- prx )Y( ' (x.1,pik)

A. Therecurrencerelation for Y

(D, —prx*) Y}
(20)

(p’lr*l D 71)Y(“) x,r,p; k) ==Y (x,r,p; k)
(21)(p’lr XD, 1) Y (x,r,pk)= (=" Y™ (x,r,p;k)
(22)( prix*'D +1) Y@ (x,r,p;k) = Y (x,r,p;k)

(23)
where k/r=q is a positive integer.
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[( pr'x*'D, +1f l] (x,rpk)=Y ¥ (xr,pk) (24)
Yy k)= Yo (k) = Y5 pik)
xDX+a+kn—prx)Yr§“)(xrpk) k(n+1) Y (x,r,pik)
XD, +o+1-k— prx’)Yr(jx (x,r, k) =k(n+2)Y < (x,r,pk)  (27)
(e+1- k) Y mk) = o Y ok +kn+ Y k) (28)

k(n+2) Y (x,r,mk)= (@ kn+2) Y (xor k) -poc Y% (x,r,pk) (29)

(25
(26)

e —

B.  The recurrence relation for @ (x,r, p;k)
D,Z (x,r,p;k) = — kx* 1z (x,r,p; k) (29)
6D, )" 26 (k)= (K2 Gerpik) (30

kp ™ T {(L+ o+ kn)/r} (31)
D, -k Z k k
b0, ko) 20 oK) = -] 20 0P
((XDX +a—rj+1)z (x,r,p;k)= @+ o —r+kn) Z&" (x,r,p;k)(32)
(Lt a-r+kn)Z (x,r,pk) - (L4 a-r+kn) 20 (x,r,p; k):wz‘“ (x,r,p;k)(33)

e o Kn-L)ir] ™

[, a] e 2 i (ne e z Zis(erpk) g4y
where g=k/r.

V. MAINRESULTS

A. proofsfrom (20) to (31)
Rewrite equation (15) in the following form:

crpke | L e Epx(i+t) ]
p;k= Zm.[ { ((1+t)k—l)m1 ]

differentiating both sides with respect to x, we get :
-1 a+r+kn . ;
D, -pox)v; [X,r,p;k G P ) | Fl”) el pr(i+1)|

2 ey -
Using (26), we get

(D, =V (.1, pik) = (- prx Y0 (1, prk)

which proves (19)

Now multiplying (19) both sides by p*r~*x*" and after
simplification we get result (20)

result (21) and (22) are obvious iterations of (20).

proof of (20)

Subtracting (23) both sides by Y (*) (x,r,p;k)
and after some simplification we get:

[(—p‘lr‘lxl"Dx+1)q—1] Y (x,r,pk) =Y

dt

exp (— px’)

dt

o

(xrmk)

proof of (21)

From equation (22) and (23), we get :
Y (x, 1, k)= Y@ (x,r,prk )= Y @) (x,r,prk)
proof of (22)
Rewrite equation (15), in the following form :
—a-1-kn o ok du
exp (- px' )y xrpk=o% k I (x) a<er( Punl(u)
mi ((u+x) —1)
differentiating both sides with respect to ‘x’ and after
simplification we get :
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(xDx +a+kn—prx’)Yr§“) (x,r,pk)=k(n+Y® (x,r,p;k)
proof of (23)
Rewrite equation (15), in the following form :

. k exp(—pu” )(u/x)**"
exp (—px7) ¢ [x rpk = l { (Eu/x)k)—l)m D du
differentiating both sides with respect to x and rearranging
terms, we get
(xD +o+1-k—prx )
which proves (26).
proof of (24)
Eliminating the term xp_ v () (x,r,p; k) between (21)
and (23) We get:
(a+1-K)Y (1, k)~ prc Yo (x,r, ik ) = k(n+1¥ <9 (x,r,pik)
on transposmon we get :
(a+2-K)Y ) (x,r, prk) = prx" Y (x,r, pik )=k (n+2)Y, )
proof of (25)
Eliminating theterm xD, Y *) (x,r,p; k) between (21)
and (26), Weget'
(+kn+1) Y (o pk) -prx Y

e proof of (26)
Now putting u=sx in relation (19), we get:
n! p(l+a—r+kn)/r Z(nu) L J‘ exp (p;jr)_[u: 7Xk]ﬂ i
T{1+a+kn)/r} 2ni | y (Brocrknlle

differentiating both the sides with respect to x and after
simplification we get:
nl p(1+a r+kn)/r

T{L+a+kn)/r|

after some simplification we get
D, Zi? (x,r.pik) = —kx**Z{¥ (x, 1, pik)

V(x,r k) =k(n+1)Y“ 9 (x,r,p;k)

(x,r,p;k)

o
n+l

(1, prk) =k (n+1) Y14

k)

(x,1,pk)=

el o X"

u(2+u r+k(n-2))/r

[Z xrpk] mkxklj

proof of (27)

From equation (31), we have

XD, 2 (x,r,p;k) = -kz“:¥) (x,r,p; k)

which on integration ‘n’ times further gives the recurrence
relation:

(leka)m Z&l) (x,r,p; k) :(_ k)mz(a+km (X LD k)
e proof of (28)

Now putting u=sx in relation (18), we get :

MX"‘"Z(“ (1) = j eq)(pu)[(u/kx/)k—l]du

r {(1+(X+kn)/ I'} o ! u(2+u r+kn)/t

differentiating both the sides with respect to x and after
simplification we get

| p(Lrarekn)ie ot u/ k_lm
e
or

) ~kp*T {1+ o+ kn)ir}
(XDX —kﬂ)Zp (X,I’,p;k) T ?(]_+ a{(.|_ k(n 1) ) r)i 7! ( r P,k)

proof of (29)
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Differentiating (19), both the sides with respect to x we get :

(D, +a-r+1) 2% (x,1,pik) = M “)(x,r,p;k) OF

(b0, +0-r)+1) 2 (x 1, pik)= 1+ 0= r-+kn) 27 (x,1, k)
e proof of (30)

Eliminating theterm xD, z*) (x,r, p; k) from (30) and

(32), we obtain the following recurrence relation:

kp f{(1+a+kﬂ)/ } Z(a]( pk)

(ra-r+ka) 2 furpK)-{Lea-r+n) 20 (r k= L+ otkn-g)ir}

e proofsof (31)
Rewrite the equation (10) in the following form :

n p(1+a—r+kn)/rxa—r+1 r exp (pSrXr) pqSk [Sk _1]" ds
(erpk)=— j

S(2+(x—r+kn)

7

T {1+o+kn)/r} &
where k/r=q,
p ¢ explpsx’ st -1 m° ¢ explps'x’)js* -
or = P I (s(ziilkn)]ds 2mi) S(£+(a k%?+[k(n+1)):| ds

differentiating both sides with respect to x, q times, we get :
[(p—lr—lxl rD 1] Lo~ rz a] X r p«k) (n'l'l) Lro-1-K(o- k) M (X P k)

VI. SPECIAL CASES

The following known special cases of (11) and (12) are
spencer and fano polynomials
Taking, k=2, r=1, p=1; we get:
Z8(x) =7, (x112) and 71 (x112)=
konhauser polynomials
Taking, r= 1 p 1; we get:

7O (x,k) =7 (x21,k) and Z9)(x,k)= 2 (x,11k)
Iaguerre polynomlals
Taking, k=1, r 1, p=1, we get:
L& () =7 (x112) = Z&) (x112)
bessel polynomials

Other than above (11) and (12) also give rise to
biorthogonal polynomials sets associated with Bessel
polynomials given below for k=-1 and r = -1, we get :

7! (-1 -2)=[-0/n] (B/n)" v (x,c+ B —2n,p)
where yff) (X,OL,B) is generalized Bessel polynomials

defined by

1ok -LB-1)=B X2 e (B/n) D [x > exp (~/n)]
clearly the above polynomials satisfy the biorthogonal
property,

o

7 (x)

!x e [x 1,060 +B-2n8)q,, (x,0+p,p) cx = s

mn

BILINEAR AND BILATERAL GENERATING
RELATIONS

In the section, we have derived some generating function for
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Y (x,r,p,k)and 2 (x,r,p,Kk).

Now in this section we shall adopt group theoretic method
to obtain a new class of bilinear and bilateral generating
relations associated with

Y (x,r,p,k)and 2 (x,r,p,k) dl the result
derived here appear in the form of some theorem. We prove
the following theorems with application.

Theorem-1

If there exists a generating relation of the form

G(x,w)= i a niy® (x,r,p,k)w"

n=0 (35)

exp {px’ {1— (1- t)?r H -y e [X(l_ ™ nlt- t)] (36)

Proof: Consider the linear partial differential operator Q2 as
follows

Q=xy§+ky2§+(a+l—rpx“)y
Such that
Q= [Y@(x,r,p.k)n y" =k(n+1)y"™ Y

n+l
(37)
Such that Hence, clearly Q form araising Lie-operator for
the class of function ) (x,r,p;k). The multiplier

representation of this operator is given by
)—(a+1)/k

e (W (x )= explpx - (1-wy) ] |-
" £ @ kowy) <, y(@- kwy) ]

Let us now consider the following generating relation;

G(x,w)= i a, nly' (x,r,p;k) w"

(x,r,p.k))

n=0 (38)
replacing w by wyz in (37), we get;
G (x,wyz) = Z a,ntyy (x,r.prk) (wyz)"
(39)

operating both side of (38) by exp (w2 ), we get;
(x, wyz)=ep (we2), 3" a,nt 712 (x,r,prkfwyz)’

n=0

exp (WQ) G

(40)
now, using (37) the left hand member of (39) becomes.

exp [pxr {1— (1_ kvvy)”" }] (1_ kWy)—(ot+1)/k

G [X (1_ kxy)illk ) y(l_ kWy)il] (41)
also using (34) the right hand member of (38) becomes
> i a,w™mz" (@ m)Q™ [y (x,r,p,k)y"n!]

n=0 m=0

= i i k™a, L/ m)n+m)w™mz"y™m [yf,“)(x,r,p, k)]
“a
:ZO Z a, ., (/) ni(kwy )" [ (x,r.p, k)]

equating (41) and (42) and then putting kwy=t, zt/k=v,
we get the following relation;

explpx - - 1) " | 4= 1) " Glxa- 1) ¥, wla- o)
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=3 % rpk) t e, (V)
n=0
Where 5 (v)= i m! a,, (n J v™
= m

This completes proof of the theorem.
Theorem-2
If there exists a bilinear generating relation of the form

G (x,uw)= i a,w"(n)* v® (u;s)
= (43)

then there exists a generating relation of the form:

(1 tW) 1t (1 SW) (B+1)/'s ep [px {l 1— vvt)'“}+u {1 SW} r/s]

(44)

GlxA-tw) ", u (1-sw)¥°,wg (1-wt)* (1-ws) |

Z i (wg)™ nt £ (w,g,x)y® (u;s)

n=0 j =0

Where(44)
min n,'l)
fr(1t,s) (W,g; X) _ il

*(n+j, —2j,)! ¥
Proof:

Consider the linear partial differential operator Qi follows
Q, =y, (xo/ox+ky,a/dy, +a+1-rpx’ }i=12

Such that

@ Q[ (x, Oty ' =k (n+ Dy v (x.1)
hence, clearly Q form araising Lie-operator for the class

8, (W) 5i2g
J2 (jl_jz)!(jz)!

n+] -2/2 (X t)

of function y (x rp; ) The multiplier representation
of this operator is given by
—(a+1)/ k

op (we, F (x.y, )= @-towy, )
ap[px{[ (1-kwy, ) ”k}f[ (L—kwy, ),y (- kwy, )71] (47)

assuming, that (46) exists, we substitute wyiy2 g in the place
of w and operating both sides by exp

(WQ1 ) exp (Wgz )’

we get exp (WQJ_) exp (WQ )G (X U-V\’ylyzg)
= exp (le) exp (wQZ) i 7P(us)

now, using (36), the I_eft hand member of (37) becomes
ep (WQ1) [(1_Swy2)*(r5+1)/s exp [pu, {L— (l—S\Nyz)ir/S }]]

[ (1_ SWY» )71/S Yo (1_ SWY, )71]
(1 twyl) (o+1)/t (1 swyz) (B+1)/s

< exp [px fi-(kwy, )" pur -1 swy, ) "]

oy, | ut-soy, | w01y, sy, )

also using (36), we see that the right member side of (37)
becomes,

(46)

. (wy,y.gf ()7 (x.t)

(49)
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5 Z Z a, (wy,y,0)" ()@= w'=y® (x;t)y® (u,s)

N0 0 j,0 itz

q s g b g sl (usny))
Lil- o

ZOZO 1 av:];:g b e P et
“w

W”*h*lz

© o minn—]) n—j,
_ 9 iy —iz (u
- th
n+j; -2j
Y&X (u,s)nt y; Zyg (50)
Theorem-3
If there exists a generating relation of the form

G(x,w) = i a, Z (x,r,p;k) w"
n=0

L, Ut)n+j, —25,)r s

(51)
then there exists a generating relation of theform ;

[rwfl(_vt/Wr)l/r}l/"%l(_vtlwr)G X(rZW2 —Vt)l/r ’ X(rZW2 —Vt)llr:|

Cw)” wr
=> "o, (V)
Whgr:g
6, (V)= (o /m) (L fL+ o kml/r), Z6 (1, prk) v
Proof: .

Consider the linear partial differentid operator A as
follows:

A = y’r Xi+y£_r+1 Suchthm
OX oy

A [ZEf‘) (x,r,p, k)y“] = Q+a—r+kn)Z¥ (x,r,p,k) (52)

Hence, clearly A forms araising Lie-operator for the class
of function z® (x,r,p,k). The multiplier representation

of this operator is given by
y f[{ wr+y)‘ }/y(wr+y)1 ]

exp (wa)f (x,y,)=(w+y |
(53)
Now consider the following generating relation;
G(x,w)= >

nzz‘; (59)
replacing w by wz and then multiplying both sides of (54)
by Y% ; we get

G(x,wz) y* =y* > a, z& (x,r,p,k) (Wx)"
n=0

a,z (x,r,p,k) w"

(55
operating both sides of (55) by exp (w A ), we get

exp (wa) [G(x,wz) y* | = exp (wa) {y“ ni;:)rslnz(n“)(x, r,p.k) (wz)”} (56)

now, using (51), the left hand member of (54), becomes:

(w+y' )(17')“ Yaue [{x(wr wy' }/ y, (wr+y’ )Ur]

(57)
also using (40), we see that the right hand member of (44)
becomes

© i a n+m nAm [Z(“)(X r,p; k)y ]
=0 m=0
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-y a, [Um)w™ 2" (- )" (- L+ o+ kn}rm ZE™ (x,r, k) yo™

(58)

=y Wan": a, ,(1/m) (- {1+ o+ k(n-m)ir)), 2™ (x,r,pk)
n=0 m=0

* (22
equation (45) and (46), we get;

(rw +y' )(H)/r y’G[{x(wr +y' )l/r }/ Y, (Wr +y' )l/r]

0

:Z (Wz)"ian,m(llml)( L+ a+k(n-m)j/r), 2™ (x,r,p:k)
n=0 m=0
t m
“(rizy) (59)
finally putting wz=t and -r/zy'=v in (59), we get

w vt P Gt {x(rz(w;}xt)‘“ , (rzwzv;rvt)‘”

o0

nZ: t"o (x,Vv)

Z (a /m')

This completes proof of the Theorem.
Theorem-4

whereg (x ~{Lrarkmpir) 2™ (x,r,pik) v

> ary (rpk)w”
n=0 (60)
then there exists a generating relation of the form,

exp (ut)F[{(— ut/p)+ xl}m,t]: nio t"o,(x,u)
Where 7

o, ()= 2,/ 1) vk (x.r.pik) U/
j=0 (61)

F(x,w)=

Proof:
Consider the linear partial differential operator ¢ asfollow

Suchthat ¢ =Yy (x‘”la/ OX — pr) (62)
o= M"‘)(x, r,p;k)y” ] = — pry! ™" (x,r,p;k) y**"the
multiplier representation of this operator is given by
exp (Wo)f (x,y)=exp (— pry’w)f [(ryrw +X )1/' , y] 63)
let us now consider the following generating relation
F(x,w):i a, v (x,r,p;k) w"

n=0 (64)
replacing w by wz and then multiplying both side of (49) by
7", we get

v F(x,wz)=y* i a, v (x,r,p;k) (wz)"
n=0 (65)

operating both sides of (49) by exp (W(I)) we get:
exp () by Fx w2 - xp )+ 3 3 i) |

(66)
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now using (47), we see that the left hand member of (50)
becomes

exp(— pryrw) e Fl(ryrw + xrl/r) WZJ

(67)

also using (46), the right hand member of (50) becomes,

> > a, WHwze b rpky)y”]

a,, @ 1) w2z (=) (pr)’ [\ (x,r,pik) y* 7]

(o) {i a,, (W i\-rpy' /2) [ (. pik) y ﬂ

j=0

(69)
equating (51) and (52), we get:

exp (— pryrw) y* F[(ryrw +x' )“r , WZ]

(53)
a,, (W) oy /2) [l (k) ye ]}

> |3

n=0 =0

finally, putting wz = t and (— rpy’ /z)= U in (53), we get

exp (ut)F [{(— ut/P)+x" }”',t]:

i "o, (X’u)where

n=0
c, (x,u)= Zn: a” @/ j) v (x,r,p,k) u’
j=0
This completes proof of the theorem
VIII.  CONCLUSION

As we can see, the results are different in many conditions

of

generalization for one member of the pair of Konhauser

biorthogonal polynomials, generating relation and its really
get multiple representation of the such kind operators which
are discuss in the above results.
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