Conceptual design of passenger aircraft for in-flight refueling operations

G. La Rocca

P. van der Linden

M. Li

EWADE 2013

11th European Workshop on

Aircraft Design Education Linköping, Sweden

September 2013

Introduction

- One of the biggest challenges for future aviation is represented by the increasing cost and scarcity of fossil fuel.
- The demand of air transportation is steadly increasing, while the constraints on the allowed environmental impact by authorities are getting more stringent
- New designs and operational concepts are required to meet the ambitious challenges devised by ACARE

The RECREATE project

- In the RECREATE (REsearch on a CRuiser Enabled Air Transport Environment) project, European research institutes, universities and small businesses work together to investigate a future air transportation system based on the cruiser-feeder concept
- In Flight Refueling (IFR) operations for passenger aircraft is actually one of the two main concepts addressed by RECREATE.

Dr. R. K. Nangia Nangia Aero Research Associates

Payload range efficiency versus range

- The success of staged and IFR flight revolves on the assumption that, flying a mission divided in multiple smaller submissions, yields fuel savings
- Fuel efficiency between aircraft is compared by the **Payload Range Efficiency**: $PRE[m] = \frac{WP[kg] \cdot R[m]}{WFB[kg]}$

Objectives of this work

Although IFR is a time proven concept in military operations, is it possible and convenient to apply as such to passenger air transportation?

Main goal of this research*

Develop the conceptual design of a passenger aircraft (the cruiser) for IFR operations and compare its fuel consumption to direct and staged flight operation.

*sub-goal of RECREATE

Operation concepts and mission profiles

Cruiser Top level requirements

- Use a conventional configuration
- Single stage range of 2500nm
- 250 passengers, single class, twin aisle, LD-3 container capability
- Take-off field length < 2000 m
- Landing field length < 2600 m
- Cruise mach number of 0.82 @ 10500 m
- Specific fuel consumption of 0.525 lb/(lbf·h)

Is this good if there are passengers here?

A trade-off is performed to assess possible alternatives and finally to select the most convenient procedure for civil refueling operations

The trade off winning configuration:

The tanker approaches the cruiser from behind and below

Advantages

- No hazard of collision with parts detaching from the tanker
- Cruiser pilots are not required to perform the approach maneuver
- Cruiser's architecture minimally affected by the presence of the refueling system.
- Only tanker aircraft to be provided with air-to-air radar
- Passengers not subjected to maneuvering acceleration
- no extra thrust requirement for passenger aircraft during refueling

Disadvantages

 A forward extending boom (i.e., unstable, subject to divergence) is required.

The Initiator

A software tool under development at the TU Delft for augmented aircraft conceptual design.

It makes use of statistics and semi-empirical design rules, medium fidelity analysis tools, and an optimizer to perform conceptual design of conventional and novel aircraft configurations

Cruiser design

Cruiser design

Fuselage	
Length (m)	54.0
Diameter (m)	5.64
Wing	
Ref Area (m ²)	178.2
Span (m)	42.21
Aspect Ratio	10
Taper Ratio	0. 23
1/4 Chord Sweep (degree)	27.27

Payload range diagram

Weights and Weight Ratios			
MTOW (kg) OEW (kg)	115396 62774		
WFB (kg) @ pts.	A 16252	B 23578	D 20928
WP (kg) @ pts	31176	23850	26500
WFR = 4.5 % of MTOW (kg)	5192.8		
Max. fuel/MTOW (Point B)	0.25		
Max. landing/MTOW	0.83		

Payload range efficiency (PRE)

Non-stop versus IFR operations

Aircraft	WFB ₁ [kg]	WFB ₂ [kg]	WFB _T [kg]
Cruiser	18955	18182	37137
5000nm non-stop	-	-	46652

5000nm, IFR vs. Non-stop	
Fuel received by tanker [kg]	16259
Fuel saved by cruiser w.r.t non-stop (tanker fuel not accounted!) [kg]	9515
Fuel_saved/Fuel_received	0.58

IF the fuel burnt by tanker to deliver the fuel required by cruiser (16259 Kg) < 9515 Kg, **THEN** IFR operation yields fuel saving!

Staged-flight versus IFR operations

Aircraft	WFB ₁ [kg]	WFB ₂ [kg]	WFB _T [kg]
In-flight refueling	18955	18182	37137
Staged flight	20928	20928	41856

5000nm, IFR vs. Non-stop		
received fuel for AAR operation [kg]	16259	
saved fuel by AAR operation [kg]	4719	
Fuel_saved/Fuel_received	0.29	

- In term of flight duration (comfort) and fatigue life, IFR is obviously better than staged-flight
- IFR with small tankers can be more fuel efficient than staged-flight operations

Tanker Design

2 families of tankers designed for 10 specific missions (radius & no ref. ops.)

Tanker coding:

T-250-3:

Conventional tanker

250nm Design refueling radius: 3

Refueling num. of cruisers:

TF-500-5:

Flying-wing tanker

Design refueling radius: 500nm

Refueling num. of cruisers: 5

Tankers family

IFR benefit - Flying Wing VS Conventional tankers

The RECREATE design agenda

The research leading to the results presented in this paper was carried within the project RECREATE (REsearch on a CRuiser Enabled Air Transport Environment) and has received funding from the European Union Seventh Framework Programme under grant agreement no. 284741.

