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FALCON: Joint Fair Airtime Allocation and Rate Control for 
DASH Video Streaming in Software Defined Wireless Networks

Miguel Catalan-Cid, Daniel Camps-Mur, Mario Montagud, August Betzler
i2CAT Foundation & Universitat de València

ABSTRACT
Software Defined Wireless Networks offer an opportunity to en-
hance the performance of specific services by applying centralized
mechanisms which make use of a global view of the network re-
sources. This paper presents FALCON, a novel solution that jointly
optimizes fair airtime allocation and rate recommendations for
Server and Network Assisted DASH video streaming, providing
proportional fairness among the wireless DASH clients. Since this
problem is NP-hard and its resolution in dense scenarios is too
computationally expensive to be applied in practice, FALCON intro-
duces a novel heuristic algorithm that is proved to achieve almost
optimal results in a significantly lower time. The performance of
FALCON is also evaluated when used in conjunction with three ref-
erent Adaptive Bit Rate strategies (PANDA, BOLA and RobustMPC)
in a simulated realistic ultra-dense scenario based on an In-flight
Entertainment System with up to 175 clients. The obtained results
show that FALCON provides significant benefits by minimizing in-
stability and buffer underruns, while obtaining a fair video rate and
airtime allocation among clients, thus contributing to an enhanced
Quality of Experience.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Net-

works→Wireless access networks;Programmable networks
.
KEYWORDS

DASH, SAND, SDWN, QoE, airtime, fairness, rate control
ACM Reference Format:
Anonymous Author(s). . FALCON: Joint Fair Airtime Allocation and Rate
Control for DASH Video Streaming in Software Defined Wireless Networks
. In Proceedings of . ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Recent advances in wireless communications enable access densifi-
cation by increasing the capacity and availability of the networks.
For instance, 5G technologies are expected to provide a wireless ac-
cess alternative to extremely dense scenarios, such as the In-Flight
Entertainment & Connectivity (IFEC) systems. In these scenarios,
Software Defined Wireless Networks (SDWNs) can contribute to
guarantee fairness among clients and a satisfactory Quality of Expe-
rience (QoE), by enabling innovative network control mechanisms
[9]. In particular, centralized association control solutions can make
use of a global view of the wireless access network to enhance its
efficiency, by intelligently allocating clients across the available
Access Points (APs) and wireless channels. Although significant
efforts have been devoted to devising client steering strategies to

, ,
©

improve network wide performance, none of the proposed schemes
consider DASH video streaming demands [28].

Video streaming is one of the most popular and bandwidth-
demanding services in current networks, accounting for more than
half of global traffic, and this is even expected to increase in the
upcoming years [6]. In this context, Dynamic Adaptive Streaming
over HTTP (DASH) [25] has become the dominant technology for
online video content delivery. In DASH, the media content is en-
coded into multiple representations (e.g. with different resolutions
and/or bitrates), and each representation is split into short segments
(typically with a duration of 2-10s). Then, clients can dynamically
request the segments of the most appropriate representation, based
on the current network and end-system conditions. The algorithms
that decide which representation to download for each segment
are typically implemented at the client side, and are commonly
known as Adaptive Bit Rate (ABR) strategies. Up to date, many
ABR strategies based on different criteria have been devised to
meet the targeted requirements and maximize the QoE in specific
scenarios [4].

Even though the capacity of networks is continuously increasing
and ABR strategies have the potential of adapting the video quality
based on the current network conditions, meeting the streaming
demands from massive clients in dense Radio Access Networks
(RAN) is still very challenging. This can be for example the case
of IFEC systems in airplanes. In these scenarios, performance is-
sues arise, like network resources underutilization, QoE unfairness
among clients, quality instability due to frequent bitrate switching,
and video stalls [2, 11, 14, 15]. These issues have a significant im-
pact on the clients’ perceived QoE, leading to disengagement and
abandonment [10, 24], and thus negatively affecting content and
service providers.

As an alternative to client-driven quality adaptation strategies,
network elements (e.g. proxies, gateways, SDN controllers. . . ) can be
used to assist the clients in selecting an appropriate representation.
Network elements can obtain more easily an overall and accurate
view of the network conditions, like the available bandwidth and its
capabilities. This is the approach followed in Server and Network
Assisted DASH (SAND), an extension to the DASH standard to
introduce DASH Assisting Network Elements (DANEs) with the
above features, by introducing new messages and mechanisms
[27], which has been standardized in ISO 23009-5 [13]. The SAND
proposal is especially interesting in 5G architectures, where the
DANE can be placed near the RAN. One of the most adopted and
evaluated mechanism of SAND is the recommended rate assistance
to DASH clients, which can significantly overcome the performance
issues in dense and massive environments (e.g. [11, 15, 17]).

In this paper, we present FALCON, a novel association control
mechanism for SDWNs, which jointly considers the wireless condi-
tions experienced by each DASH client and their traffic demands, in
order to allocate clients across APs and to recommend a video rate
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for each client. To the best of our knowledge, this is the first solu-
tion joining rate assistance and association control in the wireless
access. FALCON aims to provide proportional fairness among wire-
less clients, which has been proven to be an NP-hard problem [19].
Hence, we present an heuristic algorithm that obtains almost opti-
mal results, while decreasing the running time up to five orders of
magnitude compared to an optimal solver. Finally, we demonstrate
the benefits of FALCON applied to DASH video streaming in a real-
istic IFEC scenario, which is a paradigmatic example of ultra-dense
wireless access. The obtained results show that FALCON provides
significant improvements in terms of key QoE related metrics (e.g.
fairness, instability and playout interruption) when using along
three represantive ABR strategies of different nature: rate-based
(PANDA), buffer-based (BOLA), and hybrid (RobustMPC).

The rest of the paper is organized as follows. Section 2 briefly
reviews the state-of-the-art. Section 3 presents FALCON, describing
the network model, the definition of the problem as a MIQCQP
and the novel heuristic algorithm. Section 4 presents the evaluation
framework and the obtained results. Finally, Section 5 provides the
conclusions and discusses ideas for future work.

2 RELATED WORK
The study in [4] surveys existing client-driven ABR strategies,
which can be mainly categorized as buffer-based (i.e. the buffer
occupancy level is the key factor that determines the representation
to select), rate-based (i.e. the throughput / bandwidth estimation is
the key factor), power-based (i.e. the power consumption is the key
factor) and hybrid approaches (i.e. strategies that use a combination
of the above factors and metrics). The defined ABR strategies highly
depend on the targeted requirements and scenarios, but mainly aim
at enhancing the DASH streaming adaptability and continuity, thus
maximizing the QoE.

From the huge variety of existing ABR strategies, three repre-
sentative ones have been considered in this work, each of them
belonging to a different category. PANDA is a rate-based ABR
strategy that implements a probe-and-adapt mechanism which
works similar to TCP’s congestion control, applying an additive-
increase/multiplicative-decrease (AIMD) strategy to the video rate
according to estimations of the available throughput [20]. BOLA im-
plements Lyapunov optimization techniques to minimize rebuffer-
ing and maximize video quality, adapting the video quality and
the segment downloading rate based on the the buffer level[26]. Fi-
nally, RobustMPC uses a Model Predictive Control hybrid approach
which combines throughput prediction for a determined number of
future chunks and buffer occupancy information, by selecting the
video rate which maximizes a set of QoE metrics (average quality,
quality variations and rebuffering) [29].

Despite the significant progress in the design and adoption of
best-fitted ABR strategies, previous studies have reported perfor-
mance issues with DASH in shared networks in which the DASH
clients compete with other type of traffic or with other DASH clients
sharing the same network resources. In [2], it is shown how off-
the-shelf DASH players react to changing network conditions and
how the video quality becomes unstable when two DASH players
compete for bandwidth. In [3], it is reflected that the bandwidth
estimation by the individual DASH clients is a challenging task,

identifying the on-off download traffic patterns as a cause of insta-
bility. It is also demonstrated in that work that the number of active
clients has a significant impact in the number of quality switches.
In [12], it is confirmed that the joint TCP and DASH adaptation
algorithms to dynamically react to changing network conditions
can originate video quality instability.

To overcome the detected instability, scalability and fairness chal-
lenges in thementioned scenarios, many network-assisted solutions
have been devised up to date. In [16], a proxy-based implementa-
tion of a DANE is proposed. The HTTP traffic is routed through
this proxy server, which can be placed between the clients and the
server, and inspects the traffic to detect DASH streams and their
characteristics. Rate adaptation assistance is provided by altering
the content of the HTTP request headers. An evolved version of
that proxy-based network-assisted solution in [16] is presented in
[15]. It relies on the SDN paradigm, by proposing a DANE that
works out-of-band via a WebSocket connection from the DASH
players to the DANE. Evaluation results in a Wi-Fi network show
that this DANE-based proposal contributes to the delivery of a
stable and high quality DASH streams. The work in [7, 8] investi-
gates network-assisted streaming approaches that rely on active
cooperation between video streaming applications and the network
in SDN environments to contribute to a better quality fairness, by
also solving a max-min fairness optimization problem at runtime.
In [22], it is demonstrated that SAND provides an improved perfor-
mance in terms of fairness and QoE, compared to the sole use of
ABR strategies, when multiple DASH players compete for shared
network resources.

Related work analysis shows that rate adaptation assistance
contributes to a better quality, although just few studies consid-
ered wireless scenarios when evaluating the presented proposals.
FALCON goes one step beyond, since it is pioneering in jointly con-
sidering a SAND-based solution to recommend video rates to the
clients according to the available wireless resources and conditions
of dense scenarios, while properly allocating clients across the APs
using centralized association control.

3 FALCON DESIGN
The objective of FALCON is to obtain a fair allocation of resources
among DASH clients, according to the properties of their active
video streams and the characteristics of the wireless channel. This
objective can be stated as the problem of providing proportional
fairness in a multi-rate multi-AP network, which has been proven
to be NP-hard [19], even without considering the specific traffic
demands of each DASH client.

Let us consider a network where 𝑁 is the set of clients,𝑀 is the
set of APs in orthogonal channels, and 𝐾𝑖 is the number of possible
Representation Indexes (RI) in the Media Presentation Description
(MPD) of each client. Then, 𝑥𝑖, 𝑗 is defined as a binary variable that
represents the selection of the AP 𝑗 where a client 𝑖 is attached,
and 𝑦𝑖,𝑘 as a binary variable that represents the selection of the
RI 𝑘 in the MPD for a given client 𝑖 , corresponding to a video
rate of 𝑟𝑖,𝑘 . Consequently, the problem of achieving proportional
fairness according to DASH video streaming traffic demands can
be formulated using the following cost function:
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argmax
®𝑥𝑖,𝑗 , ®𝑦𝑖,𝑘

∑
𝑗 ∈𝑀

∑
𝑖∈𝑁

𝑥𝑖, 𝑗

∑
𝑘∈𝐾𝑖

𝑦𝑖,𝑘 log 𝑟𝑖,𝑘 (1)

Subject to the following constraints:

𝑥𝑖, 𝑗 ∈ {0, 1} (2)
𝑦𝑖,𝑘 ∈ {0, 1} (3)

∀𝑖 ∈ 𝑁,
∑
𝑗 ∈𝑀

𝑥𝑖, 𝑗 = 1 (4)

∀𝑖 ∈ 𝑁,
∑
𝑘∈𝐾𝑖

𝑦𝑖,𝑘 = 1 (5)

∀𝑗 ∈ 𝑀,
∑
𝑖∈𝑁

𝑥𝑖, 𝑗

∑
𝑘∈𝐾𝑖

𝑦𝑖,𝑘
𝑟𝑖,𝑘

𝑏𝑖, 𝑗
=
∑
𝑖∈𝑁

𝑥𝑖, 𝑗

∑
𝑘∈𝐾𝑖

𝑦𝑖,𝑘𝐴𝑇𝑖 𝑗,𝑘 =≤ 𝐶 𝑗 (6)

, where constraint (4) ensures that each client is associated to only
one AP, and constraint (5) ensures each client selects only one RI.
Finally, constraint (6) ensures that the airtime consumed by all the
clients assigned to an AP does not exceed the available airtime 𝐶 𝑗 .
The airtime of a client is defined as its current video rate 𝑟𝑖,𝑘 divided
by its available bandwidth 𝑏𝑖, 𝑗 , i.e. its amount of channel utilization.
𝐶 𝑗 can also consider the unavailable airtime in this channel due to
external interference, background traffic or reserved resources in a
multi-tenant architecture [23].

Formally, given that both the cost function (1) and constraint
(6) are quadratic, this problem can be defined as a Mixed Integer
Quadratically Constrained Quadratic Program (MIQCQP). However,
as will be shown in Section 4, state-of-the-art MIQCQP solvers
cannot cope with dense wireless networks, where hundreds of
clients, tens of APs, and tens of qualities per video are possible.
Therefore, heuristic solutions are needed to deliver close to optimal
solutions with a limited computational cost.

Algorithm 1: FALCON algorithm 

Inputs: list of Cj, list of bij, list of available ri,k per user, 
list H of current assignments of users i to channels j 

 1: //Populate F with k = 1 ij: 
for each bij  do F(n) ={ATij,1 , ri,1} end for 

 2: //Update Cj according to H and k=1 j: 
 for each i do 

  if (H(i) == j) then Cj = Cj - ATij,1 endif 
     end for
 3: Sort F in ascending order 

for each F(n) in F do 
 5:     if (F(n) != {ATij,Ki , ri,Ki}) then  //last RI Ki already assigned to i 
 6:    if (H(i) == j) then    //i already in channel j  
 7:   if (Cj + ATij,k – ATij,k+1 ) then 
 8:    Cj = Cj + ATij,k – ATij,k+1 
 9: F(n) = {ATij,k+1 , ri,k+1} j 

  10:   goto 3 
  11:    end if 
  12:    else if (H(i) == l) then    //i in other channel l 
  13 : if (Cj – ATij,k+1 ) then 
  14:    Cj = Cj – ATij,k+1 , Cl = Cl + ATil,k   
  15: F(n) = {ATij,k+1 , ri,k+1} j, H(i) = j 
  16:   goto 3 
  17:      end if 
  18:    end if 
  19:     end if 
  20: end for 
Outputs: final list H of assignments, final list of ri,k according to F  

FALCON proposes a heuristic based on the fact that, in the case
of a single multi-rate AP, max-min airtime fairness provides pro-
portional fairness [5]. Our solution is based on a progressive filling

algorithm, which gradually increases the video rate of the DASH
clients according to an ordering based on the airtime consump-
tion of each client in the available APs. The FALCON heuristic is
presented in Algorithm 1 and described next.

• Initially, a list 𝐹 is constructed, where each element in the
list is a tuple 𝐹 (𝑛) = {𝐴𝑇𝑖 𝑗,𝑘 , 𝑟𝑖,𝑘 }. The first element of 𝐹 (𝑛)
represents the airtime of client 𝑖 when associated with the
AP in channel 𝑗 , and using RI 𝑘 . The second element repre-
sents the video rate when using RI 𝑘 . Thus, list 𝐹 can have a
maximum size of 𝑁 ∗𝑀 in case that all the 𝑁 clients can be
associated to all the𝑀 APs. In addition, a list 𝐻 is defined to
store the initial client-AP associations.

• In line 1, the elements in 𝐹 are initialized, assuming the
lowest RI for each client.

• In line 2, according to the initial client-AP associations pro-
vided in list 𝐻 , the available airtime of each channel is up-
dated with these initial airtimes.

• In line 3, 𝐹 is sorted in ascending order, using the airtime
component 𝐴𝑇𝑖 𝑗,𝑘 of the 𝐹 (𝑛) entries as the primary sorting
key, and the video rate component 𝑟𝑖,𝑘 as the secondary one.
Thus, in case of having multiple entries with the same air-
time, the client with the lower video rate will be prioritized.

• In line 4, the algorithm selects the first entry in the list, and,
in case that an RI increase is possible (i.e. channel 𝑗 has
enough airtime to serve to client 𝑖 a video stream with an
RI of 𝑘 + 1), all the 𝐹 (𝑛) entries associated to this client are
updated according to the value of 𝑟𝑖,𝑘+1. Consequently, the
available airtime of each channel and the list of client-AP
associations are updated according to the selected channel
for the RI increase of this client, and the algorithm restarts
again from line 3. On the contrary, if an RI increase for this
entry was not possible, the algorithm continues with the
next one in the ordered list.

The algorithm finalizes after all clients have been able to allocate
their maximum RI 𝐾𝑖 or when any additional increase of the RI of
a client leads to a saturated channel (i.e. 𝐶 𝑗 < 0,∀𝑗 ), obtaining a
final list of client-AP associations and a list of recommended video
rates for each client. By following this algorithm, resources are
allocated gradually to the different clients and APs in an efficient
way: prioritizing lower airtimes gives indeed preference to clients
with low RIs, leading to load fairness, but also to clients using higher
link rates, leading to a higher aggregate throughput in the network.

With regard to the computational complexity, the sorting algo-
rithm (line 3) can be called a maximum of

∑𝑁
𝑖=1 𝐾𝑖 times and has

a maximum complexity of 𝑂 (𝑁 ∗𝑀 ∗ 𝑙𝑛(𝑁 ∗𝑀)). However, since
usually the network becomes overloaded before reaching the last
RI for each client, the number of iterations will be considerably
lower. Also, in large scenarios, not all clients will reach all the APs,
leading to a size smaller than 𝑁 ∗𝑀 for 𝐹 . In Section 4 we present
an evaluation of the execution times experienced by FALCON.

Figure 1 depicts the components and interactions involved in
FALCON. The main component is the FALCON Controller (FC),
which can be part of the Radio ResourceManagement (RRM) subsys-
tem of a RAN Controller in a SDWN architecture. The FC considers
as input RAN and video service telemetry to run the FALCON algo-
rithm. Then, it generates as output a list of client-AP assignments,
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Figure 1: FALCON’s Network model and main procedures.

which are checked by the FC to perform the necessary handovers,
and a list of recommended RIs, which are sent to the DANE.

It is important to highlight that SAND does not enforce the
utilization of the advised rate by the clients, since the algorithm of
each particular DASH player can have local information (e.g. buffer
status) recommending a different rate. Thus, in our model, after
receiving the recommended RI or the equivalent representation rate
from the DANE, each DASH client continues to rely on its built-in
DASH rate adaptation algorithm, but using the RI recommended by
FALCON as the maximum available for the current video stream.

Finally, note that FALCON requires network triggered handovers,
which is a feature not available in standardWi-Fi enterprise systems.
For this purpose FALCON adopts a network model based on the BI-
GAP architecture [30], where all APs share the same Basic Service
Set Identifier (BSSID) and their radio interfaces are assigned to 𝑀
orthogonal channels. Thus, association control relies on Dynamic
Frequency Selection (DFS) signaling to provide seamless channel
switching (i.e. handovers). However, FALCON could also be im-
plemented in other SDWN architectures as, for instance, solutions
based on creating one single virtual AP per station [9].

4 PERFORMANCE EVALUATION
In this section we evaluate the performance of FALCON by means
of simulations. First, a standard MIQCQP solver and the FALCON
algorithm are compared in terms of optimality and execution time.
Then, the performance of the FALCONmechanism applied to DASH
video streaming in an IFEC scenario is evaluated according to rele-
vant metrics which have an impact on the QoE of the clients.

4.1 Comparison of the FALCON algorithm
with the MIQCQP solver

In this section we evaluate the ability of the MIQCQP solver and
of the FALCON algorithm to obtain an optimal solution that max-
imizes the cost function introduced in Equation (1); i.e. the as-
signment of video rates (𝑦𝑖𝑘 ) and APs (𝑥𝑖 𝑗 ) to the DASH clients
in order to optimize the proportional fairness of the system. The
MIQCQP solver is implemented using OPTI2, which is an opti-
mization toolbox for Matlab, and SCIP 3[1], which is one of the
fastest non-commercial solvers for mixed integer programming. In
addition, the FALCON algorithm is implemented using Python.
2https://www.inverseproblem.co.nz/OPTI/index.php/Probs/MIQCQP
3https://scip.zib.de/

For both cases, neither the wireless channel nor the DASH ser-
vice are simulated, since the evaluation is focused on the perfor-
mance of the algorithms given a set of inputs. In particular, we
consider 802.11a link rates (i.e. from 6 to 54 Mbps, that are assigned
randomly to each 𝑏𝑖 𝑗 ), and the same video stream with 10 quality
levels (from to 50 kbps to 5 Mbps) for all the clients . We analyze
the performance of both algorithms when varying the number of
clients (up to 150) and APs (up to 5, each of them with different
available airtimes 𝐶 𝑗 between 1 and 0.5). Presented values are the
average of 10 simulations, which were run in a laptop with the
following characteristics: Intel Core i7-8550U 1.8 GHz and 16 GB
RAM.

Figure 2a depicts the average utility per user achieved by the
MIQCQP solver and the FALCON algorithm (i.e. 𝑙𝑜𝑔(𝑟𝑖,𝑘 )), showing
that FALCON reaches a very close performance to the optimal
solution (traces are almost overlapped). Indeed, Figure 2b depicts the
obtained normalized Root Mean Square Error (RMSE) of the utility
difference between FALCON algorithm and the MIQCQP solver,
which is below the 0.025% in all the cases. Note that a decreasing
utility per user implies that the solutions provided by the solvers are
non-trivial, i.e. due to saturation all clients cannot be served with
their maximum rates (i.e. 5 Mbps). In the scenario consisting of 5
APs, due to the complexity of the quadratic constraint, in the cases
with a higher number of clients (50, 75, 100 and 150) the MIQCQP
solver was not able to obtain an optimal solution in a reasonable
time without exhausting the available memory resources of Matlab.
Therefore, for these cases we cannot establish how far from the
optimal value the solutions reported by MIQCQP or FALCON are
(RMSE values for these cases are not depicted). Nevertheless, given
the fact that other results lead to similar RMSE values regardless
the number of clients or APs, we can expect similar performance
for these cases as well.

Figure 2c depicts the running time of the different algorithms in
logarithmic scale. In all cases, the runtimes of the FALCON algo-
rithm are several orders of magnitude lower than the ones obtained
using the MIQCQP solver. In particular, increasing the complexity
of the quadratic constraint (i.e. 3 and 5 APs) and the traffic demand
of the network (i.e. the number of clients), leads to a very significant
increase of the MIQCQP solver runtime, making impractical its uti-
lization in real scenarios. Indeed, as aforementioned, the MIQCQP
solver was not able to find the optimal solution in the cases with
more than 30 users and 5 APs, being outperformed by FALCON
with a runtime five orders of magnitude smaller. We also computed
the 95% confidence interval of the runtime results. On the one hand,
FALCON obtained an interval below the 15% of the average values,
which are below 1 second for all cases with less than 150 clients.
On the other hand, MIQCQP confidence intervals exceeded in some
cases the 30% of the average, leading to very variable and high
runtimes depending on the characteristics of the network (i.e. the
inputs defining the quadratic constraint). In addition, in order to
stress the FALCON algorithm, we also evaluated its runtime with a
higher number of APs (10 and 20) and clients (300 and 500). Results
show that, even in these very large problem instances, the mea-
sured FALCON runtime is below 10 seconds, proving the ability of
the FALCON algorithm to achieve a close-to-optimal-proportional
fairness in dense scenarios in a practical amount of time.
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Figure 2: FALCON’s algorithm evaluation. The F- character indicates the utilization of FALCON while the M- character indi-
cates the results of the MIQCQP solver. (a) Average utility per client, (b) Normalized RMSE of the utility difference between
FALCON algorithm and the MIQCQP solver, and (c) Runtime of the algorithms

4.2 Performance of FALCON in a realistic
scenario

In this section, we evaluate the performance of FALCON by means
of simulations using ns-34 in a realistic airplane IFEC scenario
with dimensions of 36*4*2.5 meters. We consider up to 175 clients
located according to an airplane seat distribution and three IEEE
802.11a APs with two radio interfaces placed uniformly along the
airplane (i.e. at 9, 18 and 27 meters). Thus, six orthogonal channels
are available and clients are statically assigned to the channel with
the highest RSSI. Finally, the APs in the airplane are connected to
the DASH server through a wired LAN of 1 Gbps.

The ns-3 DASH model is based on the work in [21]5 6, where
we extended the built-in PANDA, BOLA and RobustMPC ABR
strategies to be able of using FALCON’s recommended RIs as the
maximum available RI for each particular DASH video stream. To
ease the interpretation of the results, all DASH clients consume
the same video stream and have the same characteristics (seat
screens). The video stream is based on the “Big Buck Bunny” movie,
using its real duration, segment sizes and qualities[18]7. The movie
consists of 299 segments of 2 seconds and 20 quality levels, but in
the simulations we limited the available set of qualities to 9 (from
100 kbps to 8Mbps) to reduce the computational cost of RobustMPC.
For fairness, all players attempt to maintain a steady-state buffer of
28 seconds.

When using FALCON, the algorithm is run before starting the
streaming, modifying the maximum RI of each client and triggering
the necessary handovers according to its output. Table 1 summa-
rizes the different parameters of the scenario. In each case, results
are the average of 10 simulations.

Figure 3 depicts the results of this experiment according to the
key performance metrics that influence QoE in video streaming [4]:

4https://www.nsnam.org/
5https://github.com/haraldott/dash
6https://github.com/tomlyko/ns3-dash-cmaf-model
7http://www-itec.uni-klu.ac.at/ftp/datasets/mmsys12/BigBuckBunny/

Table 1: Main simulation parameters

𝑁 35, 70, 105, 140, 175
𝑀 6
𝐾 9 (0.1, 0.25, 0.5, 0.9, 1.2, 2, 3, 5 and 8 Mbps)
𝐶 𝑗 0.9 ∀𝑗
Target Buffer 28 seconds
PANDA[20] 𝜅 = 0.14, 𝜔 = 0.3, 𝛼 = 0.2, 𝛽 = 0.2, 𝜖 = 0.15
BOLA[26] 𝛾𝑝 = 0.597133,𝑉 = 3.349338
RobustMPC[29] FastMPC with h=5

media representation, fairness, quality instability and buffer under-
runs (i.e video stalls). The quality instability is computed as the
number of RI levels dropped during the whole video reproduction
divided by the total number of segments [11]. Results show that,
compared to the original versions of the different ABR strategies,
FALCON provides significantly better performance, maintaining or
even increasing the average RI without compromising fairness be-
tween clients, and avoiding instability and buffer underruns, which
may result in a significantly enhanced QoE.

PANDA recovers slower from the quality drops caused by conges-
tion due to too high RI selections and, in some cases, to a suboptimal
client distribution among APs (i.e. the default association based on
RSSIs). Therefore, although obtaining better stability (Figure 3b)
and larger buffers than the other ABR strategies (Figure 3d), it leads
to lower average RIs (Figure 3a). Using FALCON’s handover and
RI recommendation mechanisms, quality drops are almost avoided,
increasing the average quality across all DASH clients. Also, with
an increasing number of clients, FALCON is able to totally avoid
buffer underruns (Figures 3e and f) caused by the high congestion
present in the wireless channels.

Although following different ABR strategies, results in Figure 3a
show that BOLA and RobustMPC obtain similar performance in
terms of average RI. Compared to PANDA, they are able to main-
tain higher RIs by considering the buffer levels. However, this leads
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Figure 3: IFEC scenario results using PANDA (P), BOLA (B) and RobustMPC (M). The +𝐹 character indicates the utilization of
FALCON. Values are the average per client. (a) RI of the clients. (b) Instability. (c) Jain Fair Index (JFI) of the throughput of the
clients (B+F andM+F results are overlapped). (d) Buffer length. (e) Number of underruns. (f) Duration of the underruns, where
error bars denote the maximum underrun suffered by one of the clients (accumulated during the whole reproduction)

to higher instability (Figure 3b) and buffer underruns (in number,
average duration and maximum duration) (Figures 3e and f), since
some clients become significantly congested by the high download-
ing rates of other ones. In general, BOLA is better suited to avoid
buffer underruns by decreasing RIs when needed (i.e. increasing the
instability), while RobustMPC maintains RIs more stable but leads
to lower buffers levels and numerous underruns. Nevertheless, in
both cases the use of FALCON dramatically decreases instability
and underrun levels while obtaining similar and, in some cases,
better average video qualities.

It is important to remark the slight variations in performance
between the different ABRs when using FALCON, since in such
cases results are almost independent from the original algorithm.
Indeed, in all the cases the obtained average RIs are very close to
the FALCON’s recommended ones (we obtain a normalized RMSE
lower than the 1%), leading to the noticeable stable RIs and buffers
levels shown in Figure 3b and Figure 3d, respectively. Also, note
that in such a dense scenario, where a proper wireless coverage
is assured by the 6 available channels, all clients should achieve
a similar performance. As shown in Figure 3c, FALCON is able to
obtain a fairer distribution of the throughput between the different
clients by efficiently associating the clients among the available
APs and recommending appropriate RIs according to the airtime
consumption. Therefore, when using FALCON in this scenario
all the clients achieve similar RIs in contrast to the original ABR
strategies that lead to a worse fairness index.

5 CONCLUSIONS AND FUTUREWORK
In this paper we have introduced FALCON, a novel centralized RRM
solution that jointly allocates wireless stations to APs and video
rates to DASH clients in order to maximize their QoE. FALCON
optimizes proportional fairness in a wireless network according
to DASH traffic demands. We have first presented an MIQCQP
solver that obtains optimal proportional fairness, but leads to very
high runtimes in dense scenarios. Accordingly, we have proposed
the FALCON heuristic algorithm, which obtains close to optimal
results in all cases, while decreasing the runtime up to five orders of
magnitude. Finally, we have evaluated FALCON in a realistic ultra-
dense IFEC scenario. Results show that FALCON is able to avoid the
main factors that impact the QoE when using three referent state-
of-the art ABR strategies (one of a different category), including
instability, buffer underrunning and fairness, without degrading
the average video quality.

Our future work is to evaluate FALCON in a real testbed, com-
bining and comparing it with other ABR strategies and network-
assisted solutions. In addition, we plan to analyze the impact of
network dynamics on FALCON, including the co-existence with
traffic from other services and interference from external networks,
the presence of simultaneous DASH video streams with differ-
ent characteristics, and the effect of mobile and incoming/leaving
clients.
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