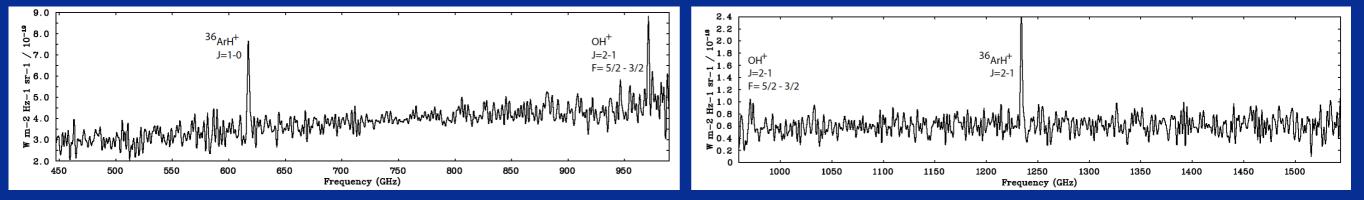
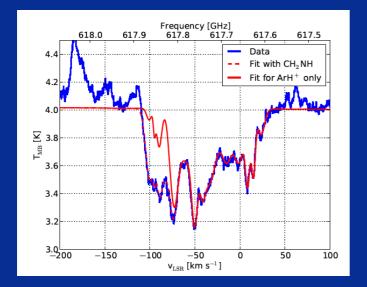
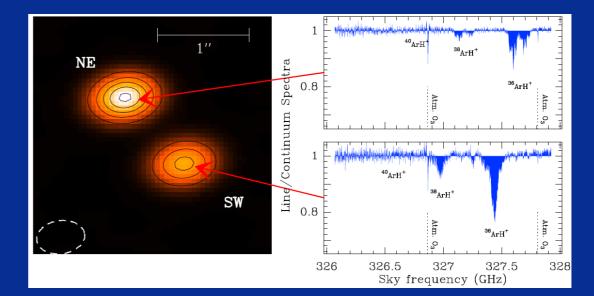
Transient ArH⁺ emission in the Crab Nebula

Ilse De Looze¹, Felix Priestley¹, Mike Barlow¹, Izaskun Jimenez-Serra², Serena Viti¹


¹University College London (UCL) ²Queen Mary University London (QMUL) Getting ready for ALMA band 5 - synergy with APEX/SEPIA, Garching, February 1, 2017

Outline

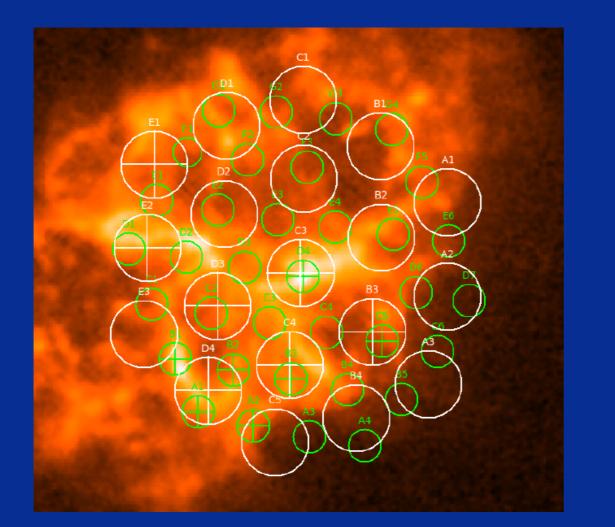

- History of ArH+ observations
- APEX band 9 observations of the Crab Nebula
- Transient nature of ArH+ emission!
- Modelling ArH+ emission in the Crab Nebula
- Conclusions + future outlook


First ArH+ detection

The ArH+ J=1-0 (617 GHz) and J=2-1 (1234 GHz) line transitions were identified *for the first time* in the SPIRE FTS observations of the Crab Nebula (Barlow+ 2013).

 Later detections of the ArH+ line were reported for the Galactic ISM (Schilke+ 2014) and an extragalactic source (Muller+ 2015), probing atomic hydrogen gas with H₂ fractions of 10⁻⁴-10⁻³.

Crab Nebula


- The Crab Nebula is a Galactic supernova remnant with a central pulsar, responsible for the ionisation of most of the ejecta material.
- Most material is distributed in dense filaments
- It is the remnant of a 9-11 M_{sun} progenitor which exploded 1054 AD.
- Significant amounts of dust (0.2-0.5 M_{sun}) have also condensed in the

Crab Nebula (Gomez+ 2012, Owen & Barlow 2015).

ArH+ in the Crab Nebula

- Bright ArH+ detections in several (mostly SE) positions in the Crab Nebula
- Radial velocities range from -1000 km/s to +1000 km/s

J = 1-0 617.525 GHz		
SLW	Radial Velocity	Surface Brightness
Detector	$\rm km~s^{-1}$	$10^{-10} \mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1}$
B 3	$+317 \pm 67$	2.23 ± 0.41
C3	$+933 \pm 33$	4.63 ± 0.40
C4	-58 ± 50	8.65 ± 0.55
D3	$+826 \pm 32$	3.13 ± 0.34
D3	-709 ± 42	2.30 ± 0.34
D4	$+101 \pm 27$	9.89 ± 0.52
E1 E2	$+278 \pm 46 \\ -594 \pm 37$	5.69 ± 0.62 4.25 ± 0.46

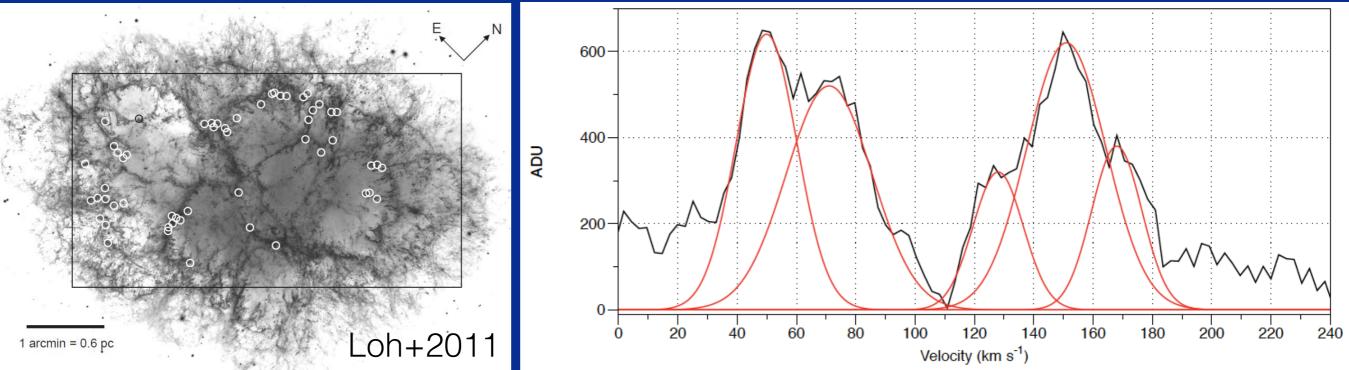
Large SPIRE FTS beam (34" for ArH+ J=1-0, 19" for ArH+ J=2-1 line) + poor spectral resolution (~700 km/s) --> difficult to constrain origin of ArH+ emission in the Crab Nebula

ArH+ in the Crab Nebula

- The main route for ArH+ formation is considered to be: Ar+ + H₂ \longrightarrow ArH+ + H with a reaction rate 8.4x10⁻¹⁰ (T/300K)^{0.16} cm³ s⁻¹ (Schilke+ 2014), and Ar ionised by cosmic rays (CR).

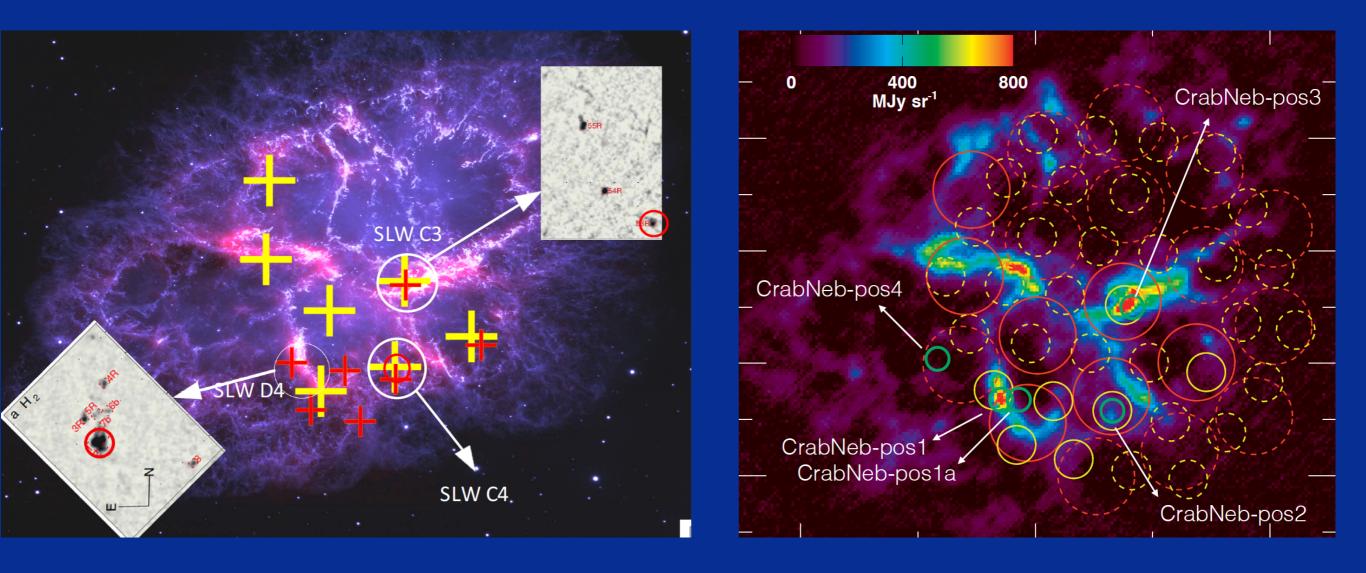
- Excitation of ArH⁺ can occur through collisions with H₂ molecules or electrons.

- With electron collisional excitation rates ~10⁴ larger than for H₂, ArH⁺ is believed to be mainly excited by collisions with electrons.

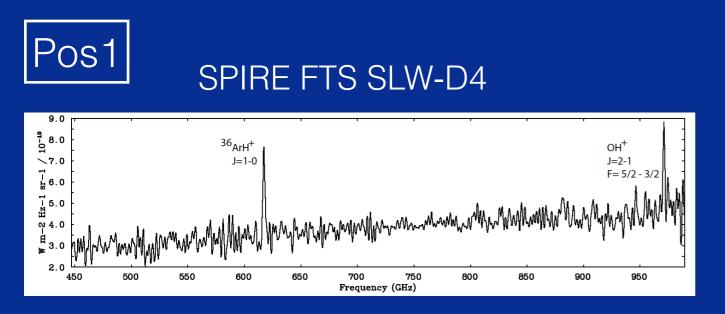

Formation of ArH⁺ requires H₂ molecules + excitation through collisions with e⁻ —> ArH emission must originate from partly ionised + partly neutral gas

ArH+ in the Crab Nebula

Our initial guess is that ArH+ comes from the surfaces of dense H₂ knots.

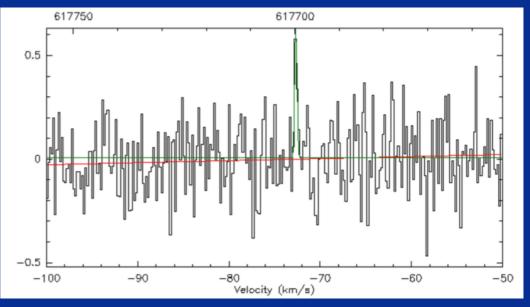

- Typical sizes of H₂ knots of a few arcsec (Loh+2011,2012)
- High T_{ex}~ 2000-3000K (close to dissociation T of H₂)
- Total H₂ mass >= $2 \times 10^{-3} M_{sun}$

- Our high spectral resolution (R~30000 or a few km/s) follow-up IRTF CSHELL observations of H₂ 2.112 μ m start resolving H₂ line profiles with ~40 km/s line widths.


APEX ArH+ observations

We target dense H₂ knots (+ position offset from H₂ knot) in brightest SPIRE FTS detections of ArH⁺ with APEX SEPIA band 9 (FWHM ~ 10.2").

APEX ArH+ observations


We detect ArH+ J=1-0 in Pos1 and Pos2 (not in Pos1a, Pos3 and Pos4), but the line is surprisingly **WEAKER** and **NARROWER** compared to the SPIRE FTS detections!

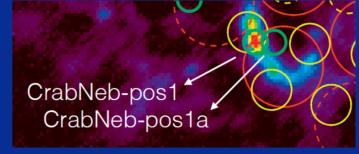
 $FWHM \sim 34 \text{ arcsec}$ $S_v = 9E^{-10} \text{ W/m}^2/\text{sr}$

--> we expect a peak flux = 0.4 K (for a 40 km/s line) peak flux = >10 K (for a <1 km/s line)

APEX SEPIA band 9

FWHM ~ 10.2 arcsec Peak line flux ~ 0.6 K $V_{helio} = -73$ km/s (agrees with SPIRE FTS) **but** $\Delta v = 0.5$ km/s --> line = 40x weaker than expected!!!

De Looze+2017 in prep

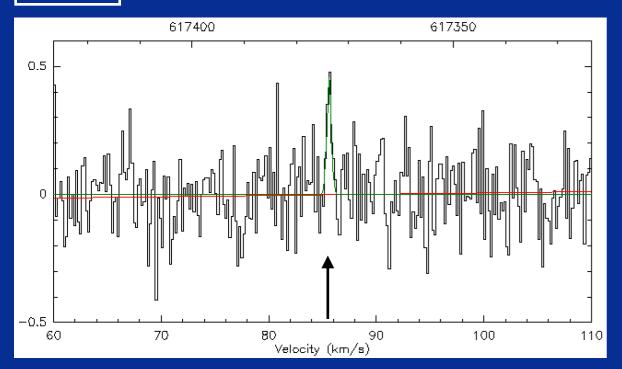

APEX ArH+ observations

What causes $ArH^+ J = 1-0$ line to be 40x weaker than expected?

 Uniform distribution of ArH+ ? (not just bright H₂ knots) + APEX beam (10.2") < SPIRE FTS (34")

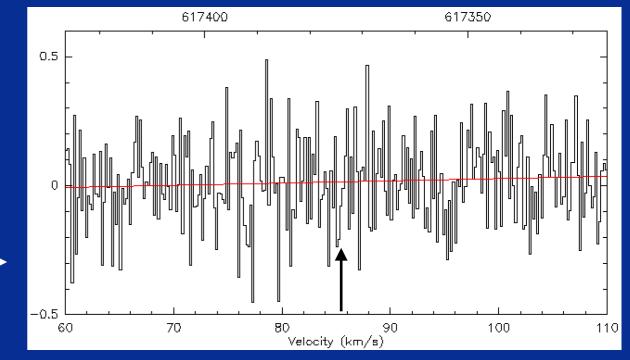
but $34^2 \sim 11$ (not enough to explain huge difference) 10

but no detections in adjacent pointings around Pos1


- 2. We are missing the brightest ArH+ emission?—> need to map the entire beam to rule this out!
- 3. ArH+ originates from several small clumps (at ≠ v_{rad}) within the beam
 —> given the current ArH+ lines detections of 3-4σ with APEX, it is possible that we are missing fainter narrow lines at a different radial velocity (v_{rad} between -1000 km/s and 1000 km/s!)

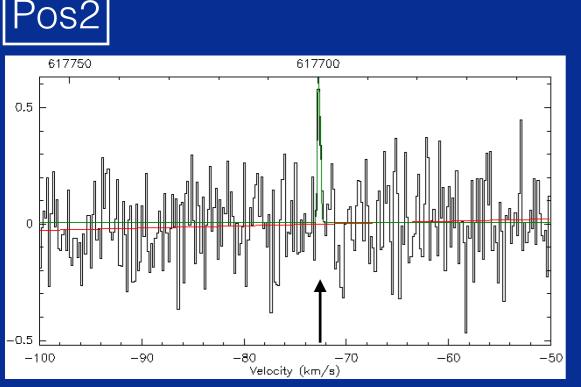
Transient ArH+ emission?

Other than the weak and narrow ArH+, the APEX SEPIA band 9 observations had another **surprising outcome**!

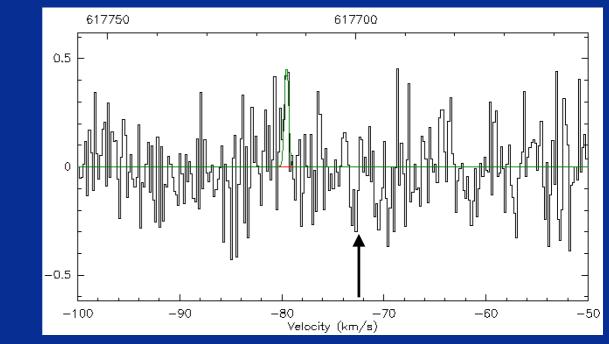

We detected ArH+ in Pos 1 (4 σ) and Pos 2 (3.5 σ) but could not recover it in subsequent visits!!! \longrightarrow ArH+ line emission = TRANSIENT?!?!

OD: July 29, 2016 rms: 0.14 K

Pos1



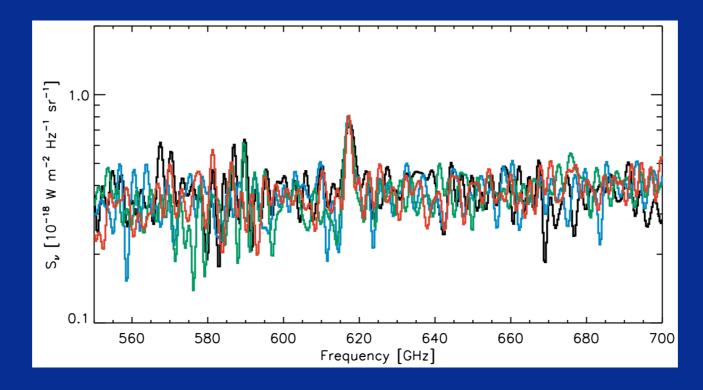
OD: Oct 4, 2016 rms: 0.16 K De Looze+2017 in prep


Transient ArH+ emission?

Although detections are relatively weak $(3.5-4\sigma)$:

- clear detections in several adjacent channels!
- transient nature identified in two positions!

OD: Aug 11, 2016 rms: 0.16 K


OD: Aug 12, 2016 rms: 0.17 K

APEX observations show that ArH⁺ emission in the Crab Nebula is highly variable on time scales of a few months with possible day-to-day variations!!

Transient ArH+ emission?

Herschel SPIRE FTS observations

- → 48 FTS scans in t_{on-source} = 3197s
 - \rightarrow splitting up in 4x 12 FTS scans, we check for variability in SPIRE FTS data

Can models explain variability of ArH+ emission on such short time scales?!

Modelling ArH+ in the Crab

Models constructed with *Mocassin* (ionised gas) + *UCL_PDR* (PDR+XDR) (Priestley+2017 in prep)

Pulsar Wind Nebula (PWN) spectrum (Hester+ 2008)

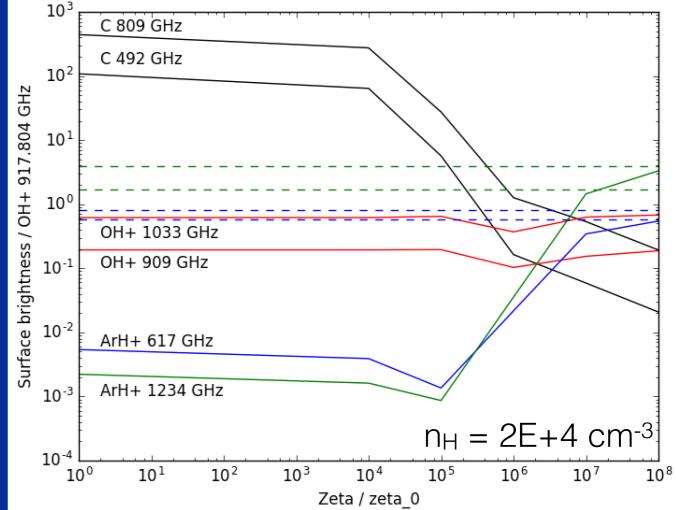
Output spectrum of Mocassin fed into **UCL_PDR**

Input : el. abundances + gas-to-dust ratio (30) from Owen & Barlow (2015)

Parameters :

- cosmic ray ionisation rate: $\zeta = 1, 10^4, 10^5, 10^6, 10^7, 10^8 \zeta_0$ with the standard ISM $\zeta_0 = 1.3E^{-17} s^{-1}$

 gas density: n_H = 2E⁺³, 2E⁺⁴, 2E⁺⁵, 2E⁺⁶ cm⁻³
 cloud depth A_V:


 $A_V = 1E^{-3}, 1E^{-2}, 1$

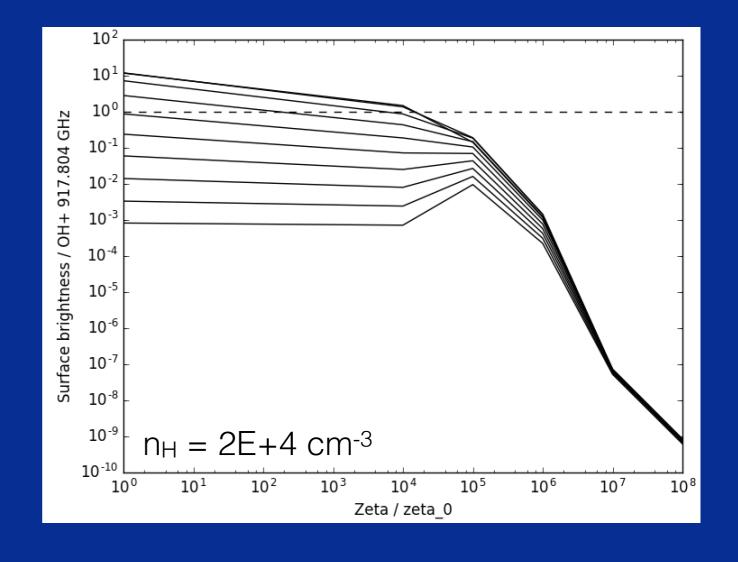
Modelling ArH⁺ in the Crab

Models need to reproduce Herschel SPIRE FTS surface brightnesses + line ratios*!

- ArH+ J=2-1 / ArH+ J=1-0 > 1
- bright OH+ 971 GHz, with weak/no detections of OH+ 909GHz and OH+1033 GHz
- no carbon (492, 891 GHz) or CO (J=4-3 to J=13-12) lines detected

we require: C 809 GHz C 492 GHz 10² - high CR ionisation rate! 917.804 GHz $\zeta > = 10^{7} \zeta_{0}$ 10¹ Surface brightness / OH+ 10⁰ - lower densities OH+ 1033 GHz OH+ 909 GHz 10-1 пн ~ 2-20Е+3 10-2 ArH+ 617 GHz - low A_V, shallow cloud depth ArH+ 1234 GHz 10-3 A_V ~ 1E-3 - 1E-2 10^{-4} 10² 10^{4} 10³ 10⁰ 10¹ (Priestley+2017 in prep)

*Dissociation of ArH+ due to reaction with e- is assumed to have reaction rate 10E-11 cm³ s-1


Modelling ArH+ in the Crab

Non-detection of any CO line emission (J=4-3 to J=13-12) in the SPIRE FTS spectra of the Crab Nebula can only be explained by high cosmic ray ionisation rates $(\zeta \ge 10^7 \zeta_0)!! \longrightarrow$ support results for ArH⁺ and OH⁺

- high CR ionisation rate! $\zeta >= 10^7 \zeta_0$
- lower densities NH ~ 2-20E+3
- low A_v , shallow cloud depth $A_v \sim 1E-3 - 1E-2$

(Priestley+2017 in prep)

Modelling ArH+ in the Crab

What do models tell us about formation/destruction mechanisms of ArH+?

(Priestley+2017 in prep)

 $Ar^+ + H_2 \longrightarrow ArH^+ + H$

- Main destruction channels: ArH+ + H₂ \longrightarrow Ar + H₃+

- Main formation route:

[8E-10 cm³ s⁻¹]

Neufeld & Wolfire (2016)

[8.4x10⁻¹⁰ (T/300K)^{0.16} cm³ s⁻¹]

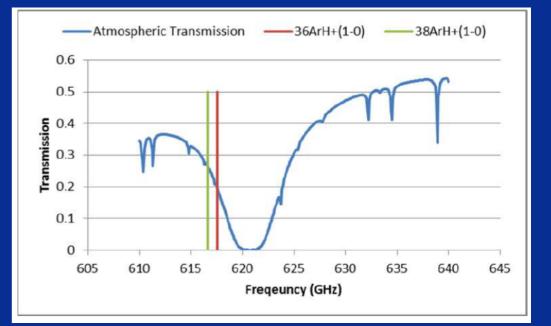
Schilke+ (2014)

n_{H2} = 5 cm⁻³, T = 2000K (10⁷ ζ_0), = 0.2 cm⁻³, T = 6000K (10⁸ ζ_0) → T = 2-40e8s > few yr (too high!!)

 $\begin{array}{rcl} \text{ArH}^{+}+e & \longrightarrow & \text{Ar}+H & [<10\text{E-9 cm}^3 \text{ s}^{-1}] & & n_e = 2000 \text{ cm}^{-3} (10^7 \zeta_0) \\ & & & \text{Mitchell}_+ (2015) & & = 8000 \text{ cm}^{-3} (10^8 \zeta_0) \\ & & & -> 10\text{E}^{-11} \text{ cm}^3 \text{ s}^{-1} & \rightarrow & \textbf{T} = \textbf{1-5e7s} \sim \textbf{100-500 days (!)} \\ & & \text{reproduces line ratios} \end{array}$

 \longrightarrow destructive reactions with e- have time scales of ~10⁷ s (or ~100 days)!

models show that variability of ArH+ emission is possible


Conclusions

- First detection of the noble gas molecule, ArH+, in the Crab Nebula with SPIRE FTS
- APEX SEPIA band 9 observations allow us to resolve ArH+ emission
- ArH+ observed with APEX is weaker + narrower compared to Herschel detections!
 —> we require ArH+ to originate from several small clumps within the beam
- PDR/XDR models with high cosmic ionisation rates (ζ >= 10⁷ ζ₀) reproduce ArH⁺ and OH⁺ emission observed (and non-detections of C and CO lines)
 —> ArH⁺ emission seems to mainly originate from cloud surfaces
- ArH+ is thought to be transient on timescales of months (possibly days)!

 —> dissociative recombination processes with H₂ and e⁻ predict destruction timescales of the order of 100 days

Future outlook

- ArH+ observations require excellent weather conditions !! (due to its location on a water vapour line)
- APEX = excellent facility for ArH+ observations (need to constrain timescale of variability + sample other positions in the Crab)

- Follow-up with ALMA —> spatially resolving clumps within one APEX beam
- Modelling the H₂ emission in the Crab Nebula (H₂ formed on grains in current models, need to include H₂ gas phase processes)
- Probe the ³⁸ArH+ isotope to constrain nucleosynthesis processes in SNe

Big thanks to the APEX staff!

