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Bitcoins

One bitcoin transaction consumes as much energy as

nine American households consume in one day.

The aggregate computing power of the bitcoin network

is estimated to be 100,000 times larger than the world’s

500 fastest supercomputers combined.

https://www.wired.com/story/bitcoin-mining-guzzles-energyand-its-carbon-footprint-just-keeps-

growing/?mbid=nl_120617_daily_list3_p2
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AlphaGo Lee ⇒ AlphaGo Zero

Alpha developed a machine based Go playing program, AlphaGo Zero
Trains only on itself – no human games used
Progressively learned the game of Go from scratch,
given only the rules of Go.
Training is not constrained by the limits of human knowledge
Training to reach human world champion level took 3 days.
Discovered new knowledge, developing unconventional strategies and
creative new moves.
Accumulated 1000s of years of human knowledge in just a few days
Admittedly board games exist in a structured environment

Google just released an AI assistant, which operates in unstructured
environments.
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Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 21/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 22/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 23/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 24/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 25/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 26/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 27/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 28/69



Cartoons Error Budget Conclusion Into Approaches

Overview – Measures of SST Uncertainty in Satellite-Derived Fields

The uncertainty of satellite SST data products is determined from in situ matchups.

Standard measure is rms difference between buoy and satellite SSTs.

Typical values for AVHRR, MODIS . . . range from 0.4 to 0.6 K.

But these are based on match-ups widely separated in space and time
A significant contributor to these uncertainties are atmospheric fluctuations

Which vary over large scales.

But these measures are not representative of small scale uncertainties,

uncertainties assocaited with SST fronts and gradients.

Because large scale variability is relatively unimportant re fronts and gradients.

9/24 29/69



Cartoons Error Budget Conclusion Into Approaches

VIIRS SST
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Accuracy versus Precision
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The Error Budget

Let’s take a step back and look at the error budget for SST products.
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Error Budget for Satellite-Derived SST Fields (NASA SST Science Team)
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The Spectral Approach

Wavenumber spectrum in the Sargasso Sea at scales larger than 1 km is very nearly
linear in log-log space.

Noise in the satellite data⇒ leveling off of spectra at high wavenumber.
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The Spectral Approach

Wavenumber spectrum in the Sargasso Sea at scales larger than 1 km is very nearly
linear in log-log space.

Noise in the satellite data⇒ leveling off of spectra at high wavenumber.

Satellite Spectrum
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AVHRR and VIIRS Nighttime, Along-Scan Compared
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The Variogram Approach

Semivariance : γ̂(∆) =
1

2N(∆)

N(∆)∑
i=1

[SST (i + ∆) − SST (i)]2

where ∆ is the separation of SST samples and
N(∆) is the number of pairs for the given separation.

It’s a measure of the variance between pairs of points as a function of point separation.

The value of a curve representing the variogram and ∆ = 0 is the variance of the
underlying data.

The curve may be of the form (the exponential model in this case):

γ(∆) = σ2
o + σ2

(
1− e− ∆

L

)
where σ2

o the nugget, the variance at zero-lag,
σ2

o + σ2 the variance of the data at long separations; σ2 is called the sill and
L the range, a measure of the decorrelation scale.
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The Variogram Approach continued

Exponential :γ(∆) = σ2
o+σ2

(
1 − e− ∆

L

)
Gaussian :γ(∆) = σ2

o+σ2
(

1 − e− ∆2

L2

)
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Instrument Noise

Method
Day (K) Night (K)

Along-Scan Along-Track Along-Scan Along-Track

AVHRR
Spectral 0.172 (5) 0.209 (7) 0.173 (2) 0.209 (4)

Variogram 0.185 (5) 0.219 (7) 0.183 (2) 0.219 (4)

VIIRS
Spectral 0.046 (4) 0.076 (10) 0.021 (24) 0.032 (14)

Variogram 0.081 (4) 0.097 (10) 0.042 (24) 0.056 (14)

Uncertainties of estimates ≈ 0.004 K

These results apply only to instrument noise

i.e., no contribution from misclassification errors.

We used the stable variogram for this work.

StableVariogram : γ(∆) = σ2
o + σ2

(
1 − e−( ∆

L )w)
where parameter w ranges from (1) exponential model to (2) Gaussian model.

Misclassification errors are likely to be spatially dependent.

making their determination a bigger project.

This is likely to be especially true for L3 and L4 products.

Determining the contribution of misclassifcation errors is problematic.
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These results apply only to instrument noise

i.e., no contribution from misclassification errors.

We used the stable variogram for this work.

StableVariogram : γ(∆) = σ2
o + σ2

(
1 − e−( ∆

L )w)
where parameter w ranges from (1) exponential model to (2) Gaussian model.

Misclassification errors are likely to be spatially dependent.

making their determination a bigger project.

This is likely to be especially true for L3 and L4 products.

Determining the contribution of misclassifcation errors is problematic.
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The Data – Preprocessing – Nearest Neighbor Resampling

The sections were resampled to equal spacing.

To minimize interpolation, spacing chosen = to mean spacing on the section

Nearest neighbor interpolation was used.
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An Example of the Importance of the Spatial Precision

How does noise impact satellite-derived SST gradients?

Consider 10,000 3 × 3 pixel squares for a fixed gradient in x, ∂T
∂x , 0 in y.

Add Gaussian white noise, σ, to each of the elements.

Apply the 3 × 3 Sobel gradient operator in x and y.

Determine the µ and σ of the resulting gradient magnitude

Perform the above for:

0.01 K km−1 <
∂T
∂x

< 0.3 K km−1

0.001 K < σ < 0.3 K
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An Example of the Importance of the Spatial Precisio

Numerous authors have published gradient magnitude fields from AVHRR
Including me – GULP!
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