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Abstract 

Generating optimal layouts or placements of technical components is a computationally intensive 
task. The induced optimization problems encounter very large search spaces, which are to be 
explored in a systematic or randomized fashion. Whereas many publications discuss modeling  
aspects and solution algorithms, little gets published on the actual encoding scheme used to 
represent different layouts, despite of the influence of efficient encoding schemes on the overall 
project success. 

 
In this article, we present a very compact encoding scheme and efficient encoding algorithms that 
describe layouts and placements by the relative positioning of components to each other. Horizontal 
and vertical arrangements as well as rotations of components and sub-components can be modeled 
and encoded as compact integer vectors. The manipulation of these vectors reduces to counting with 
integers, which provides a very efficient foundation for any state-based search algorithm and which 
can be easily tailored and configured to the needs of a specific application. 

 

Our encoding fits layout requirements where the relative arrangement of components takes center 
stage and specific physical layouts can be computed in a post-processing step. In particular, our 
techniques are applicable to manufacturing problems where processing orders of the components  
are predefined by the manufacturing processes. 
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Abstract 

Generating optimal layouts or placements of technical 

components is a computationally intensive task. The in- 

duced optimization problems encounter very large search 

spaces, which are to be explored in a systematic or random- 

ized fashion. Whereas many publications discuss modeling 

aspects and solution algorithms, little gets published on the 

actual encoding scheme used to represent different layouts, 

despite of the inf uence of eff cient encoding schemes on 

the overall project success. 

In this article, we present a very compact encoding 

scheme and eff cient encoding algorithms that describe lay- 

outs and placements by the relative positioning of compo- 

nents to each other. Horizontal and vertical arrangements 

as well as rotations of components and sub-components 

can be modeled and encoded as compact integer vectors. 

The manipulation of these vectors reduces to counting with 

integers, which provides a very eff cient foundation for any 

state-based search algorithm and which can be easily tai- 

lored and conf gured to the needs of a specif c application. 

Our encoding f ts layout requirements where the relative 

arrangement of components takes center stage and specif c 

physical layouts can be computed in a post-processing step. 

In particular, our techniques are applicable to manufactur- 

ing problems where processing orders of the  components 

are predef ned by the manufacturing processes. 

 
1 Introduction 

Many industrial applications require to generate layouts  

of technical components in order to place them in a spe- 

cif c arrangement for further processing. To solve such a 

placement or layout problem, one usually proceeds in four 

phases: 
 

1. Elicitation of problem requirements 

2. Modeling of the problem 

3. Encoding of the model 

4. Application of a solution algorithm to solve the en- 

coded model and generate one (or several) solution(s) 

The research literature mainly deals with the f rst and 

last phase in the solution process, often omitting details of 

the model and almost never discussing the specif c encod- 

ing that is fed into the solution algorithm. In particular, 

layout and placement problems are often described with 

the focus on the solution algorithm. However, in practice, 

compact modeling and encoding techniques signif cantly 

contribute to the solvability of a given problem class and 

therefore to the success of the overall project. Further- 

more, generating layout or placement solutions that meet 

all requirements is not enough, but optimal solutions that 

minimize or maximize a given objective function are usu- 

ally required. Such constrained optimization problems in 

general encounter very large search spaces, which are to be 

explored in a systematic or random fashion. The size of the 

encoding of a single state, the ease by which the state tran- 

sition function can be described, and the means to control 

the search all inf uence the scalability and applicability of 

solution algorithms. 

 

 

Figure 1: Contribution of the article within the generic 

process of solving a placement or layout problem. 

 
In this article, we focus on Steps 2 and 3 of the solution 

process as summarized in Figure 1. We discuss a model 

and encoding that we believe is of interest to many layout 

and placement problems. Our work was originally moti- 

vated by a problem of placing technical components in a 

manufacturing environment with a predef ned processing 

order caused by the design of the manufacturing tools. We 

will discuss this class of problems in more detail in Sec- 

tion 3. However, our method can also be benef cial to other 

types of layout problems where the relative positioning of 

layout components can be investigated independently, and 

their concrete physical positioning can be derived from the 
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Rotation: 0° 

relative positioning in a post-processing step.1 In order to 

make the class of problems more clear and to introduce the 

key ideas of our modeling and encoding methods, let us 

look at the example shown in Figure 2. 

Components also possess an orientation specif ed in de- 

grees and can rotate around their reference points. In Fig- 

ure 4, the components 2 and 0 (the man and the sun) are 

rotated by 0 degrees, whereas component 1 (the group of 

birds) is rotated by 25 degrees. We will show later in this 

article how component orientations can be very compactly 

encoded by integers, which allows us to eff ciently enumer- 

ate possible rotations. 

 

 

 
 

 

 

 
 

Figure 2:  A layout scene with three components. 

 

Figure 2 shows a  scene of 3 components, a  man with  

a hat, a group of birds, and a smiling sun, for which we 

want to compute different possible layouts. Our method is 

applicable if the components can be characterized by rect- 

angular frames as shown in Figure 3. Furthermore, each 

component is assigned a vertical reference line. This refer- 

ence line can for example be placed on the center point of 

the frame or any other point within the framed area, i.e., its 

exact positioning can be arbitrary. Each component has a 

unique identif er. In our method, we simply enumerate the 

components with integers 0 1 2. The relative horizontal 

placement of the components with respect to each other is 

described by a permutation vector of these three integers. 

The permutation vector describes the order in which we en- 

counter the reference lines when performing a left-to-write 

sweep over the 2-dimensional plane. 

 
Figure 4: Orientation of layout components. 

 
Of course, a simple vertical placement and orientation 

of components is not suff cient for many applications, 

which usually require that components are also horizon- 

tally aligned with each other. Such a horizontal align- 

ment should not be limited to the boundaries of the com- 

ponent frames, but should allow designers to specify ar- 

bitrary alignment points. In Figure 5 we can see that one 

alignment point has been added to the mouth of the sun and 

another one has been added to the upper wing of the mid- 

dle bird. Horizontal arrangement lines are drawn through 

these points. Moreover, the designer imposed a layout con- 

straint on the two components by mutually aligning the two 

arrangement lines. We speak of a relative alignment be- 

tween the two components because their exact (absolute) 

positioning on the plane does not matter, i.e., if one com- 

ponent is shifted vertically, the position of the other com- 

ponent must be adapted. 

 

 
 

 

 

 

Figure 3: Object frames and reference lines encoded by the 

permutation (2  0 1). 

 
1Our method was originally developed for 2-dimensional spaces and 

vertical layouts only. However, mixed vertical and horizontal layouts can 

also be generated if the layout problem is separable as we discuss in Sec- 

tion 8. 

Figure 5: Relative  horizontal alignment of components 

through arrangement lines. 

 

The alignment pair (1 2) specif es that the two compo- 

nents 1 and 2 are to be aligned with respect to each other 

and ensures that if one component is shifted by say 10 units, 

the very same shift must be applied to the other component 

as well. An arbitrary number of such arrangement lines 

can be added to components, thus allowing for an arbi- 

trary number of horizontal layout constraints   represented 
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by alignment pairs. For this purpose, our method intro- 

duces the modeling concept of an alignment graph between 

components and provides an eff cient encoding by Prü fer 

codes. 

With the permutation (2 0 1), the orientation (0 25 0) 

and the alignment pair (1 2) our relative layout in this in- 

troductory example is fully specif ed. It is clear that many 

physical layouts can be generated from this relative layout 

or, in other words, many different physical layouts realize 

this relative layout. Any physical layout that preserves per- 

mutation, orientation and alignment is considered a valid 

instantiation. Two such possibilities are shown in Figure 6. 

 

(a) Moving the man to the left 
 

 

(b) Moving the man to the right 

and to the top 

 

Figure 6: Layouts can be freely generated as long as per- 

mutation, orientation, and alignment constraints are re- 

spected. 

 
In the left sub-f gure of Figure 6, the man is moved to 

the left, but its reference line must remain right of the ref- 

erence line of the sun to preserve the specif ed permutation 

of components. The sun and group of birds are correctly 

aligned. Their alignment is also preserved in the right sub- 

f gure, where the man is moved to the top and to the right, 

but its reference line must remain left of the bird group’s 

line. Hence, both physical layouts are valid instantiations 

of our relativ layout. In summary, our modeling approach 

relies on the following concepts: 

 

Objects are represented by rectangular frames. 

 
Their relative positioning is characterized by the con- 

cepts of permutation, orientation, and alignment. 

It may seem counter-intuitive to the reader that the two 

physical realizations in Figure 6 are considered equivalent, 

given the rather different positioning of the man. In fact, we 

will later introduce the additional concept of a processing 

order that, when present, will separate these two realiza- 

tions in different equivalent classes of physical layouts. 

For each modeling concept (including the here miss- 

ing processing order), we develop very compact encodings 

based on integers. This means, when enumerating differ- 

ent layouts, we can simply count with integers, which pro- 

vides a very eff cient foundation for any solution algorithm 

and makes it very easy to enumerate the search space of 

all placements. On the one hand side, this can be used to 

generate and test placements in combination with standard 

search procedures and various optimization criteria. On 

the other hand, more sophisticated optimization methods 

can be obtained by combining our modeling method and 

encoding scheme with e.g., constraint programming over  

f nite domains or other well-established optimization tech- 

niques. 

The class of placement and layout problems to which our 

method is applicable, satisf es the following assumptions: 
 

The problem consists in placing components on a 

plane having a global coordinate system with a ref- 

erence point. 

Components (and distinguished sub-components in- 

side components) can be framed and abstracted by 

rectangles with a reference point and given width and 

height. 

Arrangement lines that are added to components are 

suff cient to express constraints of horizontal align- 

ment for components. 

Components must not satisfy specif c requirements of 

overlap with or distance from each other. We usu- 

ally do assume that components must not overlap in 

manufacturing, but when moving (rotated) compo- 

nents within the specif cation of a relative layout, it is 

possible that some physical layout instances contain 

overlapping components. It is up to the application  

to control how specif c physical layout instances are 

obtained from our generated relative layout during a 

post-processing phase. 

Relative layouts represent equivalence classes of 

physical realizations that are def ned by the horizon- tal 

positioning, orientation, and mutual alignment of 

components only. We will later bring in the concept of 

processing sequences as additional element to distin- 

guish the relative vertical positioning of components. 

 

We would like  to  emphasize  once  more  that  only  

the relative placement of components with respect  to  

each other matters in our method and that two physical 

layouts are considered different only if their relative layout 

(permutation, orientation, and alignment) differ (under the 



 

pre-def ned processing order). Our method thus abstracts 

from the absolute or geometric placement of components 

on the plane. In fact, one relative placement enumerated 

by our method represents many specif c geometric layouts. 

We do not consider the generation of such specif c geo- 

metric layouts of a given placement in this article. It can 

be added as a post-processing step and is generally highly 

application-specif c. 

 
The article is organized as follows: We proceed with a 

review of related work in Section 2 to further detail out the 

contribution and positioning of our method in the light of 

other approaches. Then we consider in more detail place- 

ment problems under processing sequences and discuss ex- 

amples from industrial manufacturing in Section 3. This 

section formally characterizes the class of placement prob- 

lems that we consider and discusses the notion of equiv- 

alence of placements induced by the predef ned process- 

ing order. Readers interested in f nding out if our method 

works for their layout problems, can skip this section and 

directly proceed to Section 4, which introduces the key 

elements of an integer-based encoding for (equivalence 

classes of) component placements and gives an overview 

on the algorithms used to generate placements. Section 5 

presents the details of the encoding algorithms and illus- 

trates them with examples. In Section 6 we explain how 

physical layouts of components can be obtained from the 

encoded placement representation. In Section 7, we dis- 

cuss how the proposed encoding scheme can be embedded 

into an exhaustive or local search approach to directly gen- 

erate component placements that satisfy instance-specif c 

constraints and that are optimal with respect to a given ob- 

jective function. We also brief y sketch how to use our en- 

coding in combination with other optimization techniques 

such as constraint programming. In Section 8, we discuss 

how our method can be applied to generate mixed horizon- 

tal and vertical placements. We conclude with an outlook 

on current work in Section 9. 

 

2 Related Work 

We consider a placement problem in the context of indus- 

trial manufacturing where the intended processing order of 

the technical components inf uences the placements that we 

need to generate. Under a predef ned processing order, cer- 

tain placements fall into the same equivalence class and 

therefore, only one representative of each class needs to 

be investigated, for which it is suff cient to only consider 

the relative placement of components to each other. We 

have not been able to identify related work in the literature, 

which would combine layout requirements with technical 

processing orders. 

Layout problems consider specif c geometric arrange- 

ments of objects in a two- or three-dimensional space. Our 

model and encoding is applicable to layout problems if the 

relative placement of objects that we enumerate is suff - 

cient to characterize a layout and if the specif c geometric 

arrangement of objects can be computed in a separate post- 

processing step. Usually, our relative placement represents 

an inf nite set of specif c geometric layouts satisfying the 

generated permutation, orientation, and alignment. It is up 

to the application and details of the post-processing which 

layout from this inf nite set will be instantiated. 

Layout problems are studied in several f elds of com- 

puter science and consequently, the literature on this prob- 

lem is vast and spread across numerous conferences and 

journals. The two most important f elds are graph layout 

and VLSI design, see [25, 9] for selected overviews on 

these two f elds. 

Our approach does not focus on solving the compaction 

problem, i.e., it does not directly generate placements of 

minimal size as they are for example required in VLSI de- 

sign, but instead solely generates relative component place- 

ments that satisfy specif ed object alignment and orienta- 

tion relations. Therefore, our method can still generate 

valid layout candidates in such application contexts, but the 

compaction of a placement must be added as a post-proces- 

sing step removing white space or gaps, while preserving 

the relative placement. This may not be very effective as 

the separation of layout candidate generation and posterior 

compaction may hinder an application to directly steer a 

solution algorithm towards layouts of minimal size. 

Layout problems have also been studied in relation with 

graphical user interfaces, for example when placing win- 

dows on  a computer screen [16].   With  the emergence   

of the world wide web, layout problems also occur when 

designing or generating web pages [4]. The ACM con- 

ference series on Advanced Visual Interfaces [1] gives a 

good overview on different approaches. In the context of 

computer graphics, layout problems have also been stud- 

ied when printing labels [2]. Document layout has been in 

the focus of researchers for quite some time and is often 

using a “grid and boxes”-based approach [15]. Our place- 

ment method shares a similar “grid and boxes” approach 

as we also abstract our technical components by rectangu- 

lar frames and use arrangement lines to specify additional 

reference alignment points. Newer variants of layout prob- 

lems occur in the context of design mock-ups, see for ex- 

ample [7]. More generally, information presentation often 

requires to address placement or more general layout prob- 

lems, see [19] for an overview of activities until the year 

2000. 

Constraint-based layout has been of particular interest to 

intelligent graphical editors that preserve spatial relation- 

ships between graphical elements, i.e., that move a set of 

related elements when one element is moved. Constraint- 

based layout, however, studies a very different problem 

where a user works with an editor moving around objects, 

and constraints are used to move connected objects along 

or to detect that certain move operations are not valid, see 

for example [3]. We share with these approaches the repre- 

sentation of objects using rectangular frames and arrange- 

ment lines, but differ signif cantly in the class of layouts 

that we enumerate and which are restricted to the  equiva- 
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lence classes under our predef ned processing order. Fur- 

thermore, general layouts would also allow or require that 

objects overlap in specif c ways, which we cannot express 

in our method as this does not occur in the class of man- 

ufacturing problems that we consider. Our modeling con- 

cepts place object relative to each other, but do not allow to 

express specif c geometric values or distances. 

In the context of industrial manufacturing, facility layout 

is a widely studied problem, see for example [18, 14, 13] 

for recent pointers to the literature and a discussion of the 

problem and potential solution approaches. Facility layout 

is becoming a more dynamic problem with the increasing  

f exibility of modern manufacturing approaches and trends 

such as mass customization, rapid product changes and 

adaptable processes. Production facilities need to be re- 

arranged and relocated to minimize production times and 

material-f ow costs. At the same time, the cost for dynam- 

ically changing the facility layout should be minimized. 

The dynamic facility layout problem is related to our place- 

ment problem under a predef ned processing order. In our 

manufacturing application, we are seeking a processing or- 

der of minimal production time over a large set of possi- 

ble layouts, which is in fact similar to the facility layout 

problem. In other words, we search to generate a layout 

that leads to a minimal-time processing order. Require- 

ments for the processing order are specif ed by numerous 

constraints describing properties of machines and manu- 

factured products. In our application, we are able to ab- 

stract the layout problem to a model of relative positioning 

of objects and we can use very compact integer-based en- 

coding techniques. Some of our techniques could be help- 

ful to encode some aspects of facility layout problems and 

to effectively control the heuristic search approaches that 

are discussed in [14]. For example, describing seeds for 

local search methods or directing a search algorithm into a 

specif c direction becomes easy when applying our integer- 

based encoding. However, our emphasis is on the relative 

placement of objects (machines, products) to each other, 

but less on assigning facilities to locations. This assign- 

ment problem, which constitutes the core of dynamic facil- 

ity layout, completely abstracts from geometric details and 

focuses on material f ow costs between locations. 

Cable network layout problems constitute another class 

of layout problems of technical components, see for exam- 

ple [20]. A recent application of spanning trees to optimize 

the layout of sewer systems is described in [5]. In this ap- 

proach, cyclic graphs are cut into trees and the search space 

of possible spanning trees of low maximum path length is 

explored to f nd high-quality placement solutions. Span- 

ning trees are commonly used to solve general graph lay- 

out problems and are more specif cally used in VLSI de- 

sign to solve routing problems [24]. We share with these 

approaches the idea to use spanning trees to encode layout 

relationships between objects, which in our case represent 

the alignment of components. 

A manufacturing problem, that is related to the class of 

problems we consider, is the problem of punching  metal- 

lic sheets where punches are applied in specif c orders to  

a sheet in order to cut out holes [12]. The arrangement of 

these holes has a signif cant inf uence on the sequence of 

the punching operations and, when using progressive dies, 

the order in which dies can be applied is constrained. How- 

ever, as we are not experts in this f eld of application, we 

were not able to determine precisely to which extent our 

method could be benef cial for this class of problems. If 

there is some freedom in the arrangement of the wholes 

during the design of metallic sheets, our method could be 

applicable to explore options in the sheet design. 

Decomposing a larger layout problem into sub-problems 

and then overlaying the individual solutions to obtain an 

overall solution is a common technique and instantiates the 

divide-and-conquer principle in the domain of layout prob- 

lems. VLSI lithography approaches among many others 

heavily rely on this technique. Similarly, we present an 

approach where we develop three eff cient computational 

sub-procedures to generate solutions for different aspects 

of our placement, which we model by permutation, orien- 

tation, and shift. We are able to obtain the complete spec- 

if cation of the placement by a simple combination of the 

solutions to each of the aspects. 

 

3 The Class of Placement Problems 

under Predef ned Processing Or- 

ders 

Typical manufacturing problems consist of a sequence of 

processing operations that have to be applied to compo- 

nents in a specif c order. The components to be processed 

are usually arranged with the help of f xtures such that ma- 

chines (or humans) can apply the required processing op- 

erations. Depending on the manufacturing problem, the 

placement of the components can be straightforward with 

no or only very few placement options. However, quite 

often many degrees of freedom for placing components ex- 

ist, making the placement problem a challenge in itself as 

its solution inf uences the available options to achieve an 

optimal sequence of process operations. The sequence of 

processing operations usually must obey a predef ned set 

of hard constraints that enforce a partial processing order. 

These hard constraints origin from two sources. First, the 

type of processing operation that must be applied, e.g., drill 

before paint. Second, the construction of  machines that 

can restrict how certain of its parts can move, e.g., grip- 

pers, jet nozzles or other tools. Typically, some of these 

hard constraints are specif c to the problem or application 

area, but independent of a concrete problem instance, while 

others only apply to particular problem instances. Once a 

partial processing sequence has been found that satisf es 

these hard constraints, the sequence can be completed by 

taking additional optimization criteria into consideration. 

Finding such a sequence that optimizes some multi-criteria 

objective function is a key requirement when automating 

applications in industrial manufacturing.  Finding a   good 
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placement of components that enables optimal, e.g., low- 

cost, processing sequences is a problem in itself and can 

be quite challenging when many degrees of freedom exist. 

Often, the available placement options lead to a combinato- 

rial explosion in the number of possible placements and for 

each possible placement, an optimal processing sequence 

must be searched. It is thus of interest to have algorithms 

at hand that can generate and evaluate placement options in 

an eff cient and compact manner. 
In this article, we investigate a class of   manufacturing 

because of the f ow direction of paint or other coating ma- 

terials. If the processing involves different colors or coat- 

ing materials, the robot will likely paint components in one 

color f rst, then change the paint and color the remaining 

surfaces. Both constraints def ne a partial processing order 

again. They are specif c to the problem, i.e., painting parts 

on a vertical surface, but independent of the actual problem 

instance, i.e., the specif c components to be painted. 

problems that is characterized by the following properties: A C 
 

One or several operating tools move in a predef ned 

order as a consequence of design and construction. 
 

The tools perform processing tasks on technical com- 

ponents that are to be arranged in a specif c place- 

ment. Each placement potentially induces a different 

processing sequence under the predef ned order. 
 

Each processing sequence can in turn be evaluated 

with respect to different optimization criteria. 

 
3.1 Typical Examples of Placement Prob- 

lems 

Figure 7 shows the bird’s eye view of a conveyer belt on 

which components are placed for further processing by 

tools, e.g., a soldering rod that is installed above the belt. 

The belt moves from left to right, whereas the tools move 

from one side of the belt to the other performing their 

processing or assembly tasks, i.e., top to bottom in this 

view. The movement of the tools and the belt is given by 

construction, inducing a predef ned top-down, right-to-left 

processing order that is specif c to the problem, i.e., the 

assembly line work, but independent of the actual prob- 

lem instance, e.g., the specif c processing operations on the 

components placed on the belt. The placement of compo- 

nents on the belt can be freely chosen such that different 

processing sequences can be realized under the predef ned 

processing order. 

 

B D 

 
Figure 8: A spray robot following a left-to-right, top-down 

processing order. 

 
Another important family of applications is illustrated 

in Figure 9. It originates from the automated manufactur- 

ing of switchboards or electrical cabinets, where process- 

ing consists in wiring a possibly large number of electri- 

cal components or devices. Usually, the components to be 

wired are arranged on an upright positioned board. The 

placement of the components has to satisfy certain con- 

straints. For example, some components are to be placed 

at the bottom of the cabinet to be close to certain connec- 

tors, or there may be constraints on wire length such that 

the corresponding components must be close to each other. 

These are constraints with respect to a specif c problem in- 

stance, namely the specif c switchboard or electrical cabi- 

net that is manufactured. In addition, wires may occlude 

components once they are  added to  the  cabinet.  This is 

a natural consequence of gravity when connecting verti- 

cally placed components with wires, which is independent 

of the specif c product to be assembled. Hence, a human  

or robot plugging wires will obey a bottom-up process- 

ing order to generally avoid the occlusion of components 

that need to be accessed later in the processing sequence. 

Moreover, a left-to-right processing order can result from 

requirements of production safety.   For example, a  robot 

belt movement direction components 
arm should avoid moving over wired connections as it risks 

to get caught. Therefore, when assuming that the robot is 

fed with wires from the right-hand side, it will follow a 

left-to-right processing order. The constraints for improv- 

ing production safety are independent of the actual prob- 

lem instance, i.e., the exact wiring of a specif c electrical 

switchboard. The placement of the electrical components 

on the board can be changed within the placement-specif c 

movement of processing units 
 

Figure 7: A conveyor belt with processing tools dictating 

a top-down, right-to-left processing order. 

 
Figure 8 illustrates another typical application scenario. 

A robot spraying components of a technical device, e.g., a 

car body, will likely follow a top-down processing   order 

constraints to evaluate different processing sequences with 

respect to the given processing order and additional wiring- 

specif c constraints and optimization criteria. 

Finally, let us brief y mention an example not from 

manufacturing, but agriculture. A farmer who is culti- 

vating different patches of land with a sowing machine 

will avoid crossing already processed patches. Likewise 

when  applying herbicide,  the  farmer is  recommended to 
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Figure 9: A schematic wiring of an electrical cabinet. 

Hanging wires occlude components such that a  bottom- 

up processing order must be followed. A left-to-right or 

right-to-left order is often desirable for production safety 

reasons. 

a potentially different processing sequence, see Fig- 

ure 10. 

Figure 10 illustrates how two possible component place- 

ments generate different processing sequences. In the sit- 

uation displayed in this f gure, we have 6 components and 

therefore 6! = 720 possible processing sequences. For each 

sequence, we can easily f nd a corresponding placement of 

components that induces a specif c sequence under the uni- 

versal left-to-right, bottom-up order. 

 

 
 

      

 

process patches following an upwind order for health rea- 
 

(0,0) 

 
(0,0) 

sons. Again, such constraints are specif c to the problem, 

i.e., application of herbicide, but independent of the actual 

problem instance, i.e., the farmer’s plot of land with spe- 

cif c patch locations. 

The distinction between constraints specif c to the prob- 

lem and those specif c to a concrete problem instance is 

crucial. The f rst class applies to all problem instances, 

such that every processing sequence that is considered as 

a solution to any problem instance must satisfy these con- 

straints. We  assume such a predef ned order arising from 

a set of problem constraints and, as suggested above, de- 

rive different processing sequences by changing the place- 

ment of components for a specif c problem instance. This 

yields a simple equivalence relation of component place- 

ments: Two placements are equivalent if, and only if, they 

lead to the same processing sequence of components under 

the given processing order. 

Figure 10: Two possible placements of components that 

lead to different processing sequences under a left-to-right, 

bottom-up processing order:  A     B     C     D      E      F 

for the left-hand placement and F    C    B    E     A     D 

for the right-hand placement. 

 
Assuming a left-to-right, bottom-up universal process- 

ing order for the tool comes without loss of generality since 

other processing orders can be taken into account by ref ec- 

tion and rotation of the plane. For example, a top-down, 

right-to-left processing order can be transformed into a left- 

to-right, bottom-up processing order by ref ecting the plane 

horizontally followed by a 90 rotation, cf. Figure 11 for il- 

lustration. 

 
3.2 Equivalence of Placements 

Let us capture this particular class of processing problems 

Reflection 

   

Rotation 

   

more precisely: 

A tool processes components placed on a two- 

dimensional plane or grid. The exact dimensions of 

this plane do not matter. We only assume a global co- 

ordinate system with a reference point. Components 

can be framed and thus abstracted by rectangles with 

a reference point and given width and height. 

Components to be processed must be accessible for 

the tool and therefore must not overlap each other. 

There is a universal set of constraints def ning an or- 

der that every valid processing sequence must obey. 

Without loss of generality, we assume a left-to-right, 

bottom-up processing order of the tool motivated by 

our introductory examples. 

Given the universal left-to-right, bottom-up process- 

ing order,  every placement of components    induces 

Figure 11: A top-down, right-to-left movement of the tool 

turned into a left-to-right, bottom-up processing order by 

ref ecting the plane horizontally followed by a 90  rotation. 

 
Conversely, there are many placements inducing the 

same processing sequence as illustrated in Figure 12. 

These placements are considered equivalent with respect 

to the predef ned processing order. 

For each placement of the kind in Figure 12 we can eas- 

ily f nd a horizontal alignment of components that gener- 

ates the same processing sequence. This means that in 

principle, it is suff cient to place all components in one hor- 

izontal line, in the example A B C D E F , to obtain the 

same processing sequence. Consequently, using the ver- 

tical dimension for placing components does not generate 

new, non-equivalent processing sequences. We will exploit 

this property later in our algorithms to arrive at the desired 

compact encoding, see Section 5. 

A E B F E D 
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E F 

C D 

A B 

A B 

C D 

E F 
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horizontal edge of each processing area with the help of an 

arrangement line. So-called arrangement lines or phantom 

lines have been commonly used in the description of layout 

problems to describe additional constraints of arrangement 

for parts of graphical objects, see for example [8]. 

 
 

(0,0) 

 

(0,0) 

 
 

(0,0) 

 

Figure 12: Three placements that induce the same process- 

ing sequence under a left-to-right, bottom-up processing 

order, i.e., A     B     C     D     E     F . These placements 

are therefore considered equivalent. 

 

3.3 Dealing with Multiple Processing Areas 

Within Components 

So far, we only considered components without any inner 

structure. In many technical applications, however, a com- 

ponent contains multiple processing areas and the manu- 

facturing steps operate on these areas. For example, when 

modeling problems from soldering or from the wiring of 

electrical components, we usually have several soldering 

points or cavities per component, whose geometric posi- 

tions inside the component are static. In such a situation, 

we can obtain new processing sequences by rotating com- 

ponents as illustrated in Figure 13. It might of course hap- 

pen that some components are too wide, e.g., to be turned 

by 90 degrees and would then either overlap with other 

components or range beyond the space on which they can 

be placed. Such constraints are specif c to the problem in- 

stance and can be thrown in as additional hard constraints 

at a later moment. 

 

 

yA 

 
 
 
 

yC 

yBD 

 
 

yEG 

 
 
 

yFH 

 

 

Figure 14: Complex component placements with process- 

ing areas are modeled with the help of arrangement lines. 

Reading arrangement lines along the predef ned order gives 

the processing sequence. In this example: F      H      E 

G      B      D      C    A. 

 
In the example in Figure 14, the line yBD denotes the 

common arrangement line of areas B and D, whereas yC 

refers to the arrangement line of processing area C, which 

are all part of the same upper-left component. Similarly, 

lines yEG and yFH specify arrangement lines of the areas  

E, G and F , H within the lower-right component. The pro- 

cessing order for Figure 14 is F      H      E      G         B 

D C  A.  Note that we only need to enumerate pro-  

cessing areas along the arrangement lines in the predef ned 

left-to-right, bottum-up order. 

Next, imagine that the right-hand component in Figure 

14 is moving upwards. As long as we move just a little bit, 
(0,0) (0,0) (0,0) 

the processing sequence does not change.  In other words, 
we still have an equivalent placement of components under 

Figure 13: In case of multiple processing areas per compo- 

nent new processing sequences are obtained from rotating 

individual components. For the left-most example the in- 

duced processing sequence is A   B   C   D, for the mid- 

dle example it is D C  B  A and for the right-most  

example the processing sequence is B      C      A    D. 

 
We argued above that only the relative geometric place- 

ment of components with respect to each other matters, 

and that it is suff cient to consider only horizontal align- 

ments of components when counting equivalence classes 

or searching for non-equivalent placements. The situation 

becomes more sophisticated when components with mul- 

tiple processing areas are involved. Consider the example 

in Figure 14 with two components having 4 processing ar- 

eas each. Assuming that each processing area can also be 

framed and abstracted by a rectangle, we refer to the lower 

the universal order. Sooner or later, however, the arrange- 

ment line yEG of the right-hand component will match the 

arrangement line yBD of the left-hand component leading  

to the situation displayed in Figure 15. This placement is 

not equivalent anymore to the one in Figure 14 as the pre- 

def ned order induces now a different processing sequence 

F      H      B      D      E      G      C    A. 

When we keep moving the right-hand component up- 

wards, the processing sequence again does not change until 

two other arrangement lines match, producing the situa- 

tion in Figure 16 with processing sequence F      H    B 

D    C    E    G     A. We conclude from this observation 

that the relative vertical alignment between (the processing 

areas of) components can be represented by arrangement 

lines. The number of different processing sequences cor- 

responds to the possible number of mutual alignments of 

arrangement lines between the processing areas. 
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K 
Component 0 M 

L 

 

yA 

 
 
 
 

yC 

yBD EG 

 
 
 

yFH 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(0,0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Component 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Component 1 

 

 
yD 

yB 

yE = yFG 

 
yAC 

yH = yK 

 
yLM 

yIJ 

 
Figure 15:   Alignment of arrangement lines yBD  and  yEG 

induces  processing sequence F H B D E 

Figure  17: Placement  encoded  as  permutation  vec- 

tor  (0 2 1),  orientation  vector  (2 0 1) and  shift    vector 

(0 180 200). The processing sequence under the  uni- 

G C A. versal order is J I L M H K C A 

  E G F B D.      
 
 

yA 

 
 
 
 

yC EG 

 

yBD 

yFH 

 

Figure 16:    Alignment of  arrangement lines yC   and  yEG 

gives processing sequence F H B D C E 

G A. 

 

4 Essential Elements of the Place- 

ment Encoding and  Algorithm 

Our discussion has shown that non-equivalent placements 

of components under the predef ned processing order of   

a tool can be obtained by solely changing the orientation 

and the horizontal positioning of the components combined 

with the mutual alignment of the processing areas, which 

are abstracted by their arrangement lines. This property al- 

lows us to describe a placement equivalence class by three 

different vectors and to devise independent algorithms for 

each computational problem represented by each vector. 

Let us consider the example in Figure 17. Our encod- 

ing of this example begins with the vector C = (c0 c2 c1) 
where each component is identif ed by a name c0 c1  c2 and 

a relative horizontal position. The vector states that com- 

ponent c0 is at the horizontal position 0, component c2  is  

at position 1 and component c1 is at position 2. In the fol- 

lowing, when we speak of a component k, we mean the 

component at position k in this vector. Every permutation 

of components in this vector leads to a new processing se- 

quence with respect to the predef ned order and therefore 

to a non-equivalent placement. 

Furthermore, new placements can also be created by ro- 

tating components with more than one processing area and 

express these rotations by a second vector. We assume that 

components can commonly be turned by 0, 90, 180, or 270 

degrees without loss of generality. Other angles are possi- 

ble and can be expressed as multiples of a common basis. 

In the present example, the basis is 90 degrees. For each 

component we only need to express the number of turns  

in the corresponding basis, e.g., 0 standing for 0 degrees,  

1 standing for 90 degrees, 2 standing for 180 degrees and 

so on. In the example, component c0 has been turned two 

times, component c1 has not been turned, whereas compo- 

nent c2  has been turned once. 

Finally, components are moved up or down by a verti- 

cal shift of the component arrangement lines to create new, 

non-equivalent placements. The shift is described by some 

distance measured in the underlying coordinate system. In 

the example, component c0 is aligned along the X-axis of 

the plane, component c1 is shifted by 180 units, and com- 

ponent c2 is shifted by  200 units.  Remember that only  

the mutual alignment of arrangement lines can reveal non- 

equivalent placements. 

Hence, placements are encoded as three independent 

vectors for permutation, orientation, and arrangement line 

shift, respectively. For the example in Figure 17, we ob- 

tain the following vectors to encode a complex placement 

with three components and 13 processing areas A to M with 

arrangement lines depicted as dotted lines. 
 

permutation (0 2 1) means that component c0 is at 

position 0, component c1 is at position 2, and compo- 

nent c2  is at position 1. 

orientation (2 0 1) means that component c0 is turned 

by 180 degrees, component c1 is turned by 0 degrees, 

and component c2 is turned by 90 degrees (assuming 

a basis of 90 degrees). 

shift (0 180 200) means that  component  c0  is 

aligned along the X-axis of the plane, component c1 

is shifted by 180 units, and component c2  is shifted 

by 200 units. Here, the shifts were chosen such that 
arrangement line yE of component c0 is aligned with 

arrangement line yFG of component c2, and arrange- 

ment line yH of component c2 is aligned with arrange- 

ment line yK  of component c1. 
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Ibis vector representation not only devises a very com­ 

pact encodingthecomplexplacing problem For each vec­ 

tor, an independent algorithmic procedurecan be devisecl 

that enumerates the desired (or altematively all) permuta­ 

tions, orientations, andshifts. In addition, a placement can 

be easily controlled1hroughthevector representation. For 
example, if a specifc component k must always occupy 

thetbird position inasetup, theordervector is constrained 

to contain the number 3 at its k-th position.  Likewise,  if 

a component only contains a single  processing area,  such 
that wecannot obtain newequivalence classes by rotation, 

thecorresponding positionintheorientationvectoralways 

containsthenumber 0. 

Algorithm1 gives an overview on how these three pro­ 

cedures play together to generate all possible placements 

undera predef nedprocessing order. 

 

Input: sei ofm E N components 

Output:  optimal placementofthecomponents 

best oo; 
candidate null; 
foreac.hp : pennutation ofcomponnetsdo 

foreach o : orientation of components do 
foreachs: shifl for thealignment of 
arrangementlinesdo 

1   placement generate(p, o, s); 

end 

end 

end 
retwu candidate; 

 
Algorithm 1: Exhaustivesearch foroptimal placements. 

 
Thealgorithm usesthreesub-proceduresto compute the 

order, orientation, and shift of each component. When 
combinedinanexhaustivesearchskeletonas shownabove, 

1his algorithm enumerates all possible placement.s Of 

course, such an exhaustive generate-and-test approach is 
prohibitive in many applications due to a !arge number of 

potential placements anda complex evaluation procedure. 

However, thepresented compactencodingandtheabilityto 

easily control which oftheplacements aregenerated,facil­ 
itates the development of application-specif c algorilhms, 

which can easily trade completenessfor performance and 

only generate promisingplacements controlled by heuris­ 
tics!hat govemcertainvector values. In thefollowing, we 

look at each of the algorilhms for the sub-procedures in 

moredetail. 

 

5 Details of the Placement Genera­ 

tion Sub-Procedures 

In the previoussection, weintroduced 1hree vectors to en­ 
code the relative placement of a sei of components with 
processing  areas in  a  very compact formal.    We also 

sketched anexhaustive searchalgorithmto compute place­ 

ment candidates, which usesthreesub-proceduresto com­ 

pute the order, orientation, and shift of each component. 

Thesesub-proceduresrely on thefollowing  algorilhms: 

• permutation: an iterativealgorithm well-knownftom 
theliterature, 

• orientation:a simple enumerationofpossible orienta­ 
tionsencoded as integers, 

• shift: a computation of possible arrangement line 

matchings based on spanningtreesand Prüfer codes. 

Whereasthef rst twoalgorithmsarestraightforwardand 

can be directly taken ftom theliterature, the computation 

of the shifts is more elaborate, butcan also be effectively 

achievedbya verypowerfulandoriginalalgorithm!hatwe 

presentfurther below. 

 
5.1 Generating the Permutation 

Eachcomponentis encodedbyitspositioninthehorizontal 
component vector. Hence, togenerateall possible horizon­ 
tal alignments of components, weneed togenerateall pos­ 

sible permutationsof a se i { l ,.. .,n} of numbers. Existing 
algorilhmsexploit thefact!hatpermutationscanbe ordered 
lexicographcially. For example, for thenumbers {1,2, 3} 
1his order is: (1,2, 3) -t  (1,3,2) -t  (2, 1, 3) -t  (2,3, 1) -t 
(3, 1, 2) -t (3,2, 1). 

Giventhei-th permutation in thelexicographicorder, an 
iterativealgorithmcaneasilyproducethenextpermutation 

i + 1 for 1 $ i $ n!.  Ibis makes it possible to enumerate 
all permutations infactorial time O(n! ), but constant space 

0 (1). The following pseudo-code can be found in most 

textbooks on algorithms [17). lt takes a permutation vec­ 

tor a O as input and generates the next permutation in the 

lexicographic  order. 

L Findthelargestindexksuch!hat a[kj < a[k + l ] . Ifno 

such indexexists, thepermutation is thelastpermuta­ 
tion. 

2. Find the largest index I such !hat a(kj < a(IJ. Since 

k + 1 is such an index, 1 is well-def nedand satisfes 

k < /. 

3. Swapa(kj witha[IJ. 

4. .  Reverse thesequence ftom a[k +  l ] up   t o and includ­    

ingthef  nal elementa[n]. 

Step 1 identif es an index k such!hatswapping onlyel­ 

ementswith indexstrictly higherthank cannot give a new 

permutation !hat is lexicographically !arger.   To advance 

to the next permutation, one must increase a(kl. Step 2 

fnds the smallest valuea[IJ toswap with a(k ). The small­ 
est value is necessary to f nd the next permutation in the 

lexicographic order (and notany other!arger permutation). 
Reversing thesubsequence in Step 4 thenproducesthelex­ 
icographci allyminimal permutation!argerthanthecurrent. 
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5.2 Generating the Orientation 

To  eff ciently generate all orientations of components in  

a setup, we adopt the encoding known from binary num- 

bers. Let us assume that m rotations are possible for n 

different components. This requires to generate mn ori- 

entation variants. For exhaustive search, we use an al- 

gorithm that counts from 0 to mn 1. Each generated 

number is interpreted as the encoding of a vector of base 

m, which directly gives the number of turns for all com- 

ponents. For example, let us again assume the possible 

orientations 0, 90, 180, and 270 degrees. For a compo- 

nent vector of size 3 we obtain 43 = 64 different orienta- 

tion variants. By counting from 0 to 63 we can generate 

the vectors (0 0 0)4 (3 3 3)4  where 0 means that all 3 

components are 0  rotated, whereas (3 3 3)4 means that all 

components are 270 rotated. The subscript m = 4 refers to 

the number of possible rotations, such that each vector can 

be interpreted as a base-m encoded integer. For example,  

if variant number 57 is requested, we simply encode 57 in 

base-4 and obtain (3 2 1)4. This corresponds to the setup 

where the f rst components is 270   rotated, the second   is 

180 rotated, and the third is 90 rotated. For local search, 

we randomly draw a number from 0 63 and proceed 

identically. 

 

5.3 Generating the Shift 

We compute the shift for the vertical alignment of compo- 

nents and their selected arrangement lines in two steps. 

First,  we introduce the notion of an alignment graph   

to represent the desired vertical alignments of the compo- 

nents only. Each component corresponds to a node in this 

graph labeled with the index of the component. Two nodes 

are connected if the corresponding components are aligned 

with respect to some, not yet further specif ed pair of ar- 

rangement lines. 

Second, we enrich the alignment graphs with an array 

specif cation that tells us exactly which of the arrangement 

lines of the components are aligned with each other. We 

discuss the computation of these arrays in Subsection 5.3.2 

further below, but let us f rst focus on the alignment graphs 

to facilitate the understanding of our approach. 

 
Component 0      Component 1 Component 2 

 
 
 

yAB = yC 

 
 

yD = yEF 

yGH 

 

 

 

Figure 18: A placement of three components and its cor- 

responding alignment graph. 

Alignment graphs must not contain cycles. This  can 

best be seen by an example. Figure 18 shows three com- 

ponents with processing areas A to H, arrangement lines 

depicted as dotted lines, and the corresponding alignment 

graph. We observe that arrangement line yAB of compo- 

nent 0 is being aligned with arrangement line yC of com- 

ponent 1, and arrangement line yD of component 1 is being 

aligned with arrangement line yEF of component 2. This 

induces the alignment graph in the same f gure. Imagine 

now that we additionally wanted to align component 0 with 

component 2 in order to create a cycle in the alignment 

graph. This, however, would break the alignment of com- 

ponent 1 with either 0 or 2. Alignment graphs are therefore 

cycle-free and they are always connected since only mutual 

alignments of arrangement lines can reveal non-equivalent 

placements. Consequently, alignment graphs can be rep- 

resented as trees. Note further that alignment graphs are 

undirected because the connectivity property is symmet- 

ric. Furthermore, our notation of alignment graphs does 

not refer to a particular alignment of selected arrangement 

lines. A connection between node i and j precisely means 

that some arrangement line of component i is being aligned 

with some arrangement line of component j. We subse- 

quently write (i j) for a mutual alignment of components i 

and j and assume without loss of generality that i < j. 
In the following,  we explain in detail how     alignment 

graphs can be represented in a very compact manner that 

also facilitates to systematically enumerate all possible 

alignment graphs for a given set of components. 

 
5.3.1 Generating   Alignment   Graphs   with   Prü fer 

Codes 

Since alignment graphs are undirected trees, Cayley’s the- 

orem [6] states that there exist nn 2 different alignment 

graphs with n N nodes. This can be proven by establish- 

ing a bijection between trees with n nodes and so-called 

Prü fer codes [21], i.e., vectors of length n    2 containing 

integers  0  n   1  . Similar to the encoding of orienta- 

tions, such a vector can be interpreted as a base-n encoding 

of a number between 0 and nn   2      1.   Hence,  we obtain   

a one-to-one mapping between alignment graphs and the 

numbers in  0  nn  2   1  . This again allows us to iter- 

atively enumerate alignment graphs by counting numbers. 

Given a tree with n nodes, Algorithm 2 outputs its corre- 

sponding Prü fer code. 

The setting in Figure 18 with only n = 3  components  

is too simple to illustrate Algorithm 2. Let us therefore 

consider a more complex problem with n = 5 components, 

which is shown in Figure 19. As one can see,  the mu-  

tual alignments of components are (0  1) (2  4) (1  3) and 

(1 4). 
Figure 20 shows on the left-hand side the alignment 

graph that corresponds to the placement of components in 

Figure 19. On the right hand side, the f gure shows the 

alignment graph for a different alignment of the same com- 

ponents T2 = (1 2) (2 4) (3 4) (0 3)  used further be-  
low. 
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Input: tree T  with nodes  0 1 n 1 

Output: Prü fer code for T 

result ; 

for 1 n 2 do 

v leaf with smallest label; 

k neighbor(v); 

result.add(k); 

remove v from tree; 

end 

return result; 

 
Algorithm 2: Prü fer Encoding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yE = yJ 

to 124 = 4 4 4 5.  We can again interpret these elements  

as base-5 encoded integers. 

In order to transform any Prü fer code back into its cor- 

responding alignment graph, we apply Algorithm 3 to a 

Prü fer code. 

Input: Prü fer code P =  p1 pn   2 

Output: tree T 

start with n isolated nodes V =  0 1 n 1  ; 

for i = 1 n 2 do 

v smallest node in V not contained in P; 

connect v to node with label pi; 

remove v from the set V ; 

remove pi  from the sequence P; 

end 

connect the two remaining elements in V ; 

return T set of connected pairs; 

 

Algorithm 3: Prü fer Decoding 
 

yA = yF 

 
 
 
 
 
 
 

Component 0 

 
 
 
 
 
 
 

Component 2 

 
 
 
 
 
 
 

Component 4 

 
 

 
yG = yL 

To illustrate this algorithm, let us consider the example 

Prü fer code P = 89 =  3  2  4  5, which represents the align- 

ment graph as shown on the right-hand side of Figure 20. 

Since  P  = n 2, we know that n = 5 and therefore initial- 
Figure  19: A   placement   with   5   components mu- 
tually   aligned   according   to   the   following     pattern: 

(0  1) (2  4) (1  3) (1 4). 

 

Next  we  illustrate  how  the  Prü fer  encoding  algorithm 

computes  the  Prü fer  code  for  the  left-hand  tree  in  Fig- 

ure 20. To do so, it performs the following three steps as it 

iterates from 1 to n    2 with n = 5 in our example: 
 

1. leaf with smallest label: v = 0     k = 1     1 .  Now 

we remove the node 0 from the graph and obtain 

node 2 as the leaf with the smallest label. 

2. leaf  with  smallest  label:  v = 2    k = 4     1 4 .  

Now we remove the node 2 from the graph and ob- 

tain node 3 as the leaf with the smallest label. 

3. leaf with smallest label: v = 3 k = 1 1  4 1 

 
The Prü fer code for this example is therefore   1  4  1  . 

More generally, the set of all possible Prü fer codes for m = 
5 nodes has 53 = 125 elements ranging from 0 =  0 0 0  5 

 

 

 
Figure 20: Two alignment graphs for the 5 components 

from Figure 19: T1 =  (0  1) (2  4) (1  3) (1  4)  (left) and 

T2  =  (0  3) (1  2) (2  4) (3  4)  (right). 

ize V = 0 1 2 3 4 . The algorithm performs the follow-  

ing steps: 

1. smallest label P: v = 0 p1 = 3 new edge (0 3) 
update V =  1 2 3 4    P =  2   4 

2. smallest label P: v = 1 p2 = 2 new edge (1 2) 
update V =  2  3  4    P = 4 

3. smallest label P: v = 2 p3 = 4 new edge (2 4) 
update V =  3  4    P = 

4. new edge (3 4) 

As expected, the output is T = 
(0  3) (1  2) (2  4) (3  4)  ,   i.e.,  the  right-hand  tree of 

Figure 20. 

To sum up, iterating over the nn 2 different alignment 

graphs can be implemented by counting from 0 to nn     2
 

1,  producing  a  Prü fer  code  by  encoding  the  number  in 
base n and creating the corresponding tree using Algo- 
rithm 3. The output of this algorithm is a tree  with  n 

nodes represented by a set of edges T     0      n    1  2.  
For the left-hand tree in Figure 20, we have for example  

T  =   (2 4) (1 4) (0 1)  (1 3)  .   This tree contains    the 
information about pairs of components that are   mutually 

aligned. We are now prepared to enter the second step of 

the shift computation where we determine the specif c pairs 

of arrangement lines within the components that we want 

to align. 

 
5.3.2 Generating Arrangement Line Pairs 

So far, our placement algorithm has chosen a permutation 

of the components,  followed by an orientation for     each 
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_    
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componen,t and f nally an alignment graph using Algo­ 
rithm 3. However, the specifc arrangement lines for the 
alignmentofthecomponentshavenotyetbeenchosen. We 

explainthis secondstepof theshift computation next. 

If wewrite n; E N for thenumber of arrangement lines 

of component i E {O, . . . ,n - 1} , the number of possible 
different alignments of pairsof arrangement lines induced 
byan alignment graph is 

andthe arrangement linecount of thecorresponding com­ 

ponent (minus1). Wereferto thisnumber astheamzycell 

capacity. 
Figure 22 illustrates the array representationfor the ex­ 

ample in Figure 19. We create an array of length 8 as 
displayed, which contains 8 cells to represent the poten­ 
tialalignments of arrangement linesfor the S components 
because of 2(n - 1) = 8. We have selectecl the eclge or­ 
der (2,4),(1, 4), (0, 1),(1, 3). Cell O thus refers to an ar­ 
rangementlineofcomponent 2, whereas cellsS and6 refer 

seq( S' ) =  IT ( n-; 
( iJ )eS 

nj )­ ( 1) to (possibly different) arrangement lines of component 1. 

CellOhascapacity(arrangementline count) n2 = 1 andcan 

thereforecontaintheintegers{0, 1}, cellsS and6 haveca- 
Note that thenumber of arrangement lines of a specifc 

componentdependson its orientation. Figure21 illustrates pacit) · · 

this situation. If the component is not tumecl (left-hand 
side),  weidentify two arrangement lines for the two rows 

 

N r-,  i.. 

 ........ ... 
0 1 2 3   4 5 6    7 

lolol1l2l1lol2lol 
of processing areas, which are of interest for a potential 

alignment. If the component is tumecl by 270", we can 

identify three arrangement lines. lt is thus important that 

the components'  orientationis knownwhen thealignment 

-
,,   

 
( 2 , 4 ) ( 1,4   ) (0 , 1 ) (1 , 3 ) 

2      4 1 4 0 1 1 3 
 

of arrangement lines is computecl in Algorithm 1. In gen­ 

eral, the specifcation of arrangement lines for a specifc 

component is application-dependent and may depend on 

other reference points thanprocessing areas which can be 

ofinterest fora potential alignment. 

 

- 
G G --- 

C.-,.INl'el 
IMl4.. I() 

 

Figure22:  Data structureforenumeratingall possible, mu­ 

tualalignments of arrangement lines. 
 

Tuearrayrepresentationallowsus tosystematicallyenu­ 
merate all alignments of arrangement lines for a particu­ 
lar alignment graph.  Again we count with integers.   We 

 

 

- --· 
Y" 

GG --- '/« 

follows: 

1. If theright-mostcell is smaller than its capacity - 1, 

incrementits value. 

Figure 21: Tue numberof arrangement lines maydepend 
on  componentorientation. 

 
Letus retumtotheexample in Figure 19 and itscompo­ 

nent alignment, which is depicted by thealignment graph 
on the left-hand side in Figure 20. We determine the ar­ 
rangement linecountsfor thecomponents n0 ton4 andob­ 

tainthefollowing values: n0 = 2, n1 =4,n2 = 1, n3 = 2 and 

n4 = 3.2 Tue number of possible arrangement linecombi­ 
nationsthereforeisseq(S' ) = (-1  3). (-3  4).(2-4). (4-2) = 

2304. 

We usearraysof length 2(n- 1) to enumerate all possi­ 
ble alignments of arrangement lines for a given alignment 
graph S' with n - 1 tree eclges and each eclge consisting 
of 2 nodes. We introduce a particular order to represent 
theedges inthetree and can thereby identify each pair of 
neighboring array cells with a tree edge or, equivalently, 
each array cell with a node (component) in the edge se­ 
quence. lt doesnot matter how exactly this order of edges 
is chosen.  Each array cell must hold integers between 0 

 

2Notethatnotallanangement liDe:sareshownin  Figure  19 forreasom 

of clarily. The rgure oulydepicls tbose lmeswluchare aligoed witheach 

o<her. 

2. Ifthe righ-tmostcell has reachecl its capacity- 1, sei 

itback to Oandcarrytothenext cell. 

3. If all array entries become zero again, the complete 

set hasbeenenumerated. 

Each array corresponds to a particular alignment of ar­ 
rangement lines with respect to the previously determinecl 
permutation, orientation, andalignment graph. For theex­ 
ample ftomFigure 19 andtheselectecl orderoftreeeclges, 
we obtain thevector{0,0, 1, 2, 1, 0, 2,0) as shown in Fig­ 
ure22. lt representsanalignmentwherearrangement line0 
of component 2 is aligned with arrangement line Oof com­ 

ponent 4 (vG = yz), arrangement line 2 of component 4 is 
aligned with arrangement line1 of component 1 (yE = yJ ), 

arrangement line 1 ofcomponent Ois alignedwitharrange­ 

ment line O of component 1 (y., = YF), and arrangement 

line2 ofcomponent 1 is aligned with arrangement line Oof 
component 3 (yD =Y1). 

With this fnal computation step, the characteristics of 

a placement are completely determined. In the next sec­ 

tion, wediscuss howspecifc physical layoutscanbecon­ 

structed ftom the relative placements generated by our 

method. 

initialize an integer array of length 2(n - 1)  with zeros 

(0, 0, 0,0, 0, 0,0, 0) and iteratively enumerate the arrays as 

1   3 4 3 2 4 4 2 

000 

000 

'fD' 
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6 From Relative Placements to Phys- 

ical Layout 

 

Once the desired placement of components has been gen- 

erated, we need to  translate the  relative positioning of  

the components into the corresponding physical layout. 

Placing the components in the correct order and with the 

right orientation for each component from the permuta- 

tion and rotation information is straightforward. How to 

remove white space or to generally compact a layout has 

been studied by many authors and therefore, we do not 

want to discuss this problem here. We refer the interested 

reader to [11] for an overview on classical VLSI design 

approaches and [26] for a more recent discussion of the 

problem in the context of two-dimensional cell layout. It is 

of more interest how the generated alignments of arrange- 

ment lines can be further processed to f nd the exact ge- 

ometrical shift distances for each component such that all 

arrangement lines are correctly aligned. For this purpose, 

we developed the following recursive coloring algorithm. 

The algorithm step-wise marks the nodes of the alignment 

graph, initially assuming that all nodes are unmarked. 

 

 

1. Choose a component i V with exactly one unmarked 

neighbor j  V  such  that  (i  j)  T .  Initially,  all 
leaves satisfy this condition. If multiple candidates 
exist, choose randomly. 

 

 
2. Extract the arrangement lines bi and b j to be aligned 

from the alignment vector. 

 

 
3. Determine the shifting distance for component i by 

calculating d = b j     bi. 

 

 
4. Shift component i by distance d and recursively shift 

all components in the sub-tree of i by the same dis- 

tance d. 

 

 
5. Mark component i and repeat until only one unmarked 

component is left. 

 

 
Reconsider  the  alignment  graph  T  =   (2  4) (1   4) 

(0 1) (1 3)       and the alignment vector  0 0 1 2 1 0 2 0 . 

We need the y-coordinate of each arrangement line in or- 

der to calculate the exact vertical shift for each component. 

These coordinates are displayed next to each edge in the    

f gures below. 

 

 

 
Start 

 

 

Step 1 

 

 

 

We display the unit cm next to the coordinates to dis- 

tinguish between an arrangement line number in the ar- 

rangement line vector and its corresponding y-coordinate. 

According to the alignment vector, we must for example 

align arrangement line 0 for component 2 and arrangement 

line 0 for component 4. We f nd the coordinates 0cm and 

2cm along the edge between components 2 and 4 in the 

alignment graph, which means that arrangement line 0 of 

component 2 has y-coordinate 2cm and arrangement line  

0 of component 4 has y-coordinate 1cm with respect to the 

global coordinate system. Note that these vertical displace- 

ments were not shown in Figure 19 when this example was 

introduced. Our algorithm now proceeds as follows, ar- 

bitrarily selecting component 2 as the f rst component to 

begin with: 

 
 

1. We choose component 2 that has only one unmarked 

neighbor, which must be aligned with component 4. 

The arrangement line height of 2 is 0cm and the ar- 

rangement line height of 4 is 2cm. Hence, components 

2 and 4 can be aligned by shifting 2 by a distance of 

2cm 0cm = 2cm. This is shown in the box added to 

component 2. We mark component 2 and continue. 

 

2. We choose component 3 that has only one unmarked 

neighbor. It can be aligned with component 1 by shift- 

ing 3 by 2cm    1cm = 1cm. We mark 3 and continue. 

 

3. We choose component 4 with only one unmarked 

neighbor. It is aligned with component 1 by shifting 

component 4 3cm  4cm =  1cm.  As component 2  

has already been aligned with component 4 the new 

shifting distance 1cm also applies to component 2. 

We mark 4 and continue. 

2 0 

0cm 1cm 

2cm 3cm 

4 1 
4cm  3cm 2cm  1cm 

3 

+2cm 

2 0 

0cm 1cm 

2cm 3cm 

4 1 
4cm  3cm 2cm  1cm 

3 
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-1cm 

3 

 

 
 

Step 2 

 
 

Step 3 

 

 
 

4. We choose component 1 with only one unmarked 

neighbor. It can be aligned with component 0 by shift- 

ing component 1 by 1cm 3cm = 2cm. As compo- 

nent 1 has already been aligned with components 3 

and 4 (and 4 itself with 2), the new shifting distance 

2cm recursively applies to all these components. We 

mark 1 and continue. 

 

Step 4 

 

 

5. Only one unmarked component is left, so the algo- 

rithm stops. 

 

These steps geometrically create the selected placement 

on the plane. Remember that only the relative positioning 

of components with respect to each other matters. When 

placing the components in the selected order, the horizon- 

tal distances can be chosen arbitrarily (or compacted fol- 

lowing domain-specif c design rules) as long as the com- 

ponents do not overlap. 

 

7 Exhaustive and Local Placement 

Search 

Our modeling and encoding method and the three compu- 

tational sub-procedures constitute a powerful algorithm to 

generate all possible placements of technical components 

with distinguished processing areas that are subject to a 

predef ned processing order as it can often be found in 

manufacturing problems. The predef ned processing order 

naturally induces an equivalence relation between differ- 

ent component placements, where only the rotation of indi- 

vidual components, their relative horizontal positioning as 

well as mutual vertical alignments with respect to arrange- 

ment lines can produce new non-equivalent placements. 

At the heart of our algorithm lies a very compact and ef- 

f cient encoding scheme that allows us to represent place- 

ments by the three aspects of permutation, orientation, and 

shift and devise eff cient sub-procedures to compute each 

aspect individually. Our sub-procedures can be easily em- 

bedded into local, systematic, and evolutionary search ap- 

proaches and can be combined with other well-established 

f nite domain optimization techniques such as constraint 

programming. In the following, we brief y discuss how an 

embedding into exhaustive (systematically enumerating all 

placements) or local (only generating selected placements) 

search algorithms can be achieved. 

We showed that all relevant placement information can 

be represented by integers. The relative horizontal posi- 

tion is encoded by a permutation index, the orientation of 

each component is a base-m encoded number with m being 

the number of possible turns, mutual alignments of com- 

ponents are  represented  by  Prü fer  codes,  and  the  choice 

of specif c arrangement lines for the alignment is also a 

counting number. As all algorithms are iterative and use 

only constant or linear memory, they can be used in stan- 

dard search procedures to optimize some given placement 

evaluation function. 

In Algorithm 4 we complete the skeleton shown in Algo- 

rithm 1 for exhaustive search with a generic penalty func- 

tion that represents the evaluation of a concrete placement 

with respect to one or several optimization criteria. Each 

placement is then evaluated by some evaluation procedure 

that assigns a penalty to a placement. The placement with 

the smallest penalty is returned as the output of the algo- 

rithm. The evaluation procedure can also consist of another 

search algorithm, which determines the optimal processing 

sequence that is enabled by a specif c placement. It would 

assign the cost of this processing sequence as penalty to the 

placement. 

We are fully aware that the high exponential time com- 

plexity generally does not allow complete search for more 

than small placement problems. However, our eff cient en- 

coding scheme in combination with the iterative nature of 

each sub-procedure facilitates the implementation of ar- 

bitrary search algorithms. It is therefore not diff cult to 

transform this algorithm into a randomized or evolution- 

ary search procedure or, with a suitable application-specif c 

heuristic, into a heuristic or local search procedure. Con- 

sult [23] for an introduction to generic search methods. 

Our encoding scheme further shows that all relevant in- 

formation about equivalence classes of component place- 

ments can be represented as counting numbers with pre- 

cisely determined lower and upper bound.  This  makes 

our approach particularly well-suited to be combined with 

other well-established optimization techniques such as f - 

nite domain constraint programming [22] for example.  In 

+2cm 

2 0 

0cm 
 

2cm 

1cm 

3cm +1cm 

4 1 3 
4cm  3cm 2cm  1cm 

+1cm 

2 0 

0cm 
 

2cm 

1cm 

3cm +1cm 

4 1 3 
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-1cm 
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In put: vector ofn E Ncomponents 

Output:  best evaluated placement 

best oo; 

candidate null; 

p f rstPennutationQ; 
repeat 

fori =o,... , m• - 1 do 
0 = toBase(i,.m) ( ro t a t i on  vect  o r ) 

forJ = o,..., m"'- 2 - 1 do 

P toBase(j,n) 
( in dex   t o  Pr'Ufer cod e ) 

§ decode(.P) 

( Prüfer code to tree} 

align (0,...,0]; 
repeat 

placement generate(p, o, s); 

value penalty(placement); 

if vah,e < best then 
1  best value;   

candidate placemen t; 

end 

this case, we would model the permutation index with the 

all-different constraint and,dueto theone-to-onemapping 

between Prüfercodesandspanningtrees, alsobeneftftom 

specialized global constraints for spanning-treesto capture 

component alignment [10]. The alignment ofarrangement 

lines thencorrespondsto edgeweightsof the spanningtree. 

This means that our operational specifcation of the algo­ 

rithm can also be translated into a declarative constraint­ 

based representation, which can then be fed into arbitrary 

constraint solvers. Inaddition, such a declarative represen­ 

tation makesit easy to add additional domain- or instance­ 

specifc constraintsto the model, whichcan thenbe consid­ 

ered by a solver whensearching for a solution to a place­ 

ment problem. 

 

 

8 Mixed ho1·izo n tal and Vertical 

Placements 

So filr, we considered the special case of placements with 

onlyhorizontal or onlyverticalarrangement lines. Imagine 

next the followingsetup with three objects A,B,C. A has 

threearrangement Jines(left, upperand loweredge), B has 

one arrangement line (leftedge) andC has one arrangement 

line(uppered ge). For simplicity , no rotations are possible 

in thisexample. Wef rst look at the objects having at least 

one horizontal arrangement line(A and C in thisexample) 

and apply the above algorithm to f nd all possible place­ 

ments for this subset A and C. Then, we do the same for 

all objects havingat least one vertical arrangement line(A 

and B in this example). The possible placements for the 

horizontal and vertical alignment sub-problems are shown 

in Figure 23. 

until(align next(align§, 

end 

end 

))==null; 

un til (p nextPennutation(p)) == m11/; 
retwncandidate; 

 

Algorithm 4: Exhaustive search algorithm enumerating 

the complete space of non-equivalent placements under 

the predef ned processingorder. 

 

 
Figure23:  Horizontal andvertical alignmentsof subsets A 

and C (left) and A and B(right). 

 
Now we create all consistent overlay placements ftom 

the horizontal and vertical sub-problem placements. For 

example, the second placement in the upper row in Fig­ 

ure 24 is obtained by combining the f rst horizontal place­ 

ment with the frst vertical placement. For this simp le ex­ 

ample, all 8 combinations of horizontal and vertical place­ 

ments are possible (although only 4 are displayed here). 

This is, however, not always the case. When the overlay 

placements are created, a consistency check must ensure 

that all arrangement line constraints are satisfed. If thisis 

not the case, the overlayis not a valid solutionto the place­ 

ment problem for the entireobject set. 
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Figure 24:  Four consistent overlay placements. 

 
 

9 Conclusion 
 

In this article, we studied layout and placement problems 

of technical components that can be abstracted to relative 

arrangements of components. Horizontal and vertical ar- 

rangements between components and sub-components can 

be captured as well as requirements of rotation. We de- 

scribe these modeling elements by the concepts of permu- 

tation, orientation and shift and present a compact encod- 

ing based on integer vectors together with algorithms that 

compute and manipulate these integer vectors by counting 

algorithms. The compact encoding can provide a very eff - 

cient foundation for any state-based search algorithm, and 

it is easy to conf gure to the needs of a specif c application. 

We show that for placement problems under predef ned 

processing orders, where the processing order of the com- 

ponents is given by a manufacturing process, only different 

relative placements can induce different processing orders. 

Our current work focuses on the combination of the 

placement generation with an evaluation function that de- 

termines optimal placements. In our case, the evaluation 

function involves a highly complex optimization problem 

with a large search space. The optimization problem re- 

sults from the fact that any placement will enable many 

different possible  processing sequences under the  prede- 

f ned order and that we need to f nd the optimal processing 

sequence for a given placement using the evaluation func- 

tion. We therefore investigate techniques to heuristically 

generate only “promising” placements and then apply local 

search to f nd good, but not necessarily optimal processing 

sequences. Our compact encoding as integer vectors al- 

lows us to effectively implement the heuristic control by 

constraining specif c integer values. 
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