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Abstract—The growing digitization of manufacturing 
processes is revolutionizing the production job-shop by leading 
it toward the Smart Manufacturing (SM) paradigm. For a 
process to be smart, it is necessary to combine a given blend of 
data technologies, information and knowledge that enable it to 
perceive its environment and to autonomously perform actions 
that maximize its success possibilities in its assigned tasks. Of 
all the different ways leading to this transformation, both the 
generation of virtual replicas of processes and applying 
artificial intelligence (AI) techniques provide a wide range of 
possibilities whose exploration is today a far from negligible 
sources of opportunities to increase industrial companies’ 
competitiveness. As a complex manufacturing process, 
production order scheduling in the job-shop is a necessary 
scenario to act by implementing these technologies. This 
research work considers an initial conceptual smart digital 
twin (SDT) framework for scheduling job-shop orders in a 
zero-defect manufacturing (ZDM) environment. The SDT 
virtually replicates the job-shop scheduling issue to simulate it 
and, based on the deep reinforcement learning (DRL) 
methodology, trains a prescriber agent and a process monitor.  
This simulation and training setting will facilitate analyses, 
optimization, defect and failure avoidance and, in short, 
decision making, to improve job-shop scheduling. 

Keywords—Smart Manufacturing, job-shop, scheduling, 
smart digital twin, zero-defect manufacturing 

I. INTRODUCTION 

In today’s highly competitive and globalized industrial 
environment, maximizing performance demands improving 
the traditional ways of dealing with production processes. An 
ever-changing industrial environment requires more 
flexibility and acting as a smart network; a more dynamic 
and reliable supply chain requires tracking, traceability, and 
interoperability capacities, and incorporating commercial 
partners into its own strategy; a smart manufacturing (SM) 
process requires the capacity to adapt in real time to sudden 
changes in production volumes, products or their scheduling 
delivery, and to adapt to customer quality requirements; 
increasingly more demanding and well-informed customers 
need to be integrated into the value chain, with greater 
production personalization; a professionalized occupational 
context requires more digitization, training and ergonomics; 
an increasingly deteriorated natural environment requires 
more efficient resources use, among others. The SM 
paradigm arises to respond to conventional formulas’ 
incapacity to meet the requirements of today’s competitive 
environment in the industrial sector. 

SM is the core in the fourth industrial revolution [1]. 
With the development of SM, more and more new 
information and communication technologies (ICT), such as 

Internet of Things (IoT), cloud computing, big data and 
artificial intelligence (AI), have been used in manufacturing 
to improve production efficiency and flexibility [2]. The 
manufacturing sector is currently reinventing itself by 
embracing the opportunities offered by digital 
transformation, industrial internet, automation, machine 
learning (ML), among other innovations [3]. Digitalization in 
manufacturing can lead to significant productivity and 
effectiveness improvements in complex systems [4]. 

Driving a production job shop toward SM entails the 
challenge of deploying, at least partially, the aforementioned 
ICT in all the different manufacturing stages from supplying 
raw materials or components to distributing products, and in 
all manufacturing areas from quality areas or plant 
engineering to maintenance or logistics, and operations 
planning and control (OPC), and at any of its decision-
making levels. In the operational decisions area, specifically 
scheduling as a decision-making process that is followed on 
a regular basis in many manufacturing and services 
industries deals with resource allocation to tasks over given 
time periods in order to optimize one objective or more [5]. 
So supporting this specific decision-making process with 
new ICT is necessary to provide the process with speed in 
order to delay the results as minimally as possible, and to 
obtain accurate [6] and robust [7] results which ensure that 
set objectives are optimized. 

In the zero-defect manufacturing (ZDM) environment, it 
is necessary to underline that speed, accuracy and robustness 
are critical factors for optimizing order scheduling because 
the central objective of the ZDM strategy is to achieve things 
by the first attempt [8]. This is an ambitious purpose, and the 
difficulty in fulfilling it can be overcome by this second 
reading: doing things properly the first time in a real 
environment after having simulated, analyzed and optimized 
them in the virtual world; in other words, replicating them in 
the virtual world to optimally solve them. This way of 
ensuring accurate, robust and faultless results in the real 
environment requires ICT if we aspire to achieve suitable 
speed to obtain results in real time, since it is the only way to 
contemplate a flexible production job shop given that it 
allows being able to rely on the valuable possibility of 
resequencing production, even in ongoing production, by 
minimizing the negative effects of such action, provided its 
positive effects render it advisable [9]. 

Therefore, taking SM to the production order scheduling 
process level involves considering whether it is worthwhile 
to virtually replicate it by ensuring an optimum interaction 
and integrating the physical and virtual space, and the SM 
response to this worthwhile endeavor is a digital twin (DT) 



[10]. However, the potential of a DT-based approach may 
substantially vary depending on the services it incorporates 
after it has been implemented. Visualization, modeling, 
simulation, analyzing “what-if” scenarios, forecasting, 
alternative management scenarios, learning or optimization 
are, among others [11][12], the most habitual possibilities. 
However, firstly prescription, and secondly decision making, 
are the services that enable both the process and tool to be 
classified as smart, namely production order scheduling and 
the DT, respectively. These services also allow the process to 
be conceived as being either semi-autonomous if it is capable 
of prescribing, or autonomous if it is capable of deciding, 
and lead SM to be completely implemented into short-term 
job-shop planning. 

Characteristics of the production order scheduling 
problem allow an AI-based solution approach by ML 
techniques to be considered. The objective of this work is to 
present an overview of the considered problem, and to 
propose a preliminary conceptual framework for semi-
automatic production order scheduling in a job-shop with a 
ZDM strategy by implementing a smart DT (SDT) with a 
prescriptor role. 

The remaining of this paper is organized as follows. 
Section 2 presents a brief overview of the related literature. 
Section 3 describes the proposal in short. Section 4 discusses 
the primary results and contributions. Finally, Section 5 
provides the conclusions and further research. 

II. LITERATURE REVIEW 

Increased manufacturing efficiency has been a constant 
challenge since the first industrial revolution [13]. According 
to this more up-to-date and defined perspective, the purpose 
of production order scheduling also faces an increased 
efficiency challenge because inefficacy in this task 
contributes to overall manufacturing inefficiency. Therefore, 
job-shop scheduling efficiency outlines directly and 
positively affect not only the production cycle, but also costs 
and competitiveness [14]. Optimum resource use, where 
resources include time that is of utmost importance, and 
minimizing associated costs, are two relevant questions 
about order scheduling research and are fundamental 
objectives for OPC in operational decision making. As this is 
one of the most typical and complex production scheduling 
problems [15], many varied strategies are found in the 
literature to fulfill this double objective in order scheduling 
in the job-shop scheduling problem (JSSP). We now go on to 
indicate some literature works related to the JSSP lines 
herein defined. 

A. Applying machine-learning (ML) to solve the JSSP 

Although the resource most widely resorted to in the 
literature about problem solving is to present new modeling 
approaches based on metaheuristic algorithms, it is worth 
stating that the use of AI techniques to solve the JSSP is 
progressively gaining ground. A recent literature review 
about applying ML algorithms to solve the JSSP is provided 
by Pérez-Cubero and Poler in [16], where these authors offer 
an overview of the current research status by characterizing 
the employed algorithms and presenting future research 
lines. Their study examines the predominance of each 
algorithm, and concludes that reinforcement learning (RL), 
Q-type learning and the deep Q network (DQN) currently 
predominate with 36% of cases each, followed by the deep 
neural network (DNN) with 14%, and finally by the recurrent 

neural network (RNN) type and deep reinforcement learning 
(DRL) with 7% each. One of the conclusions drawn by that 
study is that the first future research line to derive from this 
consists in building simulation environments. By an original 
approach, in 1997 Lee et al. considered in [17] that empirical 
research results pointed out that using ML in the job shop 
was a promising field and proposed combining the strong 
points of genetic algorithms and induced decision trees as the 
ML technique to develop a production order scheduling 
system. This shows the researchers’ long-since dated interest 
in this matter. Since then, scientific production has advanced 
at the rate that increasing computing power has allowed it, 
and the dimension of study object problems has sustainably 
grown in parallel with it. This has been increasingly 
evidenced in recent years by the generalized presence of 
computers with Core i5 or i7 Intel processors, or similar 
ones, and RAM exceeding 8 Gb in production environments. 
Wei et al. [18] propose an intelligent job scheduling 
framework for suppliers with applications using a JSSP 
configuration and a method in which DRL is the key 
framework component. Applying the DQN algorithm from 
Google DeepMind for RL in the production scheduling of a 
flexible job-shop is the study object for Waschneck et al. in 
[19]. Zang et al. [20] propose a hybrid DNN scheduler to 
solve the JSSP by first dividing it into subproblems, and then 
using a deep learning (DL) framework to solve the 
subproblems by applying the convolution two-dimensional 
transformation method to transform irregular scheduling 
information into regular functions so that the convolution DL 
operation can be introduced into JSSP processing. The 
dynamic JSSP with jobs and machine breakdowns randomly 
arriving is dealt with by Shahrabi et al. in [21] by means of 
RL and implementing a Q-factor algorithm (Q-Learning) 
based on the variable neighborhood search. 

B. Virtual JSSP replication by implementing the DT 

This is a recent research line whose first main 
contributions to the literature date back to 2018. Zhang et al. 
[22] performed a review of research into job-shop scheduling 
and its new perspective from the SM. They place the DT in 
the group of novel and emerging technologies in 4.0 settings 
and contemplate the importance that the simulation models 
built with virtual simulation technology have so that smart 
agents can forecast results themselves, build their own multi-
objective optimization models and solve them to better 
schedule with available algorithms. Within the framework of 
proposals of DT models acting as a tool to enable the 
production order scheduling function in the job-shop, Feng et 
al. [23] study the problem of deploying and adjusting 
reconfigurable machines in a job-shop with several products. 
This problem requires a solution before being able to make 
online adjustments to reconfigurable machines. The online 
simulation control system they contemplate is based on the 
DT and includes follow-up, decision-making and control 
tasks. Zhang et al. [24] propose a DT-based dynamic job-
shop scheduling methodology from the perspective of its 
more frequent bottlenecks: i) forecasting machine 
availability; ii) detecting disturbances; iii) evaluating 
performance and investigating how, when introducing the 
DT, greater convergence between job shops’ physical and 
virtual spaces can be achieved by facilitating dynamic 
scheduling to a great extent as, respectively: i) the DT 
merges both real and simulated data to the  DT helps to 
detect disturbances by comparing the physical machine to its 
digital counterpart, which is continuously updated in real 



time, and which activates appropriate scheduling whenever 
necessary; iii) the DT enables integral performance 
assessments for rescheduling purposes using 
multidimensional models that can describe geometric 
properties, physical parameters and machine performance. 
Fang et al. [2] propose a production order scheduling method 
in a flexible DT-based job-shop to reduce deviations in 
schedules as a result of uncertain events, information 
asymmetry or abnormal disturbances, whose effect reduces 
both scheduling efficiency and quality. According to these 
authors, the DT allows the possibility of virtually interacting 
with reality, provides process mapping in real time, and 
shows its symbiotic evolution as a quality when referring to 
the capacity to virtually associate different types of job-shop 
entities. An example of applying commercial software that 
plays the DT role as a discrete events simulator to generate a 
simulation environment in which to compare or assess 
different scenarios in job-shops is provided by Zupan et al. 
[25]. These authors consider multistart local search heuristics 
algorithm “remove and reinsert”, which they implement into 
the simulation software of Siemens Tecnomatix Plant 
Simulation plants, and they compare it to the incorporated 
genetic algorithm. Using discrete events simulation or the 
DT is an efficient tool for analyzing “what-if” scenarios in 
all types of production systems [26]. 

C. The ZDM strategy in the job-shop environment 

This research area remains practically unexplored with 
very few contributions. Psarommatis et al. [27] recognize 
production order rescheduling in contemporary job shops as 
an inevitable and critical phenomenon, and center their study 
on identifying the critical reaction time for the events that 
trigger it so that productivity and costs remain within 
acceptable ranges by considering that four related factors 
may lead to confusion and loss of productivity: on the one 
hand, new order events, faulty parts and machine breakdown; 
on the other hand, the number of daily re-schedulings. 
Psarommatis et al. [28] base their research on the more 
frequent need to reschedule the job-shop in ZDM because 
this strategy imposes that all events during production have 
their counteraction to mitigate these events and focus their 
research on improving the quality of the solution in line with 
this in flexible JSSP by a metaheuristic method, namely 
Tabu search. 

D. On the combined SDT approach for a ZDM-based JSSP 

No works in the literature were found that completely 
coincide with this combination of conceptual sets. However, 
two close considerations appear in the OPC context, which 
are not included in previous sections, but are relevant: i) SDT 
models for production order scheduling; ii) DT models for 
ZDM-based production order scheduling. Although these 
works do not center specifically on solving or improving the 
JSSP, they potentially offer some valuable keys. The 
literature search related to the first approach gave some 
articles that associate the DT, intelligence and production 
scheduling in which the intelligence attribute stems from 
referring to the SM paradigm, and not from employing AI 
algorithms or systems. It is worth citing Hu et al. [29], who 
resort to a DQN to solve the dynamic scheduling problem of 
flexible manufacturing systems (FMS), which involves 
shared resources, route flexibility and stochastic arrivals of 
raw materials, and they model the system by taking into 
account both manufacturing efficiency and avoiding 
deadlocks using a type of Petri networks that combine time-

place Petri networks, and a simple sequential processes 
system with resources that the authors call timed S3PR. Liu 
et al. [30] integrate the advantages of the DT and a 
supernetwork to develop a smart production order scheduling 
method so that the job-shop quickly and efficiently devises 
process plans. By establishing a supernetwork model based 
on feature-process-machine similarities in the DT job-shop, 
it allows the centralized and classified management of many 
data types. Production order scheduling outlines are 
formulated by doing similarity calculations of decomposed 
features and the supernetwork mapping relations. Negri et al. 
[31] propose a framework to include equipment status 
forecasts into scheduling activities by embedding a field-
synchronized equipment health indicator module into DT 
simulation. The production order scheduling optimization 
approach is metaheuristics performed by a genetic algorithm, 
but it is connected to a DT simulator and provides several 
generations of scheduling alternatives, which are assessed by 
simulation with the help of an equipment health indicator 
module that calculates the equipment health status and is 
included in the assessment. 

No literature works were found that completely coincide 
with DT models for ZDM-based production order 
scheduling. However, the literature search for DT models 
used in ZDM environments without contemplating 
scheduling gave two works that are worth considering. 
Lindström et al. [32] propose an initial model for ZDM that 
employs a cost function, which they employ to reflect the 
production process situation and product/process qualities by 
means of the DT to virtually represent the process, its control 
system, and possible interconnections among different unit 
processes. Papacharalampopoulos et al. [33] consider that the 
optimization and control of manufacturing processes are key 
approaches for efficient manufacturing and zero defects. 
Thus it is important to study hypothetical scenarios in 
relation to changes in process parameters. These authors state 
the need to design and implement DTs to study these 
hypothetical scenarios in real time. For this purpose, they 
review a specific methodology deriving from process physics 
as a candidate technology for the DT process level. 

E. Synthesizing the state of the art 

The following can be concluded from the literature 
review: (i) applying AI to the JSSP depends directly on the 
available computing power; (ii) Q-learning and DQN 
algorithms concentrate 70% of the ML solutions considered 
for the JSSP in recent years; (iii) building simulation 
environments as part of using ML algorithms is the first 
future research line for some authors; (iv) the possibilities of 
applying DTs to the JSSP field are very diverse: simulation, 
analysis, evaluation or forecasting, among others. However, 
their prescriptor or decision-maker role has barely been 
explored; (v) no research exists on the specific JSSP case in 
ZDM environments; (vi) no scientific works completely 
coincide with the conceptual framework herein proposed. 
Nevertheless, those that have employed similar approaches 
with the DT assisted by AI in ZDM environments for other 
planning subjects that differ to the JSSP report promising 
results in the area corresponding to these subjects. 

III. PROPOSAL 

The proposal herein set out is based on the DRL 
methodology and uses a DT scheme to delimit virtual and 
physical spaces and actions. 



Fig. 1. General SDT-based manufacturing environment 

The general job-shop manufacturing environment within 
the conceptual framework herein proposed is arranged as a 
series of clearly interrelated and overlapping layers, in which 
each layer delimits a defined subenvironment (Fig. 1). 

 According to the characteristics of the roles played in the 
DT body, all these layers act as a generator and/or processor 
and/or receiver of data and information. In the physical 
environment, the following are set up: (i) the current 
production and equipment status; (ii) the cyber physical 
systems (CPS) associated with both; (iii) the system defined 
for implementing the industrial Internet of things (IIoT); (iv) 
the hardware and software that support cloud data storage; 
(v) the hardware and software that support the SDT’s 
interface process. The group of subenvironments that belong 
to the virtual environment is made up of: (i) the current 
production planning, which is dynamically updated in real 
time; (ii) the DRL-based smart agent; (iii) the job-scheduling 
policy in the job-shop, the basis of the reward strategy for the 
agent; (iv) the simulation subenvironment in which agent 
undertakes their training activity for learning; (v) the data 
from the learning that are accumulated while agent trains; 
(vi) the resulting actions to be applied to job-shop scheduling 
tasks. 

The SDT merges all these subsets by making them 
converge in the human agent’s interface as a single 
cohesioned environment composed of synchronized 
elements. It not only informs about production in real time, 
but also autonomously manages scheduling based on its 
perceptive and cognitive capacities. This environment 
structure makes the whole set visible and consistent. 

When configuring the system (Fig. 2), three activities are 
considered: (i) training; (ii) prescribing; (iii) monitoring. 
These activities are performed by a DRL-based algorithmic 
framework. The reason for choosing this methodology lies 
in: on the one hand, the circumstance that the literature on 
this matter indicates that RL improves the results obtained by 
using DL in the JSSP solution [16]; on the other hand, the 
limitations of pure RL algorithms, as regards the solution’s 
reproducibility and robustness, prevailing [16], which allows 
considerations based on pure RL or DL algorithms to be 
ruled out to favor DRL algorithms. 

As part of the training activity, the training environment 
integrated into the SDT acts as a space in which the 
prescriber agent performs its action. This space is, in turn, 
made up of two subspaces and two functions: (i) the 
observation space; (ii) the action space; (iii) the reset 
function; (iv) the action function. The observation space is 
delimited by all the variables defining job-shop scheduling 
and its possible range of variation. The action space 

determines what the agent can do inside the observation 
space and within which range of variation. The reset function 
determines the initial predetermined scheduling state from 
which all training must begin. The action function, on the 
one hand, simulates the result of the prescriber agent’s 
individual action on the environment, which leads it to a new 
state and, on the other hand, analyzes how this new state 
helps the fulfillment of the objectives set by the job-shop 
scheduling policy to be approached and, accordingly, assigns 
a reward to the prescriber agent. The association of the 
assigned reward with a new state, as a result of the action 
performed by the agent, can be considered a cognition 
process, albeit on a very simple scale, which provides the 
agent with a smart attribute. 

This process is successively repeated until all the periods 
that are set out in the job-shop scheduling horizon are 
covered, with which a training series is completed. Training 
series are, in turn, repeated as many times as necessary to 
cover a sufficiently representative part of the observation 
space so that the successive scheduling proposals that the 
agent puts forward from one same state start converging 
toward a preset acceptance level. In this way, the agent 
indicates that learning has ended. The training is valid while 
no production process reconfiguration takes place, which 
would require a new learning process. The SDT’s capacity to 
adapt to changes confers job-shop scheduling flexibility and 
fulfills the ZDM strategy parameters. 

When training is completed, the SDT is ready to 
prescribe job-shop scheduling solutions semi-autonomously.  
With: (i) dynamic production planning from the tactical 
decision-making level that is updated in real time in the 
cloud, (ii) a preset scheduling policy; (iii) the current 
production inventories state and production resources 
capacities, collected in real time by the CPS set, the SDT 
selects the suitable action and schedules the start of job-shop 
scheduling, or reschedules it in real time if any event 
requiring this occurs during the production process. The 
human agent confirms any rescheduling. However, training 
does not end. The SDT activity, once it is considered 
sufficiently trained and ready to start prescribing real 
solutions intended for the physical production environment, 
adds additional training. Therefore, with more learning, the 
SDT's performance level tends to improve. 

While no changes occur in the job-shop setting, the SDT 
does not intervene and, while no new actions are performed, 
the production process advances according to the last 
rescheduling. 

So between one change and another, the SDT merely 
monitors how production advances until a new event of the 
following kinds occurs: (i) changes in production scheduling 
when new orders arrive or due dates change; (ii) changes in 
production scheduling because orders are cancelled; (iii) 
changes in processing times; (iv) failing to supply materials, 
such as delays or temporary stockouts of a given material, 
component or subproduct; (v) predictive maintenance 
operations; (vi) faulty tools; (vii) breakdowns; (viii) 
deconfigurations of production resources that enable faulty 
products or breakdowns to be forecast; (ix) failed energy 
supplies; (x) faulty products detected. Any one of these 
events triggers the SDT to follow the same previously 
indicated process by prescribing job-shop rescheduling in 
real time and, thus, fulfilling the ZDM strategy parameters. 



Fig. 2. Setup of the SDT for ZDM-based job-shop scheduling 

In an initial phase, the SDT semi-autonomously manages 
job-shop scheduling; that is, it prescribes the human agent its 
scheduling or rescheduling, who finally confirms this and 
decides to apply it. Nevertheless, if the SDT’s prescriptor 
function is sufficiently robust, the next step consists in 
autonomous management with no human intervention. This 
implies automated job-shop scheduling, which would meet 
all the objectives indicated by the SM paradigm. 

IV. DISCUSSION 

Scheduling is the heart of a production floor and 
optimized scheduling is a major enabler of improvements in 
production capability [34]. Unexpected events (i.e. machine 
breakdowns, late or new job arrivals, product defects, job 
cancellation, change in processing times, faulty tools, etc.) 
disrupt normal manufacturing system operations and, 
subsequently, impose risks, extra costs and less efficient 
systems. Thus, changes are made to the current schedule and, 
therefore, re-scheduling is required to include correction 
actions and to allow manufacturing systems to optimally run 
in its optimal way [27]. By introducing the DT, further 
convergence between the physical and virtual spaces of job-
shop scheduling can be achieved, which enables dynamic 
scheduling by triggering timely rescheduling whenever 
needed [24].  

Moreover, introducing AI as a central part of the DT is a 
natural step to take because: (i) its rapid performance on 
problems in which their large size implies unacceptable 
calculation times by using other solution approaches [16] 
makes it a useful tool for overcoming the real-time data 
synchronization challenge, which is fundamental for 
optimum DT operation and (ii) it enables the decision-
making process to become the center of smart capacities by 
conferring it knowledge of job-shop scheduling operation 
patterns [35] so that once the introduced AI is trained, it 
allows the system to more quickly identify errors, act on 
these errors more accurately to, therefore, make quicker and 
more efficient decisions. Moreover, AI allows ways to adapt 
to environmental conditions, such as breakdowns or 
equipment maintenance, which reduces idle time costs [35]. 

In addition, when the JSSP is tackled from the 
perspective of these different combined conceptual subsets, 
the job-shop scheduling setting acquires the ideal capacities 
to successfully adopt a ZDM strategy [32]. These job-shop 
scheduling capacities for ZDM are: (i) facilitate monitoring 
process parameters through the SDT; (ii) enable 
collaborative production by virtually replicating job-shop 
scheduling and, thus, enabling its visualization and remote 
operation; (iii) enable continuous quality control by 

preparing the system to face reschedulings from ruling out 
faulty materials, components or products; (iv) make the 
system compatible with a hypothetical predictive online 
maintenance [34]; (v) promote the job-shop scheduling 
data/information storage, analysis and visualization 
performed by operators; (vi) favor the adaptation of job-shop 
scheduling to the contingencies related to the need to 
reconfigure or reorganize the production process given the 
virtual system’s flexibility; (vii) empower job-shop 
scheduling for real-time rescheduling. The proposed 
framework considers all these characteristic ZDMs, and is 
modeled and adapted to reschedule production orders, which 
contributes to cushion risks related to disturbances, e.g., 
saving costs and increasing production system efficiency. 
With such characteristics, job-shop scheduling shares the 
principles that define the SM paradigm and address its digital 
transformation. 

V. CONCLUSIONS 

This article has set out an initial DT-based conceptual 
framework driven by AI to model the JSSP with a ZDM 
characteristic. This framework has focused on generating 
JSSP optimization algorithms in the specifically described 
environment, which are based on applying RL techniques 
with which to enable the DT’s training, prescription, and 
monitoring, and to confer it the intelligence attribute. 

The present article describes: (i) the very structure of the 
general job-shop SDT manufacturing environment, provided 
to enhance the visibility of all the set’s elements and confer it 
consistency; (ii) the SDT configuration for job-shop 
scheduling with a ZDM strategy designed so that the specific 
decision-making process is quick, accurate, robust and 
faultless. The environment’s structure and the SDT’s 
configuration are considered the main contributions of this 
research. Managerial implications are oriented to favor 
mitigating risks related to disturbances, saving costs and 
making the production system efficient. 

In the model, the SDT layer that supports cloud 
manufacturing services will enable access to data outside the 
environment. While it is developed, a reversible 
configuration of this layer will allow agents outside the 
environment to access the SDT and, therefore, to access the 
virtual job-shop scheduling environment. This will allow 
synchronized data and information to be shared with higher 
OPC decision-making levels; that is, with tactical and 
operational decision-making levels, and with other 
manufacturing areas, or also with other supply chain links, 
such as supplier partners, logistic partners or distributor 
partners, to orientate the job-shop management towards 
collaborative production planning. It can also allow access to 
customers, which will be oriented to customization.  

Moreover, the results of training in simulated 
environments cannot always be directly extrapolated to the 
real world. The strategy followed to extend the learning 
dataset to the physical job-shop space is also a challenge 
which depends on the fidelity of replication that is intended 
for the SDT to a great extent. Regarding fidelity, the model 
considers 10 types of events with a potential disturbance for 
JSSP, which are controlled during monitoring to trigger 
rescheduling as necessary. The consideration of all these 
types of events improves the SDT’s fidelity by approaching 
the generated virtual entity to the replicated one, though this 
markedly increases the dimension of the problem, which has 



been a previous limitation for other researchers [16]. 
Incorporating this capacity into the model is challenging; is 
also a limiting factor, and one that requires further research. 
Finally, this research has focused on the JSSP. Research into 
knowing whether the proposed conceptual work framework, 
which is based on the SDT in a ZDM setting, is applicable to 
other problems like flow-shop, or even to some of the 
characteristic ones of other decision-making levels of the 
OPC, such as master production scheduling (MPS) or 
materials resources planning (MRP), represents a new future 
research line.    
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