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Abstract: In this paper, an adaptive fusion algorithm is proposed to robustly estimate the state of charge of 

lithium-ion batteries. An improved recursive least square algorithm with a forgetting factor is employed to 

identify parameters of the built equivalent circuit model, and the least square support vector machine algorithm 

is synchronously leveraged to estimate the battery state of health. On this basis, an adaptive H-infinity filter 

algorithm is applied to predict the battery state of charge and to cope with uncertainty of model errors and prior 

noise evaluation. The proposed algorithm is comprehensively validated within a full operational temperature 

range of battery and with different aging status. Experimental results reveal that the maximum absolute error of 

the fusion estimation algorithm is less than 1.2%, manifesting its effectiveness and stability when subject to 

internal capacity degradation of battery and operating temperature variation. 

Key Words: adaptive H-infinity filter, least square support vector machine, model-based method, state of 

charge. 

NOMENCLATURE 

Abbreviations   

EVs electric vehicles AUKF adaptive unscented Kalman filter 

BMS battery management system ASR-SPKF adaptive square root sigma-point Kalman filter 

SOC state of charge A-SPKF adaptive sigma-point Kalman filter  

SOH state of health RLS recursive least square 

SOP state of power AEKF adaptive extended Kalman filter 

SOE state of energy FF-RLS recursive least square with forgetting factor 

SOF state of function AHIF adaptive H-infinity filter 

OCV open circuit voltage LS-SVM least squares support vector machine 

ECM equivalent circuit model GA genetic algorithm 

PF particle filter RMSE root-mean-square error 

KF Kalman filter SVM support vector machine 
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EKF extended Kalman filter RBF radial basis kernel 

CKF cubature Kalman filter CC constant current 

UKF unscented Kalman filter CC-CV constant current–constant voltage 

HIF H-infinity filter MSE mean square error 

DEKF dual extend Kalman filter UDDS urban dynamometer driving schedule 

RLS-EKF 
recursive least square-extended 

Kalman filter 
GA-AHIF genetic algorithm based adaptive H-infinity filter 

NC-EKF 
noise compensation-extended 

Kalman filter 
PI proportional-integral 

Symbols    

OCVV  open circuit voltage T  battery temperature 

0R  internal ohmic resistance testV  measurement voltage 

1R  polarization resistance N  test time 

1C  polarization capacitance ku  input variable 

E  terminal voltage kx  state variable 

I  loading current ky  measurement variable with noise 

0V  ohmic voltage kz  linear combination of estimation states 

1V  polarization voltage kL  unit matrix 

ks  state of charge at sampling k  kw  system noise 

  coulomb efficiency kv  measurement noise 

t  sampling interval time 0P  symmetric positive matrices 

nQ  battery rated capacity kQ  symmetric positive matrices 

1w  process noise for state of charge kR  symmetric positive matrices 

2w  
process noise for polarization 

voltage kS  symmetric positive matrices 

v  measurement noise J  cost function for H-infinity filter 

( )G s  transformation function   user-specified boundary value 

ia  
coefficients associated with the 

model parameters 
  deviation vector 

kΦ  input data matrix C  weight of support vector machine 

kθ  parameter matrix L  Lagrange function 

FF RLS−K  gain matrix of FF-RLS i  Lagrange multiplier 

,FF RLS k−P  covariance matrix of FF-RLS ( )iK x, x  kernel function 

w  white noise information startV  starting recode voltage 

  forgetting factor stopV  ending recode voltage 

ip  fitting coefficients of OCV   
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I. INTRODUCTION 

Transportation electrification can effectively mitigate environmental pollution and greenhouse gas 

emissions incurred by massive combustion of fossil fuels [1]. Electric vehicles (EVs), representing an important 

class of development direction, have attracted wide attention due to their zero emissions, high efficiency and 

superior driving performances [2]. Currently, most of EVs are equipped with lithium-ion batteries for storage 

of electric energy [3, 4]. To guarantee safe efficient operation of batteries, a serviceable battery management 

system (BMS) is indispensable [5]. The main task of BMS includes accurate measure of battery current, voltage 

and temperature and on this basis, estimation and evaluation of the inner status [6], i.e., state of X, where X can 

be charge (SOC) [7], health (SOH) [8, 9], power (SOP) [10], energy (SOE) and function (SOF) [11]. Amongst 

them, SOC refers to the ratio of remaining available capacity over the nominal capacity and directly correlates 

with current, temperature and terminal voltage of batteries. Its effective estimation is vital to supply the reference 

for estimation of remaining driving mileage and avoid abuse operation (over-charge/ discharge). Hence, the 

estimation algorithm needs to be accurate, quick convergent, reliable and robust [3], and is indeed a challenging 

task.  

To now, a variety of advanced methods have been proposed, applied and validated to achieve SOC 

estimation. Typical ones include coulomb counting, open circuit voltage (OCV) based calibration, data driven 

and model-based algorithms [12]. The coulomb counting method estimates SOC by directly integrating the 

current flowing into and out of batteries over time. Obviously, it is simple and easy to implement in practice, 

and yet difficult to guarantee estimation accuracy, as it is easily disturbed by measurement error and noise of 

current, and particularly depends heavily on the initial SOC value [13]. The OCV-based method can obtain SOC 

accurately with the offline calibrated relationship between OCV and SOC. Apparently, it is not applicable for 

real-time application, since it is almost not possible to acquire the OCV online. The data driven based method 

directly extracts internal characteristics of batteries by means of a large amount of operation data, from which 

the nonlinear mapping relationship between SOC and feature variables is established. The above methods do 

not require deep understanding of battery operation and inner electrochemical reaction characteristics. However, 

the estimation accuracy depends largely on selection of feature parameters as well as quality and quantity of 

training data [14]. The model-based estimation methods are extensively accepted because of their high precision, 

noise elimination and independence of initial values. Additionally, they sufficiently merge external voltage, 

current and temperature information and refer to the offline calibration test and model establishment [7, 15]. To 
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apply model-based algorithms, it is necessary to characterize dynamic and static electrical performances of 

batteries. Consequently, popular manners, such as equivalent circuit model (ECM) [16], complex 

electrochemical model [17] and pseudo single particle model [18], are elaborated and applied. Presently, the 

most popular modeling manner when conducting SOC estimation belongs to the ECM, due to its acceptable 

precision and fast calculation speed. On this basis, typical filters are harnessed to improve the observation 

precision, including particle filter (PF) [19], Kalman filter (KF) and its extensions such as extend KF (EKF) 

[20], adaptive EFK (AEKF) [21], cubature KF (CKF) [22], and unscented KF (UKF) [23], nonlinear observer 

[24], and H-infinity filter (HIF) [25]. In [26], three SOC methods including the dual EKF (DEKF), recursive 

least square (RLS)-EKF (RLS-EKF) and noise compensation-EKF (NC-EKF) are systemically compared and 

evaluated. Numerical results manifest that the DEKF and NC-EKF are more robust than RLS-EKF when 

magnitude of noises aggravates, and the RLS-EKF and NC-EKF feature the least and highest computation 

intensity among these filters, respectively. In [27], an adaptive UKF (AUKF) is leveraged to estimate the SOC 

of battery modules grouped by cells in series connection. Compared with UKF and EKF, the experimental 

results reveal that the improved AUKF method can track the reference SOC and exhibit high robustness when 

the process and measurement statistics noises vary stochastically. In [28], an augmented battery model is divided 

into a SOC sub-model and a resistance-capacitance (RC) circuit sub-model to reduce the cross interference 

between SOC and the voltage of RC network. The experimental results demonstrate the efficacy of reducing 

SOC oscillation and decreasing estimation errors. In addition, electrochemical model and its reduced-order 

format (such as single particle model) are progressively exploited for SOC estimation. In [29], the EKF is 

adopted based on the single particle model to estimate the SOC. A more precise electrochemical model is 

developed in [30] considering the influence of electrical double layer structure, and the EKF observer is 

leveraged for SOC estimation. Ref. [31] employs the Padé approximation and third-order residual grouping 

methods to reduce the computational complexity of the original electrochemical model. Based on the reduced-

order electrochemical model, the adaptive square root sigma-point Kalman filter (ASR-SPKF) is addressed to 

predict the battery SOC. The estimation results reveal that the ASR-SPKF can lead to better SOC prediction 

performance, compared with another two nonlinear filter algorithms, i.e., AEKF and adaptive sigma-point 

Kalman filter (A-SKF). In comparison with ECM, electrochemical models can characterize the battery’s 

electrical performance and inner chemical reactions more precisely; however, the intensive calculation burden 
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hinders their online application potential. Instead, ECM is a proper candidate to balance the modeling precision 

and calculation complexity and is therefore still employed in this study. 

In practice, batteries operate within a wide temperate range (usually -20 °C to 50 °C), and in this context, 

the model parameters of battery may change with temperature in a nonlinear manner. Similarly, performance 

degradation of batteries with cycling also leads to variations of model parameters. To address these variations, 

many efforts have been made to online update model parameters and to cope with external varying conditions 

and internal parameter variations [26]. In [32], a temperature compensated model is built, and the EKF is 

investigated to improve the estimation precision of SOC. Ref. [33] analyzes the relationship between the 

differential voltage (DV) and incremental capacity (IC) in a narrow scope and achieves the simultaneous online 

estimation of battery capacity and SOC. In [34], a joint algorithm incorporating RLS and AEKF is leveraged to 

identify the battery parameters and estimate the SOC simultaneously. In addition, the battery capacity is 

predicted by the Elman neural network in real-time operations. The numerical results highlight that the 

estimation error of SOC is less than 2% at room temperature with different aging status. Nonetheless, a wide 

operating temperature range is not explicitly taken into account, and the maximum estimation error can reach 

as high as 6% when the temperature is beyond the normal range. In [35], a Thevenin electric model integrating 

temperature compensation is introduced and the model parameters are identified by the RLS method under the 

conditions of different temperatures. In [25], a multi-scale dual HIF is proposed to estimate the battery SOC and 

capacity simultaneously. However, the operating temperature is not fully considered, and the estimation 

performance is not evaluated when the temperature varies. 

As discussed above, even significant contributions have been made to improve SOC estimation accuracy 

in the whole operation range of battery, there still exists a certain room for further improvement when fully 

considering temperature variation and battery degradation. Motivated by this fact, an advanced fusion estimation 

algorithm for batteries is developed based on the ECM considering the whole operating temperature and 

capacity degradation. First, the battery parameters are identified by an improved RLS with a forgetting factor 

(FF-RLS) for adaption to environmental temperature variation and capacity degradation. On this basis, the 

battery SOC is estimated by the adaptive HIF (AHIF) algorithm to cope with the interference of system variation 

and measurement noise. Furthermore, the least square support vector machine (LS-SVM) is simultaneously 

employed to estimate the battery SOH, thus contributing to the estimation of SOC. The experimental results in 

terms of variation of capacity and operating temperature demonstrate that the algorithm outperforms other 
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commonly used model-based methods, such as AEKF. Moreover, the algorithm together with built ECM is still 

effective at low temperature and with degraded capacity. This is of great significance for SOC estimation when 

the battery ages.  

The remainder of this paper is structured as follows. In Section II, the ECM and model parameter estimation 

for lithium-ion batteries are presented. Section III introduces the adaptive fusion algorithm for the SOC and 

SOH estimation. Section IV presents and discusses the validation results. Finally, the concluding remarks and 

future work are given in Section V. 

 

II. LITHIUM-ION BATTERY MODEL AND PARAMETERS 

A. Lithium-ion Battery Cell Model 

Three broad categories of battery models, including ECM, data driven model and electrochemical model, 

are widely employed to characterize the battery electrical performance. Among these models, the ECM can not 

only capture the battery’s dynamic and static characteristics with preferable precision, but also feature low 

computation intensity, thereby enabling online real-time application [27]. Thus, the ECM, as depicted in Fig. 1 

(a), is employed in this study to describe the electrical behavior of battery. The SOC is expressed as the 

percentage of remaining capacity over the rated discharging capacity, as: 

 
1k k k ns s I t Q+ = −    (1) 

where 
ks  represents the battery SOC at the sampling time k ;   denotes the coulomb efficiency; t  

represents the sampling time (unit: second), and 
nQ  is the battery rated capacity with the unit of Ampere-hour. 

In this study, the target batteries are 21700 LiNMC cells and the detailed specifications are listed in Table I. 
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(c)          (d) 

Fig. 1. The first-order RC model and related parameters. (a) Equivalent circuit diagram of the battery model; (b) The 3-D OCV 

response surface; (c) The SOC-OCV correlation and fitting results; (d) The Initial capacity at different temperatures. 

 

Table I Specification of the test battery 

Items Specification 

Cathode material Li(NiCoMn)O2 

Anode material Graphite 

Nominal capacity 4 Ah 

Allowed operating range of voltage  2.75-4.2 V 

Rated voltage 3.65 V 

Allowed charging temperature 0-45 °C 

Allowed discharging temperature -20-60 °C 

 

According to Fig. 1 (a), the following equations can be formulated, as: 

 

1

1 1 2

1 1 1

1

1 1

t

n

t

s I w
Q

V V I w
R C C

= −


+

= −



+ +






  (2) 

 
1 0( , )oc tE V s T V R I v= − − +   (3) 

where 
OCVV  denotes the ideal OCV, 

0R  is the internal ohmic resistance, 
1R  and 

1C  are respectively the 

polarization resistance and capacitance, E  is the terminal voltage, and I  denotes the loading current. 
0V  

and 
1V  represent the ohmic voltage and polarization voltage across 

0R  and 
1R ; v  represents the 

measurement noise; and 
1w  and 

2w  denote the process noise for SOC and 
1V , respectively. 

B. Parameters Acquisition 

Given the strong nonlinear time-varying characteristics of batteries, it is imperative to construct an online 

parameter identification algorithm for sufficiently responding to the battery’s electrical performance. 

Additionally, the offline identification algorithm is also beneficial to quantitatively describe the relationship 

between OCV and SOC, temperature and initial capacity. To attain it, the genetic algorithm (GA) is employed 

to achieve the offline identification. 
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1). Online Identification 

According to (2), the state space equation of battery model can be discretized as: 

 
1 1 1 1

1, 1 1 1

, 1, 0

(1 )
t t

R C R C

k ,k -1 k

k oc k k k

V e V e R I

E V V R I

 − −

−
 = + −


= − −

  (4) 

where 
kE , 1,kV  and ,OCV kV  respectively denote the terminal voltage, polarization voltage and OCV at the kth 

sampling time, and 
kI  is the current at the kth sampling time. From (4), we can get: 

 ( )1 1 1 1

, 1, 1 1 0(1 )
t t

R C R C

k OCV k k k kE V e V e R I I R
 − −

−= − + − −   (5) 

By eliminating 1,kV , we can attain:  

 ( )1 1 1 1 1 1

, 1 , 1 0 0 1( ) ( ) (1 )
t t t

R C R C R C

k OCV k k OCV k k kE V e E V R I e R e R I
  − − −

− −− = − + − + − −   (6) 

Here, we assume that the OCV at the kth step ,OCV kV  is equal to , 1OCV kV −  at the ( 1)k − th step. Then, the 

discretization calculation can be rewritten as: 

 
1 2 1 3 4 1k k k kE a a E a I a I− −= + + +   (7) 

where ( 1,2,3,4)ia i =  express the coefficients. Consequently, we can attain:  

 
 

 

1 1

1 2 3 4

1

k k k

k k k k

T

k

k k

y w

E I I

a a a a

y E

− −

+


=


=


=

=Φ θ

Φ

θ
  (8) 

where w  denotes the white noise from the measurement, and 

 
1 1

1 1 1 1

1 2

( )

2

3 0

( ) ( )

4 0 1

(1 )

(1 )

OCV

t R C

t R C t R C

a a V

a e

a R

a e R e R
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− −

= −


=


= −
 = − −

  (9) 

From (9), the ECM parameters can be obtained, as: 
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As mentioned above, the battery model parameters can be easily influenced by the uncertain operation 

environment. The RLS algorithm based on adaptive filtering can compensate uncertainty of model parameters 

through recursive parameter correction, so as to accurately capture real-time characteristics of the system. 

However, for heuristic systems with slow continuous changes, the traditional RLS algorithm is difficult to track 

variation and provide reliable estimation results [36]. To tackle this issue, the FF-RLS is proposed to realize 

reliable estimation of model parameters [37]. The main solution steps of FF-RLS are summarized as follows:   

1) Input data matrix and initialize parameter matrix 

 
 1 1

0 1_ 0 2 _ 0 3_ 0 4 _ 0

1k k k k

T

E I I

a a a a

− −
 =



 =  

Φ

θ
  (11) 

2) Determine the gain matrix and the covariance matrix 

 

, 1

, 1

, 1 , 1

, =

k

k

T

FF RLS k

FF RLS k T

k FF RLS k

FF RLS k FF RLS k k FF RLS k

FF RLS k





− −

−

− −

− − − − −

−


=

+


−



，

，

P Φ
K

Φ P Φ

P K Φ P
P

  (12) 

where   denotes the forgetting factor, and its function is to strengthen the role of new data and gradually 

weaken the function of old data. Usually,   is set within [0.95, 1]. When   equals 1, the algorithm 

degenerates to the conventional RLS. 

3) Update the estimation parameters, as: 

 1 1
ˆ ˆ ˆ( )k k FF RLS k k ky− − −= + −θ θ Φ θK   (13) 

4) 1k k= +  and go to step 1). 

It is worth noting that although the FF-RLS can identify the battery parameters under the condition of rapid 

current excitation, unchanged or tiny varying current excitation still affect precision of parameter identification 

[38]. However, in practice, long time rest and constant current (CC) charging are inevitable. Thus, the current 

profiles need to be sufficiently diverse to achieve the battery extreme performance. As such, additional iteration 

process is designed in this paper to solve this problem. In the case of low current or CC, the FF-RLS is 

temporarily terminated and new parameters are obtained through the weighted average of historical model 

parameters. The iterative process is designed as: 

 , 1,

1 1ˆ ˆ ˆ(1 )k average k average k
 

−= − +θ θ θ   (14) 
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where (1 ) (1 )k  = − − . By adding a parameter update loop, the parameter identification method can be 

applied in any cycle experiment. 

2). Offline Identification 

To acquire the temperature-SOC-OCV model, a group of cells are tested at different operating temperatures 

with the specially designed current excitation. The experiment temperature is set to -20 °C to 50 °C with an 

interval of 10 °C. During the experiment, the voltage, current and temperature are recorded, and the sampling 

frequency is set to 1 Hz. All the cells are charged and discharged with the currents of 6 A (1.5C, where C denotes 

the rated capacity of battery with the unit of Ampere-hour) and 8 A (2C). The extracted OCV map at different 

temperatures and SOC values is depicted in Fig. 1 (b). It can be found that the OCV at different temperatures is 

not obvious when the SOC is greater than 20%. Here, by referring to the polynomial electrochemical equation 

introduced in [37], the relationship between OCV and SOC is formulated in (15), and the resulting curve at 

room temperature is plotted in Fig. 1 (c). 

 
2 3

0 1 2 3 4 5 6ln( ) ln(1 )ocvf p p s p s p s p s p s p s= + + + + + + −   (15) 

where ( 0,1,...,6)ip i =  are fitting coefficients. The battery initial maximum discharging capacity under 

different temperatures is plotted in Fig. 1 (d), and the relationship between maximum discharging capacity and 

temperature can be fitted as: 

 
07 4 05 3 2( ) 1.681 10 1.877 10 0.0009316 0.03541 3.338nQ T T T T T− −= −   +   −  +  +   (16) 

where T  denotes the battery temperature. To further evaluate the performance of proposed online 

identification method, the commonly employed offline parameter identification method, i.e., GA, is applied to 

identify other parameters, including the ohmic resistance, polarization resistance and polarization capacitor [21, 

39-41]. The root-mean-square error (RMSE) between the model output and measured voltage is selected as the 

fitness function:  

 2

1

1
( )

N

test

i

RMSE E V
N =

= −   (17) 

where testV  denotes the measurement voltage, and N  represents the test time. 
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III. SOC AND SOH ESTIMATION 

In this study, the joint estimation includes the SOC and SOH, both of which are strongly coupled, and 

precise SOC estimation relies on accurate SOH value. 

A. The SOC Estimation Algorithm 

The KF method assumes that the statistical characteristics of noise are known in advance [23]; however, it 

is difficult to obtain variance of noise in practice. In addition, the model errors incurred during the modeling 

process also deteriorate the estimation accuracy. To circumvent limitation of KF and uncertainty of model error 

and improve the robustness of estimation, the HIF algorithm is employed to estimate the battery SOC. We apply 

a standard linear time-varying discrete system, as: 

 

1k k k k

k k k k

k k k

x F x w

y H x v

z L x

+ = +


= +
 =

  (18) 

where 
kx  is the state variable, 

ky  is measurement variable with noise, and 
kz  represents the linear 

combination of estimation states. 
kL  is a user-specified matrix, which is set to unit matrix in this paper; and 

kw  and 
kv  denote the system noise and measurement noise, respectively. The cost function of the HIF is 

defined as: 

 

1 1 1
0

1

0

1
2 2 2

0 0

0

ˆ

ˆ ( )
k k

N

k k

k

N

k kP Q R
k

z z

J

x x w v− − −

−

=

−

=

−

=

− + +




  (19) 

where 
0P , 

kQ , 
kR  and 

kS  are positive definite matrices. Intuitively, it is difficult to minimize J , and for 

ease of finding its minimum value, a boundary condition is imposed to assist search of the suboptimal value, as: 

 J    (20) 

where   denotes the user-specified boundary value. By incorporating (19) and (20), the boundary condition 

can be rewritten as: 

 1 1 1
0

1 1
2 2 2

0 0

0 0

ˆ ˆ= ( ) 0
k k

N N

k k k kP Q R
k k

J x x w v z z − − −

− −

= =

− − + + − −     (21) 

From the above discussion, we can find that the HIF can limit the noise interference to the H-infinity norm of 

the state estimation error within a restricted interference range. According to the first-order ECM, the input 

variable and state variable are defined as: 
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1,,

k k

T

k k k

u I

x s V

=


 =  

  (22) 

Then, the state space equation of system can be expressed as: 

 
, 01,oc k

k

k

k k k k

k k

F

V V R u

A x B u

y − −

= +


=
  (23) 

where  

 ( )1 1

1 1
1,

1 0
, 1

0

t
R C

t
R C

T

k k k

n

t
A B e R

Qe

 



−

−

   
= = −   
    

，   (24) 

Similar to the AEKF algorithm [21], the adaptive covariance calculation algorithm is added to the 

traditional HIF algorithm for updating the noise covariance matrix in the iterative process. Now, the general 

process of AHIF is illustrated in Table II.  

From the implementation process of FF-RLS and AHIF, we can find that all the remaining parameters of 

the state space model, except the battery capacity 
nQ , can be updated periodically. To attain estimation of 

nQ , 

the support vector machine (SVM) is employed in this study. 

Table II Algorithm of AHIF 

Initialization 0 0 0 0 0 0 0
ˆ ˆ ˆ( ), ( )( )Tx E x P E x x x x+ + + + = = − −   (25) 

Prior estimate of state 1 1
ˆ ˆ

k k kx F x− +

− −=  (26) 

Prior estimate of error covariance 
1 1 1 1

T

k k k k kP F P F Q− +

− − − −= +  (27) 

Symmetric positive definite matrices 

update 
T

k k k kS L S L=  (28) 

Condition judgment 
1 1( ) 0T

k k k k kP S H R H− − −− +   (29) 

Innovation update ˆ
k k k ke y H x−= −  (30) 

Adaptive estimation of measurement noise 

matrix 
1

1ˆ ˆ ˆ,
k

T T

k i i k k k k k

i k N

M e e R M H P H
N

−

= − +

= = −  (31) 

Gain matrix update 
1 1 1( )T T

k k k k k k k k k k kK F P I S P H R H P H R− − − − − −= − +  (32) 

Adaptive estimation of process noise matrix ˆ ˆ T

k k k kQ K M K=  (33) 

Measurement update of state estimate ˆ ˆ
k k k kx x K e+ −= +  (34) 

Measurement update of error covariance 
1 1( )T

k k k k k k k kP P I S P H R H P+ − − − − −= − +  (35) 

 

B. The SOH Estimation Algorithm 

By comparing with other data driven algorithms, the SVM algorithm does not fall into the local extreme 

problem, and particularly it can be justified by rigorous mathematical proof. However, the general SVM shows 

complex solution process and intensive computation burden. The LS-SVM method is consequently developed 
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to solve the nonlinear regression estimation problem with less computation load and is proved suitable for 

battery SOH estimation [42-44]. To attain it, the following target function is established, as: 

 2

1

1
min ( , )

2 2

l
T

i

i

C
J

=

= + w w w    (36) 

where  1 2 l  =  is the deviation vector, and C  denotes the weight, which can be identified to find 

the optimal hyper plane. In addition, the following constraint needs to be satisfied: 

 ( ) 1 , 1,2,...,T

i i iy b i l  + = − = xw   (37) 

The physical meaning of 
i  in (37) can be explained as follows. When the sample 

ix  lies outside the two 

critical hyperplanes, 
i  is less than zero and it indicates the negative distance from 

ix  to the nearest critical 

hyper plane. On the contrary, when 
ix  is located between two critical hyperplanes, 

i  is greater than zero; 

highlighting the positive distance from 
ix  to the nearest critical hyper plane. The Lagrange function, as shown 

in (38), is defined and the maximum condition of the function is solved to achieve the minimization.  

 ( )
1

( , , , , ) ( , ) ( )
l

T

i i i i

i

L C J b y
=

= −  + + −w w w x        (38) 

where 
i  represents the Lagrange multiplier. The optimization condition can be summarized as: 
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Given the above conditions, the following equations can be derived: 
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By solving (40), the solution can be obtained:  
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i i

i

f x K b
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= + x, x   (41) 

where ( )iK x,x  denotes the kernel function, and ( ) ( ) ( )T

i i iK = x,x x x . There are various types of kernel 

functions employed to solve the classification problem, such as Sigmoid kernel function, polynomial kernel 

function, radial basis kernel function (RBF), linear kernel function and Fourier kernel function [45]. Among 
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these kernel functions, the RBF kernel function can map the sample nonlinearly to a higher dimensional space 

with less numerical burden. Therefore, we selected it as the kernel function in this study, as: 

 
2

2

||
ex )( ) p(

2
i

iK


−
= −

‖x x
x, x   (42) 

where   denotes the width of RBF. Actually, the selection of feature variables plays a critical role in 

improving learning performance. For SOH estimation, the selected characteristics reflect the capacity variation 

of different cycle numbers [46], and Ref. [47] pointed out that the charging duration of CC stage decreases with 

degradation. In this study, the battery charging voltage profiles with different SOH levels are depicted in Fig. 2, 

and it can be observed that the CC stage obviously becomes shorter when the battery ages and the time interval 

of equal charging voltage difference gradually decreases. Hence, an appropriate feature variable from the CC 

charging voltage can be extracted to estimate the battery SOH. In this study, the charging duration [
startV  stopV ] 

is selected as the characteristic variable, where 
startV  and stopV  denote the starting and ending voltage value, 

respectively. 

  

Fig. 2. Charging voltage profiles under different SOH. 

C. Fusion Algorithm 

On the basis of SOH estimation, the adaptive fusion algorithm based on AHIF is constructed to achieve 

the SOC estimation, as shown in Fig. 3. As can be seen, the fusion algorithm is divided into five parts: 

measurement, decision, parameters identification, SOH estimation and SOC estimation. When the battery 

operates, the measurement module monitors and records the battery current and terminal voltage. Then, the 

battery parameters are identified by the parameter identification module according to the measurement. When 

the decision module determines that the battery is in the CC charge stage, the SOH estimation module is 

activated to estimate the SOH, thus adaptively updating the battery capacity value. Finally, the SOC estimation 

module conducts the estimation by the AHIF algorithm with the updated model parameters and capacity.  
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Fig. 3. Flowchart of the adaptive fusion algorithm. 

According to the above estimation procedures, the model parameters, including ohmic resistance, 

polarization resistance, polarization capacity, OCV and battery capacity, can be timely updated. Thus, we can 

say that the battery SOC can be accurately estimated all the time, independent of the battery operating conditions. 

The detailed validation and discussion will be illustrated in the next section. 

 

IV. EXPERIMENTAL VALIDATION AND DISCUSSION 

To estimate the SOC, a preliminary task is that the algorithm needs to know the battery capacity value. 

Hence, in this section, the SOH estimation and validation is conducted first, followed by the SOC estimation. 

Note that the experimental results described in this study are derived from offline testing on a test platform, 

which consists a battery test system Arbin BT2000, a thermal controlled chamber, a host computer, and several 

test cells. The battery test device is responsible for charging/discharging the batteries according to the test plan 

and transmitting data to the host computer via the TCP/IP protocol. The programmable thermal chamber is 

applied to regulate the environment temperature. The host computer is used to store data and monitor battery 

operating state. The estimation algorithm is validated in Microautobox II, a product of dSPACE GmbH, of 

which the program is coded according to the simulation program built in MATLAB/Simulink on a laptop 

computer. 
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A. SOH Validation  

First, a series of experiments are conducted to acquire enough data for training and validating the LS-SVM 

model. During the aging test, a constant current–constant voltage (CC-CV) charging strategy with the current 

of 0.5C is implemented in the charging process. When the terminal voltage reaches 4.15 V, the CV mode is 

activated until the current decreases to 0.02C. After shelving for 5 minutes, the cells are discharged with the 

current of 1C, and the cut-off voltage of CC discharge is 3 V. The whole test dataset is divided into three 

segments, wherein the dataset of cell 1 is divided into two parts with one for training and the other for 

verification; and the dataset of cell 2 is used to validate the model. According to the SOH estimation algorithm 

addressed previously, the feature voltage range is set from 3.58 V to 4.15 V. The SOH estimation results, the 

referred values and their difference are depicted in Fig. 4 and the evaluation criteria, including the mean absolute 

error, maximum absolute error, mean square error (MSE) and RMSE, are quantified in Table III. It can be found 

that the mean absolute error, maximum absolute error, MSE and RMSE are respectively 0.37%, 1.86%, 

5
2.28 10

−
  and 0.48%, justifying the feasibility of proposed algorithm. In addition, a raw dataset of another cell, 

namely cell 2, is applied to validate the performance of the training model. Fig. 4 (c) and (d) depict the estimation 

results. Although the estimation error of cell 2 is higher than the calibrated value, most of the maximum absolute 

error are still less than 2% (except several isolated points). Furthermore, the RMSE of two cells is restricted 

within 1%, highlighting the preferable performance of proposed estimation algorithm for SOH.  

 
(a)           (b) 

 
(c)           (d) 

Fig. 4. SOH estimation results of two cells. (a) Measured and estimated SOH for cell 1; (b) Estimation error for cell 1; (c) 

Measured and estimated SOH for cell 2; (d) Estimation error for cell 2. 
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Table III. Estimation results of multiple battery experiments. 

Cell number 
Mean absolute 

error (%) 

Maximum 

absolute error (%) 
MSE RMSE (%) 

Cell 1 0.37 1.86 2.28e-05 0.48 

Cell 2 0.58 4.03 5.61e-05 0.75 

B. Comparison of SOC Estimation with Different Algorithms 

To evaluate the SOC estimation performance, three commonly used methods are employed including the 

EKF, AEKF and HIF. It is necessary to note that all the battery parameters employed to estimate the SOC are 

identified based on the improved FF-RLS algorithm. First, the test battery is fully charged according to the CC-

CV charging strategy. After rest for 2 hours, the current profiles acquired based on urban dynamometer driving 

schedule (UDDS) is repetitively implemented until the terminal voltage drops to the cut-off voltage, i.e., 2.75 

V. All of the experiments are carried out at a room temperature of 25 °C. The reference initial SOC value is 

100%, and to validate the independence of different methods on the initial value, the initial SOC is mistakenly 

set to 60%. The detailed comparison of different algorithms is illustrated in Fig. 5 and Table IV, respectively. 

It can be clearly found that EKF, HIF, AEKF and the proposed algorithm can all compensate the large error 

incurred by the preset differences. As listed in Table IV, the duration to reach the reference SOC value, which 

defined as the time when the estimate is stabilized within the 5% error bound, is respectively 45 s, 40 s, 46 s 

and 30 s, highlighting that the proposed algorithm responses faster than other algorithms. It can also be observed 

that the SOC estimation based on the AHIF attains least estimation error during the whole discharging process, 

and the maximum absolute error, mean absolute error and RMSE are 0.7%, 0.42%, and 0.6%, respectively. 

Obviously, the AHIF exhibits highest estimation accuracy among these four filters. The reason is that the AHIF 

does not assume that the statistical characteristics of noise are known in advance, that is imperative in Kalman 

filter [3], and instead suppresses the norm of interference into the designated range, thereby enabling the 

observer to solve the bounded signal and improving its robustness dramatically. In addition, the precise 

estimation supplies trustable fundamental knowledge for singularity analysis of SOC. If the maximum absolute 

error, mean absolute error and RMSE are less than 1%, the possibility of singularity occurrence can be almost 

avoided. 
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(a)           (b) 

Fig. 5. Results of SOC estimation in case of different estimators: (a) referenced and estimated SOC and (b) 

corresponding error. 

Table IV. Comparison results with different algorithms. 

Algorithm 
Convergence 

time (s) 

Maximum absolute 

error (%) 

Mean absolute 

error (%) 
RMSE (%) 

EKF 45 5.08 1.6 2.22 

HIF 40 5.144 1.6 2.21 

AEKF 46 2.014 0.79 1.05 

AHIF 30 0.7 0.42 0. 6 

For the sake of further validating the performance of our proposed method, the SOC estimation errors based 

on different models are compared in Table V. Due to the same battery type and similar operational conditions, 

the results of the proposed method are compared with those of the electrochemical model referred from [31, 48], 

where they conduct the estimation based on the simplified electrochemical model and the ASR-SPKF and 

proportional-integral (PI) observer. The maximum absolute error and RMSE based on the reduced-order 

electrochemical model with the AEKF algorithm are respectively 5.6% and 2.57%, which are obviously larger 

than those of the proposed algorithm. In addition, the reduced-order electrochemical model is inferior to the 

proposed method in terms of the convergence time. As can be found, the shortest convergence time of the 

electrochemical model method is 123 s, whereas the proposed method requires only 30 s to converge to the 

reference value, and it is only about one-fourth of that of the reduced-order electrochemical model with the A-

SPKF algorithm. To sum up, the comparison results manifest that the proposed method outperforms most of the 

electrochemical model-based reported in the literature.  

Table V. Comparison of SOC estimation results based on different models. 

Model Algorithm 
Convergence 

time (s) 

Maximum absolute 

error (%) 

RMSE 

(%) 

Proposed 30 0.7 0.6 

Reduced-order 

electrochemical model [31] 

AEKF 1116 5.6 2.57 

A-SPKF 123 3.1 1.68 

ASR-SPKF 129 3.1 1.68 

Single particle model [48] PI / 3 1.2 
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C. SOC Estimation at Different Temperatures 

All the above validations and comparisons are conducted at room temperature. It is vital to verify the 

thermal adaptability of the algorithm existing in practice. As described in Section II, the battery parameters 

change dramatically with operating temperature. Here, the performance of designed SOC estimation algorithm 

is further investigated under different operating conditions, such as constant low temperature (-20 °C) and time-

varying temperature conditions. In this discussion, the effects of inaccurate initial SOC is also considered to 

evaluate the convergence performance of proposed algorithm at different temperatures. The initial value is set 

to 85% when estimating the SOC, and obviously, the error is 15%. 

1). SOC Estimation at Low Temperature 

It is well acknowledged that battery capacity and output power degrade at low temperature. This may affect 

battery SOC estimation accuracy to a large extent. Similar as the experiment before, the UDDS current profile 

is still imposed at -20 °C after the battery is fully charged. Note that the cell is placed in the thermal controlled 

chamber for 3 hours until the experiment starts. Fig. 6 demonstrates the estimated SOC, estimated voltage and 

corresponding errors when compared with their reference values. The SOC estimation result and corresponding 

error are provided in Fig. 6 (a) and (b), respectively; in which we can find that the overall error is less than 1% 

except the initial setting difference. In addition, it is obviously found that the output voltage of model can track 

the measured value precisely, thus contributing to accurate estimation of SOC, and the mean absolute error is 

less than 0.014 V, only accounting for 0.38% of the nominal voltage. All the statistical comparisons at different 

temperatures are summarized in Table VI. We can find that the RMSE of SOC and voltage are 0.67% and 

0.0198 VI even at a low temperature, thereby manifesting capabilities of preferable SOC estimation and voltage 

tracking. In summary, the verification test proves that the proposed method can accurately estimate the SOC in 

a low temperature condition. 

 
(a)           (b) 
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(c)           (d) 

Fig. 6. The SOC validation results in case of -20 °C: (a) the comparison results of the reference SOC and estimated SOC; 

(b) SOC estimation error; (c) the comparison results of the measured voltage and estimated voltage; (d) voltage 

estimation error. 

2). Evaluation with Time-Varying Temperature 

In practice, batteries are not easy to operate with constant temperature. To further validate the performance 

of proposed algorithm, the operating temperature continuously varies from 28 °C to 7 °C. In the test, the battery 

is also charged by the CC-CV scheme, followed by a three hours’ rest in the thermal controlled chamber of 

28 °C. Then, the battery is discharged under the federal urban driving schedule (FUDS) cycle until the voltage 

decreases to 2.75 V. In the experiment, the battery temperature decreases from 28 °C to 7 °C by gradual cooling. 

Fig. 7 (a) depicts the temperature variation. The SOC estimation result and error are shown in Fig. 7 (b) and (c), 

where the GA-AHIF indicates the model parameters are identified by GA, and the SOC is estimated by the 

AHIF. It can be seen from Fig. 7 (b), both the GA-AHIF and proposed SOC estimation method can quickly 

offset the initial error and track the reference curve precisely. The convergence time, maximum absolute error, 

mean absolute error and RMSE of the proposed algorithm are 27 s, 0.79%, 0.24% and 0.42%, respectively. 

However, the convergence time of GA-AHIF based method is around four times longer than the proposed 

method. Besides, the GA-AHIF method incurs larger estimation error, which gradually increases to 2.68% in 

the end of the test. Fig. 7 (d) and (e) present the measured voltage, model output and errors. Similar as the SOC, 

the terminal voltage based on the proposed method is much smoother and more accurate than that of the GA-

AHIF method, manifesting its strong adaptability to temperature variation. Thanks to the improved FF-RLS 

algorithm, the model parameters can be accurately adjusted online even in the case of low current excitation. 

The online identified OCV is shown in Fig. 7 (f). It is obvious that the OCV changes with temperature, and in 

other words, the necessity of updating OCV dynamically according to temperature variation is justified. The 

statistical comparisons at time-varying temperatures are listed in Table VI. It can be found that the maximum 

absolute error, mean absolute error and RMSE based on the GA-AHIF algorithm are 2.68%, 0.93% and 1.3%, 



 21 of 27 

 

respectively. While the maximum absolute error of the proposed method is lower than 0.8%, less than one third 

of that by the GA-AHIF method. The mean absolute error and RMSE of the proposed method are lower than 

0.3% and 0.5%, respectively, indicating that the preferable estimation performance can be achieved by the 

proposed fusion estimation method.  

 
(a)           (b) 

 
(c)           (d) 

 
(e)           (f) 

Fig. 7. Results of SOC estimation in case of time-varying temperature: (a) Temperature versus time; (b) SOC versus 

time; (c) SOC estimation error versus time; (d) OCV versus time; (e) Voltage estimation comparison result versus 

time; (f) Voltage estimation error versus time. 

Table VI Statistical data of estimated SOC and voltage at different temperatures 

Temperature Method 

SOC Voltage 

Convergence 

time (s) 

Maximum 

absolute 

error (%) 

Mean 

absolute 

error (%) 

RMSE 

(%) 

Maximum 

absolute 

error (V) 

Mean 

absolute 

error (V) 

RMSE 

(V) 

Constant Proposed 36 0.8 0.62 0.67 0.115 0.0132 0.0198 

Variable 
Proposed 27 0.79 0.24 0.42 0.0795 0.0103 0.0148 

GA-AHIF 129 2.68 0.93 1.3 0.545 0.0169 0.0284 
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D. SOC Estimation with Aged Cells 

Based on the proposed fusion estimation method, the cells with different aging status are tested to validate 

the performance of proposed SOC estimation algorithm. After fully charged according to the CC-CV charging 

strategy, the test battery is cycled with UDDS current at room temperature until the terminal voltage drops to 

2.75 V. By extracting the characteristic parameters of the charging process, the battery SOH is firstly estimated. 

When the battery is discharged, the updated capacity is imported to estimate the SOC. In this case, the initial 

SOC is set to 20% for all the aging cells, and obviously the difference is 80%. The SOC estimation results in 

terms of aging cells are illustrated in Fig. 8 and Table VII, respectively. Here, we only select four different aging 

status for discussion, i.e. 97% SOH, 93% SOH, 88% SOH and 85% SOH. As can be seen, with the aging of 

battery, the total discharging time decreases gradually in the same working conditions. The estimated SOC 

against different aging status can all converge to the referred values, proving the robustness and adaptivity of 

proposed algorithm when dealing with aged cells. The maximum estimation error of SOC with respect to four 

different SOH status locates within the same region which corresponds to the SOC range of 60% to 30%. This 

is because the SOC-OCV correlation is quite flat in this range, as depicted in Fig. 8 (c). The SOC estimation 

error based on the proposed method can be restricted within 1.2% under this case. The remaining battery 

parameters including OCV, ohmic resistance, polarization resistance and time constant are shown in Fig. 8 (c) 

to (f). We can find that only slight difference among different OCV curves exists when the battery ages. When 

SOC drops to 4% from 60%, the OCV decreases by 0.016 V, which may lead to the SOC estimation error of 

1.4%. Nonetheless, the battery parameters change obviously under different aging conditions. From the 

perspective of the single cycle, the ohmic resistance in the middle SOC region is small and varies slowly, 

whereas the ohmic resistance in the lower SOC region increases quickly, and moreover the ohmic resistance 

corresponding to the lower SOC region is usually greater than that of higher SOC region. From the global 

perspective, the ohmic resistance tends to increase gradually with the decline of SOH. The similar variation 

trend also applies to the polarization resistance. Hence, we can conclude that real-time update of battery 

parameters responding to different aging status are imperative to improve the accuracy of SOC estimation. The 

comparison results clearly prove the effectiveness of proposed SOC estimation algorithm in a wide life cycle. 
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(a)           (b) 

 
(c)           (d) 

 
(e)           (f) 

Fig. 8. Results of SOC estimation in case of aging cells: (a) reference and estimated SOC and (b) SOC error; (c) 

estimated OCV; (d) estimated ohmic resistance; (e) estimated polarization resistance; (f) estimated time constant. 

Table VII Summarization of SOC and voltage estimation results with aging cell 

SOH 

SOC Voltage 

Convergence 

time (s) 

Maximum 

absolute 

error (%) 

Mean 

absolute 

error (%) 

RMSE 

(%) 

Maximum 

absolute 

error (V) 

Mean 

absolute 

error (V) 

RMSE 

(V) 

97% 33 0.73 0.37 0.76 0.052 0.0082 0.013 

93% 36 0.97 0.43 0.86 0.059 0.0082 0.0128 

88% 57 1.16 0.7 1.02 0.067 0.0092 0.0142 

85% 47 1.03 0.71 0.93 0.088 0.0094 0.0146 

 

V. CONCLUSION 

In this paper, an adaptive fusion algorithm is proposed to investigate the influence of battery degradation 

and dynamic working temperature on state of charge estimation of lithium-ion batteries. An improved online 

identification algorithm based on the improved recursive least square method with the forgetting factor is 

applied to identify model parameters over a wide temperature range of -20 °C to 50 °C. The least square support 

vector machine algorithm is employed to conduct the accurate state of health estimation, which in turn 
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contributes to estimation of battery state of charge. The experimental results reveal that the state of health 

estimation error is less than 2%. The adaptive H-infinity filter is proposed to estimate the state of charge based 

on the dynamically updated state of health and precise battery model. By comparing with the commonly used 

extended Kalman filter, adaptive extended Kalman filter and H-infinity filter algorithms, the proposed algorithm 

exhibits higher estimation accuracy, fast convergence speed and better adaptation to variation of external 

operating temperatures and battery degradation. The comprehensive evaluation of algorithm highlights its broad 

application potential in joint estimation of state of charge and state of health for lithium-ion batteries. In addition, 

the proposed method can bring significant reference to singularity prediction of the state of charge. When the 

battery management system obtains more accurate state of charge estimation, the threshold for the residual of 

state of charge can be further reduced to avoid misjudgment when performing the singularity prediction. 

In the future, more in-depth analysis in terms of the relationship between state of charge estimation and its 

singularity prediction will be conducted. Moreover, we will program the algorithm in the control unit of the 

printed circuit board and validate the estimation performance of designed battery management system in actual 

battery packs of electric vehicles. In particular, when inconsistency of temperature and capacity exists among 

cells in the pack, how to deal with the imbalance and supply the authoritative estimation needs to be further 

investigated.  
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