

A Modeling and Encoding Method for Relative Layout Generation and

Optimization in Manufacturing

Marc Pouly and Jana Koehler

Abstract

Generating optimal layouts or placements of technical components is a computationally intensive
task. The induced optimization problems encounter very large search spaces, which are to be
explored in a systematic or randomized fashion. Whereas many publications discuss modeling
aspects and solution algorithms, little gets published on the actual encoding scheme used to
represent different layouts, despite of the influence of efficient encoding schemes on the overall
project success.

In this article, we present a very compact encoding scheme and efficient encoding algorithms that
describe layouts and placements by the relative positioning of components to each other. Horizontal
and vertical arrangements as well as rotations of components and sub-components can be modeled
and encoded as compact integer vectors. The manipulation of these vectors reduces to counting with
integers, which provides a very efficient foundation for any state-based search algorithm and which
can be easily tailored and configured to the needs of a specific application.

Our encoding fits layout requirements where the relative arrangement of components takes center
stage and specific physical layouts can be computed in a post-processing step. In particular, our
techniques are applicable to manufacturing problems where processing orders of the components
are predefined by the manufacturing processes.

Technical Report 1/2017

DOI 10.5281/zenodo.545773

The Technical Report Series

Technical Reports in this series publish research results and working papers from the School of
Information Technology at Lucerne University of Applied Sciences and Arts covering a wide range of
topics.

Contact

Hochschule Luzern – Lucerne University of Applied Sciences and Arts
Informatik – School of Information Technology

Suurstoffi 41b
Ch-6330 Rotkreuz
Switzerland
www.hslu.ch/informatik

Impressum

Edited by the School of Information Technology at Lucerne University of Applied Sciences and Arts.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License
(CC-BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/deed.en

http://www.hslu.ch/informatik
https://creativecommons.org/licenses/by-nc/4.0/deed.en

1

A Modeling and Encoding Method for Relative Layout Generation and

Optimization in Manufacturing

Marc Pouly Jana Koehler

Lucerne University of Applied Sciences and Arts

School of Information Technology

April 10, 2017

Abstract

Generating optimal layouts or placements of technical

components is a computationally intensive task. The in-

duced optimization problems encounter very large search

spaces, which are to be explored in a systematic or random-

ized fashion. Whereas many publications discuss modeling

aspects and solution algorithms, little gets published on the

actual encoding scheme used to represent different layouts,

despite of the inf uence of eff cient encoding schemes on

the overall project success.

In this article, we present a very compact encoding

scheme and eff cient encoding algorithms that describe lay-

outs and placements by the relative positioning of compo-

nents to each other. Horizontal and vertical arrangements

as well as rotations of components and sub-components

can be modeled and encoded as compact integer vectors.

The manipulation of these vectors reduces to counting with

integers, which provides a very eff cient foundation for any

state-based search algorithm and which can be easily tai-

lored and conf gured to the needs of a specif c application.

Our encoding f ts layout requirements where the relative

arrangement of components takes center stage and specif c

physical layouts can be computed in a post-processing step.

In particular, our techniques are applicable to manufactur-

ing problems where processing orders of the components

are predef ned by the manufacturing processes.

1 Introduction

Many industrial applications require to generate layouts

of technical components in order to place them in a spe-

cif c arrangement for further processing. To solve such a

placement or layout problem, one usually proceeds in four

phases:

1. Elicitation of problem requirements

2. Modeling of the problem

3. Encoding of the model

4. Application of a solution algorithm to solve the en-

coded model and generate one (or several) solution(s)

The research literature mainly deals with the f rst and

last phase in the solution process, often omitting details of

the model and almost never discussing the specif c encod-

ing that is fed into the solution algorithm. In particular,

layout and placement problems are often described with

the focus on the solution algorithm. However, in practice,

compact modeling and encoding techniques signif cantly

contribute to the solvability of a given problem class and

therefore to the success of the overall project. Further-

more, generating layout or placement solutions that meet

all requirements is not enough, but optimal solutions that

minimize or maximize a given objective function are usu-

ally required. Such constrained optimization problems in

general encounter very large search spaces, which are to be

explored in a systematic or random fashion. The size of the

encoding of a single state, the ease by which the state tran-

sition function can be described, and the means to control

the search all inf uence the scalability and applicability of

solution algorithms.

Figure 1: Contribution of the article within the generic

process of solving a placement or layout problem.

In this article, we focus on Steps 2 and 3 of the solution

process as summarized in Figure 1. We discuss a model

and encoding that we believe is of interest to many layout

and placement problems. Our work was originally moti-

vated by a problem of placing technical components in a

manufacturing environment with a predef ned processing

order caused by the design of the manufacturing tools. We

will discuss this class of problems in more detail in Sec-

tion 3. However, our method can also be benef cial to other

types of layout problems where the relative positioning of

layout components can be investigated independently, and

their concrete physical positioning can be derived from the

Placement /
Modeling

relative positioning

Layout Problem
framed components

e.g. from manufacturing
arrangement lines

Encoding

permutation

orientation

shift

Solution Algorithm

e.g. constraint

programming

Scope of this paper

2

Rotation: 0°

relative positioning in a post-processing step.1 In order to

make the class of problems more clear and to introduce the

key ideas of our modeling and encoding methods, let us

look at the example shown in Figure 2.

Components also possess an orientation specif ed in de-

grees and can rotate around their reference points. In Fig-

ure 4, the components 2 and 0 (the man and the sun) are

rotated by 0 degrees, whereas component 1 (the group of

birds) is rotated by 25 degrees. We will show later in this

article how component orientations can be very compactly

encoded by integers, which allows us to eff ciently enumer-

ate possible rotations.

Figure 2: A layout scene with three components.

Figure 2 shows a scene of 3 components, a man with

a hat, a group of birds, and a smiling sun, for which we

want to compute different possible layouts. Our method is

applicable if the components can be characterized by rect-

angular frames as shown in Figure 3. Furthermore, each

component is assigned a vertical reference line. This refer-

ence line can for example be placed on the center point of

the frame or any other point within the framed area, i.e., its

exact positioning can be arbitrary. Each component has a

unique identif er. In our method, we simply enumerate the

components with integers 0 1 2. The relative horizontal

placement of the components with respect to each other is

described by a permutation vector of these three integers.

The permutation vector describes the order in which we en-

counter the reference lines when performing a left-to-write

sweep over the 2-dimensional plane.

Figure 4: Orientation of layout components.

Of course, a simple vertical placement and orientation

of components is not suff cient for many applications,

which usually require that components are also horizon-

tally aligned with each other. Such a horizontal align-

ment should not be limited to the boundaries of the com-

ponent frames, but should allow designers to specify ar-

bitrary alignment points. In Figure 5 we can see that one

alignment point has been added to the mouth of the sun and

another one has been added to the upper wing of the mid-

dle bird. Horizontal arrangement lines are drawn through

these points. Moreover, the designer imposed a layout con-

straint on the two components by mutually aligning the two

arrangement lines. We speak of a relative alignment be-

tween the two components because their exact (absolute)

positioning on the plane does not matter, i.e., if one com-

ponent is shifted vertically, the position of the other com-

ponent must be adapted.

Figure 3: Object frames and reference lines encoded by the

permutation (2 0 1).

1Our method was originally developed for 2-dimensional spaces and

vertical layouts only. However, mixed vertical and horizontal layouts can

also be generated if the layout problem is separable as we discuss in Sec-

tion 8.

Figure 5: Relative horizontal alignment of components

through arrangement lines.

The alignment pair (1 2) specif es that the two compo-

nents 1 and 2 are to be aligned with respect to each other

and ensures that if one component is shifted by say 10 units,

the very same shift must be applied to the other component

as well. An arbitrary number of such arrangement lines

can be added to components, thus allowing for an arbi-

trary number of horizontal layout constraints represented

Rotation: 25°

Compo

nent 2

Compo

nent 1

Compo

nent 0

Rotation: 0°

3

by alignment pairs. For this purpose, our method intro-

duces the modeling concept of an alignment graph between

components and provides an eff cient encoding by Prü fer

codes.

With the permutation (2 0 1), the orientation (0 25 0)

and the alignment pair (1 2) our relative layout in this in-

troductory example is fully specif ed. It is clear that many

physical layouts can be generated from this relative layout

or, in other words, many different physical layouts realize

this relative layout. Any physical layout that preserves per-

mutation, orientation and alignment is considered a valid

instantiation. Two such possibilities are shown in Figure 6.

(a) Moving the man to the left

(b) Moving the man to the right

and to the top

Figure 6: Layouts can be freely generated as long as per-

mutation, orientation, and alignment constraints are re-

spected.

In the left sub-f gure of Figure 6, the man is moved to

the left, but its reference line must remain right of the ref-

erence line of the sun to preserve the specif ed permutation

of components. The sun and group of birds are correctly

aligned. Their alignment is also preserved in the right sub-

f gure, where the man is moved to the top and to the right,

but its reference line must remain left of the bird group’s

line. Hence, both physical layouts are valid instantiations

of our relativ layout. In summary, our modeling approach

relies on the following concepts:

Objects are represented by rectangular frames.

Their relative positioning is characterized by the con-

cepts of permutation, orientation, and alignment.

It may seem counter-intuitive to the reader that the two

physical realizations in Figure 6 are considered equivalent,

given the rather different positioning of the man. In fact, we

will later introduce the additional concept of a processing

order that, when present, will separate these two realiza-

tions in different equivalent classes of physical layouts.

For each modeling concept (including the here miss-

ing processing order), we develop very compact encodings

based on integers. This means, when enumerating differ-

ent layouts, we can simply count with integers, which pro-

vides a very eff cient foundation for any solution algorithm

and makes it very easy to enumerate the search space of

all placements. On the one hand side, this can be used to

generate and test placements in combination with standard

search procedures and various optimization criteria. On

the other hand, more sophisticated optimization methods

can be obtained by combining our modeling method and

encoding scheme with e.g., constraint programming over

f nite domains or other well-established optimization tech-

niques.

The class of placement and layout problems to which our

method is applicable, satisf es the following assumptions:

The problem consists in placing components on a

plane having a global coordinate system with a ref-

erence point.

Components (and distinguished sub-components in-

side components) can be framed and abstracted by

rectangles with a reference point and given width and

height.

Arrangement lines that are added to components are

suff cient to express constraints of horizontal align-

ment for components.

Components must not satisfy specif c requirements of

overlap with or distance from each other. We usu-

ally do assume that components must not overlap in

manufacturing, but when moving (rotated) compo-

nents within the specif cation of a relative layout, it is

possible that some physical layout instances contain

overlapping components. It is up to the application

to control how specif c physical layout instances are

obtained from our generated relative layout during a

post-processing phase.

Relative layouts represent equivalence classes of

physical realizations that are def ned by the horizon- tal

positioning, orientation, and mutual alignment of

components only. We will later bring in the concept of

processing sequences as additional element to distin-

guish the relative vertical positioning of components.

We would like to emphasize once more that only

the relative placement of components with respect to

each other matters in our method and that two physical

layouts are considered different only if their relative layout

(permutation, orientation, and alignment) differ (under the

pre-def ned processing order). Our method thus abstracts

from the absolute or geometric placement of components

on the plane. In fact, one relative placement enumerated

by our method represents many specif c geometric layouts.

We do not consider the generation of such specif c geo-

metric layouts of a given placement in this article. It can

be added as a post-processing step and is generally highly

application-specif c.

The article is organized as follows: We proceed with a

review of related work in Section 2 to further detail out the

contribution and positioning of our method in the light of

other approaches. Then we consider in more detail place-

ment problems under processing sequences and discuss ex-

amples from industrial manufacturing in Section 3. This

section formally characterizes the class of placement prob-

lems that we consider and discusses the notion of equiv-

alence of placements induced by the predef ned process-

ing order. Readers interested in f nding out if our method

works for their layout problems, can skip this section and

directly proceed to Section 4, which introduces the key

elements of an integer-based encoding for (equivalence

classes of) component placements and gives an overview

on the algorithms used to generate placements. Section 5

presents the details of the encoding algorithms and illus-

trates them with examples. In Section 6 we explain how

physical layouts of components can be obtained from the

encoded placement representation. In Section 7, we dis-

cuss how the proposed encoding scheme can be embedded

into an exhaustive or local search approach to directly gen-

erate component placements that satisfy instance-specif c

constraints and that are optimal with respect to a given ob-

jective function. We also brief y sketch how to use our en-

coding in combination with other optimization techniques

such as constraint programming. In Section 8, we discuss

how our method can be applied to generate mixed horizon-

tal and vertical placements. We conclude with an outlook

on current work in Section 9.

2 Related Work

We consider a placement problem in the context of indus-

trial manufacturing where the intended processing order of

the technical components inf uences the placements that we

need to generate. Under a predef ned processing order, cer-

tain placements fall into the same equivalence class and

therefore, only one representative of each class needs to

be investigated, for which it is suff cient to only consider

the relative placement of components to each other. We

have not been able to identify related work in the literature,

which would combine layout requirements with technical

processing orders.

Layout problems consider specif c geometric arrange-

ments of objects in a two- or three-dimensional space. Our

model and encoding is applicable to layout problems if the

relative placement of objects that we enumerate is suff -

cient to characterize a layout and if the specif c geometric

arrangement of objects can be computed in a separate post-

processing step. Usually, our relative placement represents

an inf nite set of specif c geometric layouts satisfying the

generated permutation, orientation, and alignment. It is up

to the application and details of the post-processing which

layout from this inf nite set will be instantiated.

Layout problems are studied in several f elds of com-

puter science and consequently, the literature on this prob-

lem is vast and spread across numerous conferences and

journals. The two most important f elds are graph layout

and VLSI design, see [25, 9] for selected overviews on

these two f elds.

Our approach does not focus on solving the compaction

problem, i.e., it does not directly generate placements of

minimal size as they are for example required in VLSI de-

sign, but instead solely generates relative component place-

ments that satisfy specif ed object alignment and orienta-

tion relations. Therefore, our method can still generate

valid layout candidates in such application contexts, but the

compaction of a placement must be added as a post-proces-

sing step removing white space or gaps, while preserving

the relative placement. This may not be very effective as

the separation of layout candidate generation and posterior

compaction may hinder an application to directly steer a

solution algorithm towards layouts of minimal size.

Layout problems have also been studied in relation with

graphical user interfaces, for example when placing win-

dows on a computer screen [16]. With the emergence

of the world wide web, layout problems also occur when

designing or generating web pages [4]. The ACM con-

ference series on Advanced Visual Interfaces [1] gives a

good overview on different approaches. In the context of

computer graphics, layout problems have also been stud-

ied when printing labels [2]. Document layout has been in

the focus of researchers for quite some time and is often

using a “grid and boxes”-based approach [15]. Our place-

ment method shares a similar “grid and boxes” approach

as we also abstract our technical components by rectangu-

lar frames and use arrangement lines to specify additional

reference alignment points. Newer variants of layout prob-

lems occur in the context of design mock-ups, see for ex-

ample [7]. More generally, information presentation often

requires to address placement or more general layout prob-

lems, see [19] for an overview of activities until the year

2000.

Constraint-based layout has been of particular interest to

intelligent graphical editors that preserve spatial relation-

ships between graphical elements, i.e., that move a set of

related elements when one element is moved. Constraint-

based layout, however, studies a very different problem

where a user works with an editor moving around objects,

and constraints are used to move connected objects along

or to detect that certain move operations are not valid, see

for example [3]. We share with these approaches the repre-

sentation of objects using rectangular frames and arrange-

ment lines, but differ signif cantly in the class of layouts

that we enumerate and which are restricted to the equiva-

4

lence classes under our predef ned processing order. Fur-

thermore, general layouts would also allow or require that

objects overlap in specif c ways, which we cannot express

in our method as this does not occur in the class of man-

ufacturing problems that we consider. Our modeling con-

cepts place object relative to each other, but do not allow to

express specif c geometric values or distances.

In the context of industrial manufacturing, facility layout

is a widely studied problem, see for example [18, 14, 13]

for recent pointers to the literature and a discussion of the

problem and potential solution approaches. Facility layout

is becoming a more dynamic problem with the increasing

f exibility of modern manufacturing approaches and trends

such as mass customization, rapid product changes and

adaptable processes. Production facilities need to be re-

arranged and relocated to minimize production times and

material-f ow costs. At the same time, the cost for dynam-

ically changing the facility layout should be minimized.

The dynamic facility layout problem is related to our place-

ment problem under a predef ned processing order. In our

manufacturing application, we are seeking a processing or-

der of minimal production time over a large set of possi-

ble layouts, which is in fact similar to the facility layout

problem. In other words, we search to generate a layout

that leads to a minimal-time processing order. Require-

ments for the processing order are specif ed by numerous

constraints describing properties of machines and manu-

factured products. In our application, we are able to ab-

stract the layout problem to a model of relative positioning

of objects and we can use very compact integer-based en-

coding techniques. Some of our techniques could be help-

ful to encode some aspects of facility layout problems and

to effectively control the heuristic search approaches that

are discussed in [14]. For example, describing seeds for

local search methods or directing a search algorithm into a

specif c direction becomes easy when applying our integer-

based encoding. However, our emphasis is on the relative

placement of objects (machines, products) to each other,

but less on assigning facilities to locations. This assign-

ment problem, which constitutes the core of dynamic facil-

ity layout, completely abstracts from geometric details and

focuses on material f ow costs between locations.

Cable network layout problems constitute another class

of layout problems of technical components, see for exam-

ple [20]. A recent application of spanning trees to optimize

the layout of sewer systems is described in [5]. In this ap-

proach, cyclic graphs are cut into trees and the search space

of possible spanning trees of low maximum path length is

explored to f nd high-quality placement solutions. Span-

ning trees are commonly used to solve general graph lay-

out problems and are more specif cally used in VLSI de-

sign to solve routing problems [24]. We share with these

approaches the idea to use spanning trees to encode layout

relationships between objects, which in our case represent

the alignment of components.

A manufacturing problem, that is related to the class of

problems we consider, is the problem of punching metal-

lic sheets where punches are applied in specif c orders to

a sheet in order to cut out holes [12]. The arrangement of

these holes has a signif cant inf uence on the sequence of

the punching operations and, when using progressive dies,

the order in which dies can be applied is constrained. How-

ever, as we are not experts in this f eld of application, we

were not able to determine precisely to which extent our

method could be benef cial for this class of problems. If

there is some freedom in the arrangement of the wholes

during the design of metallic sheets, our method could be

applicable to explore options in the sheet design.

Decomposing a larger layout problem into sub-problems

and then overlaying the individual solutions to obtain an

overall solution is a common technique and instantiates the

divide-and-conquer principle in the domain of layout prob-

lems. VLSI lithography approaches among many others

heavily rely on this technique. Similarly, we present an

approach where we develop three eff cient computational

sub-procedures to generate solutions for different aspects

of our placement, which we model by permutation, orien-

tation, and shift. We are able to obtain the complete spec-

if cation of the placement by a simple combination of the

solutions to each of the aspects.

3 The Class of Placement Problems

under Predef ned Processing Or-

ders

Typical manufacturing problems consist of a sequence of

processing operations that have to be applied to compo-

nents in a specif c order. The components to be processed

are usually arranged with the help of f xtures such that ma-

chines (or humans) can apply the required processing op-

erations. Depending on the manufacturing problem, the

placement of the components can be straightforward with

no or only very few placement options. However, quite

often many degrees of freedom for placing components ex-

ist, making the placement problem a challenge in itself as

its solution inf uences the available options to achieve an

optimal sequence of process operations. The sequence of

processing operations usually must obey a predef ned set

of hard constraints that enforce a partial processing order.

These hard constraints origin from two sources. First, the

type of processing operation that must be applied, e.g., drill

before paint. Second, the construction of machines that

can restrict how certain of its parts can move, e.g., grip-

pers, jet nozzles or other tools. Typically, some of these

hard constraints are specif c to the problem or application

area, but independent of a concrete problem instance, while

others only apply to particular problem instances. Once a

partial processing sequence has been found that satisf es

these hard constraints, the sequence can be completed by

taking additional optimization criteria into consideration.

Finding such a sequence that optimizes some multi-criteria

objective function is a key requirement when automating

applications in industrial manufacturing. Finding a good

5

6

A B C G H

D E F I J K

placement of components that enables optimal, e.g., low-

cost, processing sequences is a problem in itself and can

be quite challenging when many degrees of freedom exist.

Often, the available placement options lead to a combinato-

rial explosion in the number of possible placements and for

each possible placement, an optimal processing sequence

must be searched. It is thus of interest to have algorithms

at hand that can generate and evaluate placement options in

an eff cient and compact manner.
In this article, we investigate a class of manufacturing

because of the f ow direction of paint or other coating ma-

terials. If the processing involves different colors or coat-

ing materials, the robot will likely paint components in one

color f rst, then change the paint and color the remaining

surfaces. Both constraints def ne a partial processing order

again. They are specif c to the problem, i.e., painting parts

on a vertical surface, but independent of the actual problem

instance, i.e., the specif c components to be painted.

problems that is characterized by the following properties: A C

One or several operating tools move in a predef ned

order as a consequence of design and construction.

The tools perform processing tasks on technical com-

ponents that are to be arranged in a specif c place-

ment. Each placement potentially induces a different

processing sequence under the predef ned order.

Each processing sequence can in turn be evaluated

with respect to different optimization criteria.

3.1 Typical Examples of Placement Prob-

lems

Figure 7 shows the bird’s eye view of a conveyer belt on

which components are placed for further processing by

tools, e.g., a soldering rod that is installed above the belt.

The belt moves from left to right, whereas the tools move

from one side of the belt to the other performing their

processing or assembly tasks, i.e., top to bottom in this

view. The movement of the tools and the belt is given by

construction, inducing a predef ned top-down, right-to-left

processing order that is specif c to the problem, i.e., the

assembly line work, but independent of the actual prob-

lem instance, e.g., the specif c processing operations on the

components placed on the belt. The placement of compo-

nents on the belt can be freely chosen such that different

processing sequences can be realized under the predef ned

processing order.

B D

Figure 8: A spray robot following a left-to-right, top-down

processing order.

Another important family of applications is illustrated

in Figure 9. It originates from the automated manufactur-

ing of switchboards or electrical cabinets, where process-

ing consists in wiring a possibly large number of electri-

cal components or devices. Usually, the components to be

wired are arranged on an upright positioned board. The

placement of the components has to satisfy certain con-

straints. For example, some components are to be placed

at the bottom of the cabinet to be close to certain connec-

tors, or there may be constraints on wire length such that

the corresponding components must be close to each other.

These are constraints with respect to a specif c problem in-

stance, namely the specif c switchboard or electrical cabi-

net that is manufactured. In addition, wires may occlude

components once they are added to the cabinet. This is

a natural consequence of gravity when connecting verti-

cally placed components with wires, which is independent

of the specif c product to be assembled. Hence, a human

or robot plugging wires will obey a bottom-up process-

ing order to generally avoid the occlusion of components

that need to be accessed later in the processing sequence.

Moreover, a left-to-right processing order can result from

requirements of production safety. For example, a robot

belt movement direction components
arm should avoid moving over wired connections as it risks

to get caught. Therefore, when assuming that the robot is

fed with wires from the right-hand side, it will follow a

left-to-right processing order. The constraints for improv-

ing production safety are independent of the actual prob-

lem instance, i.e., the exact wiring of a specif c electrical

switchboard. The placement of the electrical components

on the board can be changed within the placement-specif c

movement of processing units

Figure 7: A conveyor belt with processing tools dictating

a top-down, right-to-left processing order.

Figure 8 illustrates another typical application scenario.

A robot spraying components of a technical device, e.g., a

car body, will likely follow a top-down processing order

constraints to evaluate different processing sequences with

respect to the given processing order and additional wiring-

specif c constraints and optimization criteria.

Finally, let us brief y mention an example not from

manufacturing, but agriculture. A farmer who is culti-

vating different patches of land with a sowing machine

will avoid crossing already processed patches. Likewise

when applying herbicide, the farmer is recommended to

7

B A C F C

Figure 9: A schematic wiring of an electrical cabinet.

Hanging wires occlude components such that a bottom-

up processing order must be followed. A left-to-right or

right-to-left order is often desirable for production safety

reasons.

a potentially different processing sequence, see Fig-

ure 10.

Figure 10 illustrates how two possible component place-

ments generate different processing sequences. In the sit-

uation displayed in this f gure, we have 6 components and

therefore 6! = 720 possible processing sequences. For each

sequence, we can easily f nd a corresponding placement of

components that induces a specif c sequence under the uni-

versal left-to-right, bottom-up order.

process patches following an upwind order for health rea-

(0,0)

(0,0)

sons. Again, such constraints are specif c to the problem,

i.e., application of herbicide, but independent of the actual

problem instance, i.e., the farmer’s plot of land with spe-

cif c patch locations.

The distinction between constraints specif c to the prob-

lem and those specif c to a concrete problem instance is

crucial. The f rst class applies to all problem instances,

such that every processing sequence that is considered as

a solution to any problem instance must satisfy these con-

straints. We assume such a predef ned order arising from

a set of problem constraints and, as suggested above, de-

rive different processing sequences by changing the place-

ment of components for a specif c problem instance. This

yields a simple equivalence relation of component place-

ments: Two placements are equivalent if, and only if, they

lead to the same processing sequence of components under

the given processing order.

Figure 10: Two possible placements of components that

lead to different processing sequences under a left-to-right,

bottom-up processing order: A B C D E F

for the left-hand placement and F C B E A D

for the right-hand placement.

Assuming a left-to-right, bottom-up universal process-

ing order for the tool comes without loss of generality since

other processing orders can be taken into account by ref ec-

tion and rotation of the plane. For example, a top-down,

right-to-left processing order can be transformed into a left-

to-right, bottom-up processing order by ref ecting the plane

horizontally followed by a 90 rotation, cf. Figure 11 for il-

lustration.

3.2 Equivalence of Placements

Let us capture this particular class of processing problems

Reflection

Rotation

more precisely:

A tool processes components placed on a two-

dimensional plane or grid. The exact dimensions of

this plane do not matter. We only assume a global co-

ordinate system with a reference point. Components

can be framed and thus abstracted by rectangles with

a reference point and given width and height.

Components to be processed must be accessible for

the tool and therefore must not overlap each other.

There is a universal set of constraints def ning an or-

der that every valid processing sequence must obey.

Without loss of generality, we assume a left-to-right,

bottom-up processing order of the tool motivated by

our introductory examples.

Given the universal left-to-right, bottom-up process-

ing order, every placement of components induces

Figure 11: A top-down, right-to-left movement of the tool

turned into a left-to-right, bottom-up processing order by

ref ecting the plane horizontally followed by a 90 rotation.

Conversely, there are many placements inducing the

same processing sequence as illustrated in Figure 12.

These placements are considered equivalent with respect

to the predef ned processing order.

For each placement of the kind in Figure 12 we can eas-

ily f nd a horizontal alignment of components that gener-

ates the same processing sequence. This means that in

principle, it is suff cient to place all components in one hor-

izontal line, in the example A B C D E F , to obtain the

same processing sequence. Consequently, using the ver-

tical dimension for placing components does not generate

new, non-equivalent processing sequences. We will exploit

this property later in our algorithms to arrive at the desired

compact encoding, see Section 5.

A E B F E D

D

E F

C D

A B

A B

C D

E F

A

B

C

D

E

F

8

horizontal edge of each processing area with the help of an

arrangement line. So-called arrangement lines or phantom

lines have been commonly used in the description of layout

problems to describe additional constraints of arrangement

for parts of graphical objects, see for example [8].

(0,0)

(0,0)

(0,0)

Figure 12: Three placements that induce the same process-

ing sequence under a left-to-right, bottom-up processing

order, i.e., A B C D E F . These placements

are therefore considered equivalent.

3.3 Dealing with Multiple Processing Areas

Within Components

So far, we only considered components without any inner

structure. In many technical applications, however, a com-

ponent contains multiple processing areas and the manu-

facturing steps operate on these areas. For example, when

modeling problems from soldering or from the wiring of

electrical components, we usually have several soldering

points or cavities per component, whose geometric posi-

tions inside the component are static. In such a situation,

we can obtain new processing sequences by rotating com-

ponents as illustrated in Figure 13. It might of course hap-

pen that some components are too wide, e.g., to be turned

by 90 degrees and would then either overlap with other

components or range beyond the space on which they can

be placed. Such constraints are specif c to the problem in-

stance and can be thrown in as additional hard constraints

at a later moment.

yA

yC

yBD

yEG

yFH

Figure 14: Complex component placements with process-

ing areas are modeled with the help of arrangement lines.

Reading arrangement lines along the predef ned order gives

the processing sequence. In this example: F H E

G B D C A.

In the example in Figure 14, the line yBD denotes the

common arrangement line of areas B and D, whereas yC

refers to the arrangement line of processing area C, which

are all part of the same upper-left component. Similarly,

lines yEG and yFH specify arrangement lines of the areas

E, G and F , H within the lower-right component. The pro-

cessing order for Figure 14 is F H E G B

D C A. Note that we only need to enumerate pro-

cessing areas along the arrangement lines in the predef ned

left-to-right, bottum-up order.

Next, imagine that the right-hand component in Figure

14 is moving upwards. As long as we move just a little bit,
(0,0) (0,0) (0,0)

the processing sequence does not change. In other words,
we still have an equivalent placement of components under

Figure 13: In case of multiple processing areas per compo-

nent new processing sequences are obtained from rotating

individual components. For the left-most example the in-

duced processing sequence is A B C D, for the mid-

dle example it is D C B A and for the right-most

example the processing sequence is B C A D.

We argued above that only the relative geometric place-

ment of components with respect to each other matters,

and that it is suff cient to consider only horizontal align-

ments of components when counting equivalence classes

or searching for non-equivalent placements. The situation

becomes more sophisticated when components with mul-

tiple processing areas are involved. Consider the example

in Figure 14 with two components having 4 processing ar-

eas each. Assuming that each processing area can also be

framed and abstracted by a rectangle, we refer to the lower

the universal order. Sooner or later, however, the arrange-

ment line yEG of the right-hand component will match the

arrangement line yBD of the left-hand component leading

to the situation displayed in Figure 15. This placement is

not equivalent anymore to the one in Figure 14 as the pre-

def ned order induces now a different processing sequence

F H B D E G C A.

When we keep moving the right-hand component up-

wards, the processing sequence again does not change until

two other arrangement lines match, producing the situa-

tion in Figure 16 with processing sequence F H B

D C E G A. We conclude from this observation

that the relative vertical alignment between (the processing

areas of) components can be represented by arrangement

lines. The number of different processing sequences cor-

responds to the possible number of mutual alignments of

arrangement lines between the processing areas.

Component 0 Component 1

A B

C D

D E

B A C

F

B A

E F

C D D

E

B A C

F

Component 0 Component 1

Component 1 Component 0

C

D

A

B

E G

F H

A

B

C

D

9

K
Component 0 M

L

yA

yC

yBD EG

yFH

(0,0)

Component 2

Component 1

yD

yB

yE = yFG

yAC

yH = yK

yLM

yIJ

Figure 15: Alignment of arrangement lines yBD and yEG

induces processing sequence F H B D E

Figure 17: Placement encoded as permutation vec-

tor (0 2 1), orientation vector (2 0 1) and shift vector

(0 180 200). The processing sequence under the uni-

G C A. versal order is J I L M H K C A

 E G F B D.

yA

yC EG

yBD

yFH

Figure 16: Alignment of arrangement lines yC and yEG

gives processing sequence F H B D C E

G A.

4 Essential Elements of the Place-

ment Encoding and Algorithm

Our discussion has shown that non-equivalent placements

of components under the predef ned processing order of

a tool can be obtained by solely changing the orientation

and the horizontal positioning of the components combined

with the mutual alignment of the processing areas, which

are abstracted by their arrangement lines. This property al-

lows us to describe a placement equivalence class by three

different vectors and to devise independent algorithms for

each computational problem represented by each vector.

Let us consider the example in Figure 17. Our encod-

ing of this example begins with the vector C = (c0 c2 c1)
where each component is identif ed by a name c0 c1 c2 and

a relative horizontal position. The vector states that com-

ponent c0 is at the horizontal position 0, component c2 is

at position 1 and component c1 is at position 2. In the fol-

lowing, when we speak of a component k, we mean the

component at position k in this vector. Every permutation

of components in this vector leads to a new processing se-

quence with respect to the predef ned order and therefore

to a non-equivalent placement.

Furthermore, new placements can also be created by ro-

tating components with more than one processing area and

express these rotations by a second vector. We assume that

components can commonly be turned by 0, 90, 180, or 270

degrees without loss of generality. Other angles are possi-

ble and can be expressed as multiples of a common basis.

In the present example, the basis is 90 degrees. For each

component we only need to express the number of turns

in the corresponding basis, e.g., 0 standing for 0 degrees,

1 standing for 90 degrees, 2 standing for 180 degrees and

so on. In the example, component c0 has been turned two

times, component c1 has not been turned, whereas compo-

nent c2 has been turned once.

Finally, components are moved up or down by a verti-

cal shift of the component arrangement lines to create new,

non-equivalent placements. The shift is described by some

distance measured in the underlying coordinate system. In

the example, component c0 is aligned along the X-axis of

the plane, component c1 is shifted by 180 units, and com-

ponent c2 is shifted by 200 units. Remember that only

the mutual alignment of arrangement lines can reveal non-

equivalent placements.

Hence, placements are encoded as three independent

vectors for permutation, orientation, and arrangement line

shift, respectively. For the example in Figure 17, we ob-

tain the following vectors to encode a complex placement

with three components and 13 processing areas A to M with

arrangement lines depicted as dotted lines.

permutation (0 2 1) means that component c0 is at

position 0, component c1 is at position 2, and compo-

nent c2 is at position 1.

orientation (2 0 1) means that component c0 is turned

by 180 degrees, component c1 is turned by 0 degrees,

and component c2 is turned by 90 degrees (assuming

a basis of 90 degrees).

shift (0 180 200) means that component c0 is

aligned along the X-axis of the plane, component c1

is shifted by 180 units, and component c2 is shifted

by 200 units. Here, the shifts were chosen such that
arrangement line yE of component c0 is aligned with

arrangement line yFG of component c2, and arrange-

ment line yH of component c2 is aligned with arrange-

ment line yK of component c1.

C

D

A

B

E G

F H

C

D

A

E G
B

F H

G

H

J
 I

F

10

Ibis vector representation not only devises a very com­

pact encodingthecomplexplacing problem For each vec­

tor, an independent algorithmic procedurecan be devisecl

that enumerates the desired (or altematively all) permuta­

tions, orientations, andshifts. In addition, a placement can

be easily controlled1hroughthevector representation. For
example, if a specifc component k must always occupy

thetbird position inasetup, theordervector is constrained

to contain the number 3 at its k-th position. Likewise, if

a component only contains a single processing area, such
that wecannot obtain newequivalence classes by rotation,

thecorresponding positionintheorientationvectoralways

containsthenumber 0.

Algorithm1 gives an overview on how these three pro­

cedures play together to generate all possible placements

undera predef nedprocessing order.

Input: sei ofm E N components

Output: optimal placementofthecomponents

best oo;
candidate null;
foreac.hp : pennutation ofcomponnetsdo

foreach o : orientation of components do
foreachs: shifl for thealignment of
arrangementlinesdo

1 placement generate(p, o, s);

end

end

end
retwu candidate;

Algorithm 1: Exhaustivesearch foroptimal placements.

Thealgorithm usesthreesub-proceduresto compute the

order, orientation, and shift of each component. When
combinedinanexhaustivesearchskeletonas shownabove,

1his algorithm enumerates all possible placement.s Of

course, such an exhaustive generate-and-test approach is
prohibitive in many applications due to a !arge number of

potential placements anda complex evaluation procedure.

However, thepresented compactencodingandtheabilityto

easily control which oftheplacements aregenerated,facil­
itates the development of application-specif c algorilhms,

which can easily trade completenessfor performance and

only generate promisingplacements controlled by heuris­
tics!hat govemcertainvector values. In thefollowing, we

look at each of the algorilhms for the sub-procedures in

moredetail.

5 Details of the Placement Genera­

tion Sub-Procedures

In the previoussection, weintroduced 1hree vectors to en­
code the relative placement of a sei of components with
processing areas in a very compact formal. We also

sketched anexhaustive searchalgorithmto compute place­

ment candidates, which usesthreesub-proceduresto com­

pute the order, orientation, and shift of each component.

Thesesub-proceduresrely on thefollowing algorilhms:

• permutation: an iterativealgorithm well-knownftom
theliterature,

• orientation:a simple enumerationofpossible orienta­
tionsencoded as integers,

• shift: a computation of possible arrangement line

matchings based on spanningtreesand Prüfer codes.

Whereasthef rst twoalgorithmsarestraightforwardand

can be directly taken ftom theliterature, the computation

of the shifts is more elaborate, butcan also be effectively

achievedbya verypowerfulandoriginalalgorithm!hatwe

presentfurther below.

5.1 Generating the Permutation

Eachcomponentis encodedbyitspositioninthehorizontal
component vector. Hence, togenerateall possible horizon­
tal alignments of components, weneed togenerateall pos­

sible permutationsof a se i { l ,.. .,n} of numbers. Existing
algorilhmsexploit thefact!hatpermutationscanbe ordered
lexicographcially. For example, for thenumbers {1,2, 3}
1his order is: (1,2, 3) -t (1,3,2) -t (2, 1, 3) -t (2,3, 1) -t
(3, 1, 2) -t (3,2, 1).

Giventhei-th permutation in thelexicographicorder, an
iterativealgorithmcaneasilyproducethenextpermutation

i + 1 for 1 $ i $ n!. Ibis makes it possible to enumerate
all permutations infactorial time O(n!), but constant space

0 (1). The following pseudo-code can be found in most

textbooks on algorithms [17). lt takes a permutation vec­

tor a O as input and generates the next permutation in the

lexicographic order.

L Findthelargestindexksuch!hat a[kj < a[k + l] . Ifno

such indexexists, thepermutation is thelastpermuta­
tion.

2. Find the largest index I such !hat a(kj < a(IJ. Since

k + 1 is such an index, 1 is well-def nedand satisfes

k < /.

3. Swapa(kj witha[IJ.

4. . Reverse thesequence ftom a[k + l] up t o and includ­

ingthef nal elementa[n].

Step 1 identif es an index k such!hatswapping onlyel­

ementswith indexstrictly higherthank cannot give a new

permutation !hat is lexicographically !arger. To advance

to the next permutation, one must increase a(kl. Step 2

fnds the smallest valuea[IJ toswap with a(k). The small­
est value is necessary to f nd the next permutation in the

lexicographic order (and notany other!arger permutation).
Reversing thesubsequence in Step 4 thenproducesthelex­
icographci allyminimal permutation!argerthanthecurrent.

11

5.2 Generating the Orientation

To eff ciently generate all orientations of components in

a setup, we adopt the encoding known from binary num-

bers. Let us assume that m rotations are possible for n

different components. This requires to generate mn ori-

entation variants. For exhaustive search, we use an al-

gorithm that counts from 0 to mn 1. Each generated

number is interpreted as the encoding of a vector of base

m, which directly gives the number of turns for all com-

ponents. For example, let us again assume the possible

orientations 0, 90, 180, and 270 degrees. For a compo-

nent vector of size 3 we obtain 43 = 64 different orienta-

tion variants. By counting from 0 to 63 we can generate

the vectors (0 0 0)4 (3 3 3)4 where 0 means that all 3

components are 0 rotated, whereas (3 3 3)4 means that all

components are 270 rotated. The subscript m = 4 refers to

the number of possible rotations, such that each vector can

be interpreted as a base-m encoded integer. For example,

if variant number 57 is requested, we simply encode 57 in

base-4 and obtain (3 2 1)4. This corresponds to the setup

where the f rst components is 270 rotated, the second is

180 rotated, and the third is 90 rotated. For local search,

we randomly draw a number from 0 63 and proceed

identically.

5.3 Generating the Shift

We compute the shift for the vertical alignment of compo-

nents and their selected arrangement lines in two steps.

First, we introduce the notion of an alignment graph

to represent the desired vertical alignments of the compo-

nents only. Each component corresponds to a node in this

graph labeled with the index of the component. Two nodes

are connected if the corresponding components are aligned

with respect to some, not yet further specif ed pair of ar-

rangement lines.

Second, we enrich the alignment graphs with an array

specif cation that tells us exactly which of the arrangement

lines of the components are aligned with each other. We

discuss the computation of these arrays in Subsection 5.3.2

further below, but let us f rst focus on the alignment graphs

to facilitate the understanding of our approach.

Component 0 Component 1 Component 2

yAB = yC

yD = yEF

yGH

Figure 18: A placement of three components and its cor-

responding alignment graph.

Alignment graphs must not contain cycles. This can

best be seen by an example. Figure 18 shows three com-

ponents with processing areas A to H, arrangement lines

depicted as dotted lines, and the corresponding alignment

graph. We observe that arrangement line yAB of compo-

nent 0 is being aligned with arrangement line yC of com-

ponent 1, and arrangement line yD of component 1 is being

aligned with arrangement line yEF of component 2. This

induces the alignment graph in the same f gure. Imagine

now that we additionally wanted to align component 0 with

component 2 in order to create a cycle in the alignment

graph. This, however, would break the alignment of com-

ponent 1 with either 0 or 2. Alignment graphs are therefore

cycle-free and they are always connected since only mutual

alignments of arrangement lines can reveal non-equivalent

placements. Consequently, alignment graphs can be rep-

resented as trees. Note further that alignment graphs are

undirected because the connectivity property is symmet-

ric. Furthermore, our notation of alignment graphs does

not refer to a particular alignment of selected arrangement

lines. A connection between node i and j precisely means

that some arrangement line of component i is being aligned

with some arrangement line of component j. We subse-

quently write (i j) for a mutual alignment of components i

and j and assume without loss of generality that i < j.
In the following, we explain in detail how alignment

graphs can be represented in a very compact manner that

also facilitates to systematically enumerate all possible

alignment graphs for a given set of components.

5.3.1 Generating Alignment Graphs with Prü fer

Codes

Since alignment graphs are undirected trees, Cayley’s the-

orem [6] states that there exist nn 2 different alignment

graphs with n N nodes. This can be proven by establish-

ing a bijection between trees with n nodes and so-called

Prü fer codes [21], i.e., vectors of length n 2 containing

integers 0 n 1 . Similar to the encoding of orienta-

tions, such a vector can be interpreted as a base-n encoding

of a number between 0 and nn 2 1. Hence, we obtain

a one-to-one mapping between alignment graphs and the

numbers in 0 nn 2 1 . This again allows us to iter-

atively enumerate alignment graphs by counting numbers.

Given a tree with n nodes, Algorithm 2 outputs its corre-

sponding Prü fer code.

The setting in Figure 18 with only n = 3 components

is too simple to illustrate Algorithm 2. Let us therefore

consider a more complex problem with n = 5 components,

which is shown in Figure 19. As one can see, the mu-

tual alignments of components are (0 1) (2 4) (1 3) and

(1 4).
Figure 20 shows on the left-hand side the alignment

graph that corresponds to the placement of components in

Figure 19. On the right hand side, the f gure shows the

alignment graph for a different alignment of the same com-

ponents T2 = (1 2) (2 4) (3 4) (0 3) used further be-
low.

0 1 2

A B

C

D

E F

G H

12

Input: tree T with nodes 0 1 n 1

Output: Prü fer code for T

result ;

for 1 n 2 do

v leaf with smallest label;

k neighbor(v);

result.add(k);

remove v from tree;

end

return result;

Algorithm 2: Prü fer Encoding

yE = yJ

to 124 = 4 4 4 5. We can again interpret these elements

as base-5 encoded integers.

In order to transform any Prü fer code back into its cor-

responding alignment graph, we apply Algorithm 3 to a

Prü fer code.

Input: Prü fer code P = p1 pn 2

Output: tree T

start with n isolated nodes V = 0 1 n 1 ;

for i = 1 n 2 do

v smallest node in V not contained in P;

connect v to node with label pi;

remove v from the set V ;

remove pi from the sequence P;

end

connect the two remaining elements in V ;

return T set of connected pairs;

Algorithm 3: Prü fer Decoding

yA = yF

Component 0

Component 2

Component 4

yG = yL

To illustrate this algorithm, let us consider the example

Prü fer code P = 89 = 3 2 4 5, which represents the align-

ment graph as shown on the right-hand side of Figure 20.

Since P = n 2, we know that n = 5 and therefore initial-
Figure 19: A placement with 5 components mu-
tually aligned according to the following pattern:

(0 1) (2 4) (1 3) (1 4).

Next we illustrate how the Prü fer encoding algorithm

computes the Prü fer code for the left-hand tree in Fig-

ure 20. To do so, it performs the following three steps as it

iterates from 1 to n 2 with n = 5 in our example:

1. leaf with smallest label: v = 0 k = 1 1 . Now

we remove the node 0 from the graph and obtain

node 2 as the leaf with the smallest label.

2. leaf with smallest label: v = 2 k = 4 1 4 .

Now we remove the node 2 from the graph and ob-

tain node 3 as the leaf with the smallest label.

3. leaf with smallest label: v = 3 k = 1 1 4 1

The Prü fer code for this example is therefore 1 4 1 .

More generally, the set of all possible Prü fer codes for m =
5 nodes has 53 = 125 elements ranging from 0 = 0 0 0 5

Figure 20: Two alignment graphs for the 5 components

from Figure 19: T1 = (0 1) (2 4) (1 3) (1 4) (left) and

T2 = (0 3) (1 2) (2 4) (3 4) (right).

ize V = 0 1 2 3 4 . The algorithm performs the follow-

ing steps:

1. smallest label P: v = 0 p1 = 3 new edge (0 3)
update V = 1 2 3 4 P = 2 4

2. smallest label P: v = 1 p2 = 2 new edge (1 2)
update V = 2 3 4 P = 4

3. smallest label P: v = 2 p3 = 4 new edge (2 4)
update V = 3 4 P =

4. new edge (3 4)

As expected, the output is T =
(0 3) (1 2) (2 4) (3 4) , i.e., the right-hand tree of

Figure 20.

To sum up, iterating over the nn 2 different alignment

graphs can be implemented by counting from 0 to nn 2

1, producing a Prü fer code by encoding the number in
base n and creating the corresponding tree using Algo-
rithm 3. The output of this algorithm is a tree with n

nodes represented by a set of edges T 0 n 1 2.
For the left-hand tree in Figure 20, we have for example

T = (2 4) (1 4) (0 1) (1 3) . This tree contains the
information about pairs of components that are mutually

aligned. We are now prepared to enter the second step of

the shift computation where we determine the specif c pairs

of arrangement lines within the components that we want

to align.

5.3.2 Generating Arrangement Line Pairs

So far, our placement algorithm has chosen a permutation

of the components, followed by an orientation for each

2 0

4 1 3

1 0

2 4 3

yD = yI

Component 3

Component 1

C

D

E

F

H

I

J

K

L

A

B

G

13

_
--

- --· y,o:,

G G
 --

componen,t and f nally an alignment graph using Algo­
rithm 3. However, the specifc arrangement lines for the
alignmentofthecomponentshavenotyetbeenchosen. We

explainthis secondstepof theshift computation next.

If wewrite n; E N for thenumber of arrangement lines

of component i E {O, . . . ,n - 1} , the number of possible
different alignments of pairsof arrangement lines induced
byan alignment graph is

andthe arrangement linecount of thecorresponding com­

ponent (minus1). Wereferto thisnumber astheamzycell

capacity.
Figure 22 illustrates the array representationfor the ex­

ample in Figure 19. We create an array of length 8 as
displayed, which contains 8 cells to represent the poten­
tialalignments of arrangement linesfor the S components
because of 2(n - 1) = 8. We have selectecl the eclge or­
der (2,4),(1, 4), (0, 1),(1, 3). Cell O thus refers to an ar­
rangementlineofcomponent 2, whereas cellsS and6 refer

seq(S') = IT (n-;
(iJ)eS

nj)­ (1) to (possibly different) arrangement lines of component 1.

CellOhascapacity(arrangementline count) n2 = 1 andcan

thereforecontaintheintegers{0, 1}, cellsS and6 haveca-
Note that thenumber of arrangement lines of a specifc

componentdependson its orientation. Figure21 illustrates pacit) · ·

this situation. If the component is not tumecl (left-hand
side), weidentify two arrangement lines for the two rows

N r-, i..

0 1 2 3 4 5 6 7

lolol1l2l1lol2lol
of processing areas, which are of interest for a potential

alignment. If the component is tumecl by 270", we can

identify three arrangement lines. lt is thus important that

the components' orientationis knownwhen thealignment

-
,,

(2 , 4) (1,4) (0 , 1) (1 , 3)

2 4 1 4 0 1 1 3

of arrangement lines is computecl in Algorithm 1. In gen­

eral, the specifcation of arrangement lines for a specifc

component is application-dependent and may depend on

other reference points thanprocessing areas which can be

ofinterest fora potential alignment.

-
G G ---

C.-,.INl'el
IMl4.. I()

Figure22: Data structureforenumeratingall possible, mu­

tualalignments of arrangement lines.

Tuearrayrepresentationallowsus tosystematicallyenu­
merate all alignments of arrangement lines for a particu­
lar alignment graph. Again we count with integers. We

- --·
Y"

GG --- '/«

follows:

1. If theright-mostcell is smaller than its capacity - 1,

incrementits value.

Figure 21: Tue numberof arrangement lines maydepend
on componentorientation.

Letus retumtotheexample in Figure 19 and itscompo­

nent alignment, which is depicted by thealignment graph
on the left-hand side in Figure 20. We determine the ar­
rangement linecountsfor thecomponents n0 ton4 andob­

tainthefollowing values: n0 = 2, n1 =4,n2 = 1, n3 = 2 and

n4 = 3.2 Tue number of possible arrangement linecombi­
nationsthereforeisseq(S') = (-1 3). (-3 4).(2-4). (4-2) =

2304.

We usearraysof length 2(n- 1) to enumerate all possi­
ble alignments of arrangement lines for a given alignment
graph S' with n - 1 tree eclges and each eclge consisting
of 2 nodes. We introduce a particular order to represent
theedges inthetree and can thereby identify each pair of
neighboring array cells with a tree edge or, equivalently,
each array cell with a node (component) in the edge se­
quence. lt doesnot matter how exactly this order of edges
is chosen. Each array cell must hold integers between 0

2Notethatnotallanangement liDe:sareshownin Figure 19 forreasom

of clarily. The rgure oulydepicls tbose lmeswluchare aligoed witheach

o<her.

2. Ifthe righ-tmostcell has reachecl its capacity- 1, sei

itback to Oandcarrytothenext cell.

3. If all array entries become zero again, the complete

set hasbeenenumerated.

Each array corresponds to a particular alignment of ar­
rangement lines with respect to the previously determinecl
permutation, orientation, andalignment graph. For theex­
ample ftomFigure 19 andtheselectecl orderoftreeeclges,
we obtain thevector{0,0, 1, 2, 1, 0, 2,0) as shown in Fig­
ure22. lt representsanalignmentwherearrangement line0
of component 2 is aligned with arrangement line Oof com­

ponent 4 (vG = yz), arrangement line 2 of component 4 is
aligned with arrangement line1 of component 1 (yE = yJ),

arrangement line 1 ofcomponent Ois alignedwitharrange­

ment line O of component 1 (y., = YF), and arrangement

line2 ofcomponent 1 is aligned with arrangement line Oof
component 3 (yD =Y1).

With this fnal computation step, the characteristics of

a placement are completely determined. In the next sec­

tion, wediscuss howspecifc physical layoutscanbecon­

structed ftom the relative placements generated by our

method.

initialize an integer array of length 2(n - 1) with zeros

(0, 0, 0,0, 0, 0,0, 0) and iteratively enumerate the arrays as

1 3 4 3 2 4 4 2

000

000

'fD'

14

6 From Relative Placements to Phys-

ical Layout

Once the desired placement of components has been gen-

erated, we need to translate the relative positioning of

the components into the corresponding physical layout.

Placing the components in the correct order and with the

right orientation for each component from the permuta-

tion and rotation information is straightforward. How to

remove white space or to generally compact a layout has

been studied by many authors and therefore, we do not

want to discuss this problem here. We refer the interested

reader to [11] for an overview on classical VLSI design

approaches and [26] for a more recent discussion of the

problem in the context of two-dimensional cell layout. It is

of more interest how the generated alignments of arrange-

ment lines can be further processed to f nd the exact ge-

ometrical shift distances for each component such that all

arrangement lines are correctly aligned. For this purpose,

we developed the following recursive coloring algorithm.

The algorithm step-wise marks the nodes of the alignment

graph, initially assuming that all nodes are unmarked.

1. Choose a component i V with exactly one unmarked

neighbor j V such that (i j) T . Initially, all
leaves satisfy this condition. If multiple candidates
exist, choose randomly.

2. Extract the arrangement lines bi and b j to be aligned

from the alignment vector.

3. Determine the shifting distance for component i by

calculating d = b j bi.

4. Shift component i by distance d and recursively shift

all components in the sub-tree of i by the same dis-

tance d.

5. Mark component i and repeat until only one unmarked

component is left.

Reconsider the alignment graph T = (2 4) (1 4)

(0 1) (1 3) and the alignment vector 0 0 1 2 1 0 2 0 .

We need the y-coordinate of each arrangement line in or-

der to calculate the exact vertical shift for each component.

These coordinates are displayed next to each edge in the

f gures below.

Start

Step 1

We display the unit cm next to the coordinates to dis-

tinguish between an arrangement line number in the ar-

rangement line vector and its corresponding y-coordinate.

According to the alignment vector, we must for example

align arrangement line 0 for component 2 and arrangement

line 0 for component 4. We f nd the coordinates 0cm and

2cm along the edge between components 2 and 4 in the

alignment graph, which means that arrangement line 0 of

component 2 has y-coordinate 2cm and arrangement line

0 of component 4 has y-coordinate 1cm with respect to the

global coordinate system. Note that these vertical displace-

ments were not shown in Figure 19 when this example was

introduced. Our algorithm now proceeds as follows, ar-

bitrarily selecting component 2 as the f rst component to

begin with:

1. We choose component 2 that has only one unmarked

neighbor, which must be aligned with component 4.

The arrangement line height of 2 is 0cm and the ar-

rangement line height of 4 is 2cm. Hence, components

2 and 4 can be aligned by shifting 2 by a distance of

2cm 0cm = 2cm. This is shown in the box added to

component 2. We mark component 2 and continue.

2. We choose component 3 that has only one unmarked

neighbor. It can be aligned with component 1 by shift-

ing 3 by 2cm 1cm = 1cm. We mark 3 and continue.

3. We choose component 4 with only one unmarked

neighbor. It is aligned with component 1 by shifting

component 4 3cm 4cm = 1cm. As component 2

has already been aligned with component 4 the new

shifting distance 1cm also applies to component 2.

We mark 4 and continue.

2 0

0cm 1cm

2cm 3cm

4 1
4cm 3cm 2cm 1cm

3

+2cm

2 0

0cm 1cm

2cm 3cm

4 1
4cm 3cm 2cm 1cm

3

15

-1cm

3

Step 2

Step 3

4. We choose component 1 with only one unmarked

neighbor. It can be aligned with component 0 by shift-

ing component 1 by 1cm 3cm = 2cm. As compo-

nent 1 has already been aligned with components 3

and 4 (and 4 itself with 2), the new shifting distance

2cm recursively applies to all these components. We

mark 1 and continue.

Step 4

5. Only one unmarked component is left, so the algo-

rithm stops.

These steps geometrically create the selected placement

on the plane. Remember that only the relative positioning

of components with respect to each other matters. When

placing the components in the selected order, the horizon-

tal distances can be chosen arbitrarily (or compacted fol-

lowing domain-specif c design rules) as long as the com-

ponents do not overlap.

7 Exhaustive and Local Placement

Search

Our modeling and encoding method and the three compu-

tational sub-procedures constitute a powerful algorithm to

generate all possible placements of technical components

with distinguished processing areas that are subject to a

predef ned processing order as it can often be found in

manufacturing problems. The predef ned processing order

naturally induces an equivalence relation between differ-

ent component placements, where only the rotation of indi-

vidual components, their relative horizontal positioning as

well as mutual vertical alignments with respect to arrange-

ment lines can produce new non-equivalent placements.

At the heart of our algorithm lies a very compact and ef-

f cient encoding scheme that allows us to represent place-

ments by the three aspects of permutation, orientation, and

shift and devise eff cient sub-procedures to compute each

aspect individually. Our sub-procedures can be easily em-

bedded into local, systematic, and evolutionary search ap-

proaches and can be combined with other well-established

f nite domain optimization techniques such as constraint

programming. In the following, we brief y discuss how an

embedding into exhaustive (systematically enumerating all

placements) or local (only generating selected placements)

search algorithms can be achieved.

We showed that all relevant placement information can

be represented by integers. The relative horizontal posi-

tion is encoded by a permutation index, the orientation of

each component is a base-m encoded number with m being

the number of possible turns, mutual alignments of com-

ponents are represented by Prü fer codes, and the choice

of specif c arrangement lines for the alignment is also a

counting number. As all algorithms are iterative and use

only constant or linear memory, they can be used in stan-

dard search procedures to optimize some given placement

evaluation function.

In Algorithm 4 we complete the skeleton shown in Algo-

rithm 1 for exhaustive search with a generic penalty func-

tion that represents the evaluation of a concrete placement

with respect to one or several optimization criteria. Each

placement is then evaluated by some evaluation procedure

that assigns a penalty to a placement. The placement with

the smallest penalty is returned as the output of the algo-

rithm. The evaluation procedure can also consist of another

search algorithm, which determines the optimal processing

sequence that is enabled by a specif c placement. It would

assign the cost of this processing sequence as penalty to the

placement.

We are fully aware that the high exponential time com-

plexity generally does not allow complete search for more

than small placement problems. However, our eff cient en-

coding scheme in combination with the iterative nature of

each sub-procedure facilitates the implementation of ar-

bitrary search algorithms. It is therefore not diff cult to

transform this algorithm into a randomized or evolution-

ary search procedure or, with a suitable application-specif c

heuristic, into a heuristic or local search procedure. Con-

sult [23] for an introduction to generic search methods.

Our encoding scheme further shows that all relevant in-

formation about equivalence classes of component place-

ments can be represented as counting numbers with pre-

cisely determined lower and upper bound. This makes

our approach particularly well-suited to be combined with

other well-established optimization techniques such as f -

nite domain constraint programming [22] for example. In

+2cm

2 0

0cm

2cm

1cm

3cm +1cm

4 1 3
4cm 3cm 2cm 1cm

+1cm

2 0

0cm

2cm

1cm

3cm +1cm

4 1 3
4cm 3cm 2cm 1cm

-1cm

-1cm

2 0

0cm

2cm

4 1
4cm 3cm

-3cm

1cm

3cm

2cm

1cm
-2cm

16

In put: vector ofn E Ncomponents

Output: best evaluated placement

best oo;

candidate null;

p f rstPennutationQ;
repeat

fori =o,... , m• - 1 do
0 = toBase(i,.m) (ro t a t i on vect o r)

forJ = o,..., m"'- 2 - 1 do

P toBase(j,n)
(in dex t o Pr'Ufer cod e)

§ decode(.P)

(Prüfer code to tree}

align (0,...,0];
repeat

placement generate(p, o, s);

value penalty(placement);

if vah,e < best then
1 best value;

candidate placemen t;

end

this case, we would model the permutation index with the

all-different constraint and,dueto theone-to-onemapping

between Prüfercodesandspanningtrees, alsobeneftftom

specialized global constraints for spanning-treesto capture

component alignment [10]. The alignment ofarrangement

lines thencorrespondsto edgeweightsof the spanningtree.

This means that our operational specifcation of the algo­

rithm can also be translated into a declarative constraint­

based representation, which can then be fed into arbitrary

constraint solvers. Inaddition, such a declarative represen­

tation makesit easy to add additional domain- or instance­

specifc constraintsto the model, whichcan thenbe consid­

ered by a solver whensearching for a solution to a place­

ment problem.

8 Mixed ho1·izo n tal and Vertical

Placements

So filr, we considered the special case of placements with

onlyhorizontal or onlyverticalarrangement lines. Imagine

next the followingsetup with three objects A,B,C. A has

threearrangement Jines(left, upperand loweredge), B has

one arrangement line (leftedge) andC has one arrangement

line(uppered ge). For simplicity , no rotations are possible

in thisexample. Wef rst look at the objects having at least

one horizontal arrangement line(A and C in thisexample)

and apply the above algorithm to f nd all possible place­

ments for this subset A and C. Then, we do the same for

all objects havingat least one vertical arrangement line(A

and B in this example). The possible placements for the

horizontal and vertical alignment sub-problems are shown

in Figure 23.

until(align next(align§,

end

end

))==null;

un til (p nextPennutation(p)) == m11/;
retwncandidate;

Algorithm 4: Exhaustive search algorithm enumerating

the complete space of non-equivalent placements under

the predef ned processingorder.

Figure23: Horizontal andvertical alignmentsof subsets A

and C (left) and A and B(right).

Now we create all consistent overlay placements ftom

the horizontal and vertical sub-problem placements. For

example, the second placement in the upper row in Fig­

ure 24 is obtained by combining the f rst horizontal place­

ment with the frst vertical placement. For this simp le ex­

ample, all 8 combinations of horizontal and vertical place­

ments are possible (although only 4 are displayed here).

This is, however, not always the case. When the overlay

placements are created, a consistency check must ensure

that all arrangement line constraints are satisfed. If thisis

not the case, the overlayis not a valid solutionto the place­

ment problem for the entireobject set.

17

Figure 24: Four consistent overlay placements.

9 Conclusion

In this article, we studied layout and placement problems

of technical components that can be abstracted to relative

arrangements of components. Horizontal and vertical ar-

rangements between components and sub-components can

be captured as well as requirements of rotation. We de-

scribe these modeling elements by the concepts of permu-

tation, orientation and shift and present a compact encod-

ing based on integer vectors together with algorithms that

compute and manipulate these integer vectors by counting

algorithms. The compact encoding can provide a very eff -

cient foundation for any state-based search algorithm, and

it is easy to conf gure to the needs of a specif c application.

We show that for placement problems under predef ned

processing orders, where the processing order of the com-

ponents is given by a manufacturing process, only different

relative placements can induce different processing orders.

Our current work focuses on the combination of the

placement generation with an evaluation function that de-

termines optimal placements. In our case, the evaluation

function involves a highly complex optimization problem

with a large search space. The optimization problem re-

sults from the fact that any placement will enable many

different possible processing sequences under the prede-

f ned order and that we need to f nd the optimal processing

sequence for a given placement using the evaluation func-

tion. We therefore investigate techniques to heuristically

generate only “promising” placements and then apply local

search to f nd good, but not necessarily optimal processing

sequences. Our compact encoding as integer vectors al-

lows us to effectively implement the heuristic control by

constraining specif c integer values.

Acknowledgement

This work was partially funded by the Swiss Commis-

sion for Technology and Innovation CTI. We would like to

thank Res Gilgen for an implementation of the presented

algorithms, which allowed us to experiment with place-

ment problems in a domain of manufacturing electrical ap-

pliances.

References

[1] ACM conferences on advanced vi-

sual systems (2012). Http://dblp.uni-

trier.de/db/conf/avi/index.html

[2] Awofala, A.O., Singh, N.: Constraint network ap-

proach to the design and manufacture of labels in a

high-variety label-printing environment. Journal of

Intelligent Manufacturing 7, 499–514 (1996)

[3] Badros, G.J.: Constraints in interactive graphical ap-

plications (1998)

[4] Badros, G.J., Borning, A., Marriott, K., Stuckey, P.:

Constraint cascading style sheets for the web. Tech-

nical Report UW CSE 99-05-01, University of Wash-

ington (1999)

[5] Burch, N., Holte, R.C., Mü ller, M., O’Connell, D.,

Schaeffer, J.: Automating layouts of sewers in sub-

divisions. In: Proc. European Conference on Artif -

cial Intelligence (ECAI), Frontiers in Artif cial Intel-

ligence and Applications, vol. 215, pp. 655–660. IOS

Press (2010)

[6] Cayley, A.: A theorem on trees. Quart. J. Math 23,

376–378 (1889)

[7] Ceylan, D., Li, W., Mitra, N.J., Agrawala, M., Pauly,

M.: Designing and fabricating mechanical automata

from mocap sequences. ACM Trans. Graph. 32(6),

186 (2013)

[8] Cruz, I.F.: Expressing constraints for data display

specif cation: A visual approach. In: V.A. Saraswat,

P.V. Hentenryck (eds.) Principles and Practice of Con-

straint Programming, pp. 445–470. MIT Press (1995)

[9] Das, D.: VLSI Design. Oxford Univ Press (2011)

[10] Dooms, G., Katriel, I.: The minimum spanning tree

constraint. In: F. Benhamou (ed.) Principles and Prac-

tice of Constraint Programming - CP 2006, Lecture

Notes in Computer Science, vol. 4204, pp. 152–166.

Springer Berlin Heidelberg (2006)

[11] Gerez, S.: Algorithms for VLSI Design Automation.

John Wiley & Sons (1999)

[12] Ghatrehnaby, M., Arezoo, B.: Automatic strip lay-

out design in progressive dies. Journal of Intelligent

Manufacturing 23, 661—677 (2012)

[13] Hosseini, S., Khaled, A.A.: A survey on the imperi-

alist competitive algorithm metaheuristic: Implemen-

tation in engineering domain and directions for future

research. Applied Soft Computing 24, 1078—1094

(2014)

A

B

C

B

B
A

A

C

C

A

B

C

B

A

C

A

B

C

A

B

C

B

A

C

http://dblp.uni-/

18

[14] Hosseini, S., Khaled, A.A., Vadlamani, S.: Hybrid

imperialist competitive algorithm, variable neighbor-

hood search, and simulated annealing for dynamic fa-

cility layout problem. Neural Computing and Appli-

cations 25, 1871—1885 (2014)

[15] Jacobs, C.E., Li, W., Schrier, E., Bargeron, D.,

Salesin, D.: Adaptive grid-based document layout.

ACM Trans. Graph. 22(3), 838–847 (2003)

[16] Kandogan, E., Shneiderman, B.: Elastic windows:

Improved spatial layout and rapid multiple window

operations. In: Proc. Workshop on Advanced Visual

Interfaces, pp. 29–38. ACM Press (1996)

[17] Knuth, D.E.: Generating all tuples and permutations.

The art of computer programming Vol. 4 Fasc.2.

Addison-Wesley (2005)

[18] Lin, Q.L., et al.: Integrating systematic layout plan-

ning with fuzzy constraint theory to design and opti-

mize the facility layout for operating theatre in hospi-

tals. Journal of Intelligent Manufacturing 26, 87—95

(2015)

[19] Lok, S., Feiner, S.: A survey of auto-

mated layout techniques for information

presentations (2001). From the webpage

http://graphics.cs.columbia.edu/publications/

[20] Malakooti, B.: Unidirectional loop network layout by

a LP heuristic and design of telecommunications net-

works. Journal of Intelligent Manufacturing 15, 117–

125 (2004)

[21] Prü fer, H.: Neuer Beweis eines Satzes ü ber Permuta-

tionen. Arch. Math. Phys. 27, 742–744 (1918)

[22] Rossi, F., Beek, P.v., Walsh, T.: Handbook of Con-

straint Programming (Foundations of Artif cial Intel-

ligence). Elsevier Science Inc., New York, NY, USA

(2006)

[23] Russell, S.J., Norvig, P.: Artif cial Intelligence - A

Modern Approach (3. internat. ed.). Pearson Educa-

tion (2010)

[24] Sait, S.M.: VLSI Physical Design Automation: The-

ory and Practice. World Scientif c Publishing (2004)

[25] Tamassia, R. (ed.): Handbook of Graph Drawing and

Visualization. Chapman and Hall/CRC (2013)

[26] Ziesemer, A., et al.: Automatic layout synthesis with

ASTRAN applied to asynchronous cells. In: 5th

IEEE Latin American Symposium on Circuits and

Systems (LASCAS), pp. 1–4. IEEE (2014)

http://graphics.cs.columbia.edu/publications/

