
Stochastic Model Predictive Control for Energy 

Management of Power-Split Plug-in Hybrid Electric 

Vehicles Based on Reinforcement Learning 
 

Zheng Chen1,3**, Hengjie Hu1, Yitao Wu1, Yuanjian Zhang2, Guang Li3, and Yonggang Liu4* 
1Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming, 650500, China 

2Sir William Wright Technology Center, Queen’s University Belfast, Belfast, BT9 5BS, United Kingdom 
3School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom 

4State Key Laboratory of Mechanical Transmissions & School of Automotive Engineering, Chongqing University, 

Chongqing, 400044, China 
Email: chen@kust.edu.cn, huhengjie1995@163.com, yitaowumail@gmail.com, y.zhang@qub.ac.uk, g.li@qmul.ac.uk, 

andylyg@umich.edu 

Correspondence: Yonggang Liu (andylyg@umich.edu), and Zheng Chen (chen@kust.edu.cn). 

 

Abstract: In this paper, a stochastic model predictive control (MPC) method based on reinforcement learning 

is proposed for energy management of plug-in hybrid electric vehicles (PHEVs). Firstly, the power transfer of 

each component in a power-split PHEV is described in detail. Then an effective and convergent reinforcement 

learning controller is trained by the Q-learning algorithm according to the driving power distribution under 

multiple driving cycles. By constructing a multi-step Markov velocity prediction model, the reinforcement 

learning controller is embedded into the stochastic MPC controller to determine the optimal battery power in 

predicted time domain. Numerical simulation results verify that the proposed method achieves superior fuel 

economy that is close to that by stochastic dynamic programming method. In addition, the effective state of 

charge tracking in terms of different reference trajectories highlight that the proposed method is effective for 

online application requiring a fast calculation speed. 

Keywords: energy management strategy, reinforcement learning, Markov chain, velocity prediction, stochastic 

model prediction control. 

NOMENCLATURE 

Abbreviations  Symbols  

PHEV plug-in hybrid electric vehicle totalF  total fuel consumption 

HEV hybrid electric vehicle rateF  fuel rate 

AER all-electric range eng  speed of petrol engine 

EMS energy management strategy mot  speed of motor 

CD/CS charge depletion/charge sustaining engT  torque of petrol engine 

SOC state of charge motT  torque of motor 

DP dynamic programming  reqP  vehicle request power 

PMP Pontryagin's minimum principle  finalP  final drive power 

GA genetic algorithm  motP  motor power 

CV convex optimization  engP  engine power 

DDP 
deterministic dynamic 

programming  batP  battery power 



SDP stochastic dynamic programming accP  accessory power 

HIL hardware-in-the-loop  fianl  drive efficiency factor of final drive 

ECMS 
equivalent consumption 

minimization strategy  
gear  drive efficiency factor of gear 

MPC model predictive control  c  transmission efficiency of motor 

RL reinforcement learning  OCV  open-circuit voltage 

RBFNN radial basis function neural network  batC  battery capacity 

WT wavelet transform  bati  battery current 

SMPC stochastic model predictive control intR  battery internal resistor 

BPNN back propagation neural network  initSOC  battery initial SOC 

SQP sequential quadratic programming   gear ratio of ring gear and sun gear 

AI artificial intelligence  p  transition probability 

ML machine learning  ,

k

i jX  
number transiting from i   to j   at 

speed 
kv  

OOL optimal operation line  
k

iX  
total number for transfers of i   at 

speed 
kv  

MD Markov decision  '

a

s s
P

→
 

probability of state transferring from 
s  to s  by executing action a  

QL Q-learning    discount factor 

MC Monte Carlo    learning efficiency 

RMSE root mean square error  iF  
total number of possible next step 

transitions of 

QL-SMPC QL-based SMPC ijF  number of transiting from 
ia  to ja  

SQL-SMPC single-step Markov-based SMPC ( )Erri t  mean error between the predicted 

speed and the real speed 

MQL-SMPC multi-step Markov-based SMPC ( )lineSOC k  linear SOC reference value 

  lowSOC  
SOC terminal value at the end of 

driving 

 

I. INTRODUCTION 

Nowadays, reckless mining of fossil energy and increasing power demand incur massive greenhouse gas 

emission and environmental pollution, and enormous efforts have been devoted to investigating energy saving 

and emission reduction technologies [1]. For road transportation industry, electrification provides an effective 

solution to mitigate negative impact imposed by traditional fossil driving solutions [2]. Plug-in hybrid electric 

vehicles (PHEVs) have been becoming attractive promising alternative solution due to the improved fuel 

economy and reduction of emission, compared to traditional fossil fuel vehicles. Different from conventional 

hybrid electric vehicles (HEVs), PHEVs can be directly charged from the power grid, thereby attaining an extra 

all-electric range (AER) and further mitigating fuel consumption of engine. In PHEVs, two and more energy 

sources are deployed to supply driving power individually or jointly, and energy delivery routes can be 

transmitted and optimized to reduce fuel consumption [3]. Presently, the gasoline engines are employed as the 

main driving source in PHEVs, the electric energy storage devices such as batteries and supercapacitor are 



employed as the auxiliary power sources [4]. In addition, the fuel cell electric vehicles attracting wide attention 

have been turning into a research hotspot due to their zero emission characteristics, and compatibility coupling 

with electric energy storage devices to drive vehicles [5-6]. Nonetheless, the difficulties underlying transition 

and output power ratio among different energy routes complicate design of energy management strategies 

(EMSs), which need wide research attention from academia and industry. 

The control target of EMSs includes reduction of fuel consumption and emission and extension of service 

life of energy storage systems (usually lithium-ion batteries) [7]. In the literature, EMSs of PHEVs can be 

divided into two main types: rule-based methods and optimization-based methods [8]. Rule-based methods, 

characterized by simple structure, ease implementation as well as reliable and stable controlling performance, 

are generally composed of the predefined logical relationship and fuzzy rules. As a typical solution, charge 

depletion (CD)/charge sustaining (CS) method has been commonly implemented in real applications. In the CD 

stage, PHEVs hold to release the stored battery energy until the battery state of charge (SOC) drops to a certain 

threshold, then the driving mode switches to the CS stage, and the vehicle attempts to maintain the SOC at a 

given threshold, of which the working state is similar with that appears in HEVs [9]. The CD/CS method shows 

satisfactory performance of fuel saving and emission reduction in a short-term driving scenario (such as the all-

electric driving); however, as the target driving distance becomes longer, the fuel consumption will obviously 

increase due to the simple sustaining optimization in the CD stage. In short, rule-based methods mainly rely on 

engineering experiences, and the optimal control cannot be ensured all the time. For this reason, research on 

EMSs progressively turns to optimization-based methods. 

Optimization-based methods can be divided into two main categories: global optimization based and 

instantaneous optimization based. To achieve global optimization, it is necessary to know the detailed 

information of driving schedule in advance. Then, the optimal control theory is imposed to optimally allocate 

the energy among multiple power sources to attain global optimization. Dynamic programming (DP) [10], 

Pontryagin's minimum principle (PMP) [11], genetic algorithm (GA) [12] and convex optimization (CV) [13] 

are typical representative candidates. Unfortunately, all of them are difficult to implement online due to the 

time-varying driving conditions; nevertheless, these offline solutions can be employed as evaluation criteria for 

other methods or be served as optimal knowledge for rule extraction and development of online algorithms. DP 

is a mature algorithm that can be roughly divided into two categories: deterministic DP (DDP) and stochastic 

DP (SDP), which are distinguished according to whether the global disturbance (usually the required driving 



power) is known in advance. In [14], DP is exploited to extract the rules of engine on/off command, gear shifting 

and torque distribution. By combining with the K-means clustering algorithm, a blended method considering 

driving conditions is proposed to achieve better fuel economy and faster calculation speed. In [15], DP is 

employed to enable the energy allocation of a series-parallel PHEV, and a recalibration method based on 

optimized rules is proposed and verified by the hardware-in-the-loop (HIL) experiment to manifest the 

improvement of fuel economy. In [16], DP is employed for solving the energy distribution of multi hybrid energy 

storage vehicles including fuel cells, lithium-ion batteries and supercapacitors. The DP based strategy with a 

multiple-grained speed prediction method is proposed, and the HIL experiment is conducted to verify the 

effectiveness of the proposed method. Different from DDP, SDP shows strong adaptability to different driving 

conditions with limited driving knowledge in advance, where the demanded power of historical driving cycles 

or standard driving schedules are regarded as a stochastic model with Markov property. In a random Markov 

process, a probabilistic model of driving condition model is established, and then the energy control problem 

can be solved by the SDP [17] .The resulting output is usually a determined table for state control, which can 

be applied online [18]. In [19], the SDP is applied in a parallel HEV, and its controlling performance is close to 

that of DDP. Even though, compared with instantaneous optimization algorithms, SDP still requires too much 

calculation intensity, hindering its online application potential.  

Instantaneous optimization algorithms, as the name implies, can instantly optimize energy distribution of 

powertrain in PHEVs and commonly guarantees a local optimum. In general, the energy management 

performance by instantaneous optimization algorithms is inferior to that by global optimized method. 

Representative instantaneous optimization algorithms, such as equivalent consumption minimization strategy 

(ECMS) [20], model predictive control (MPC) [21], reinforcement learning (RL) (usually it can be applied 

online) [22], have been widely employed to search the optimal result instantaneously or in a short horizon with 

different control targets. Among them, ECMS, grounded on the PMP theory, usually transfers the battery power 

to equivalent fuel consumption and thus converts the multi-dimensional optimization problem into an instant 

single optimization issue. As an effective real-time algorithm, MPC forms close-loop system according to the 

inner three processes of prediction model, rolling optimization and feedback correction and conducts 

optimization control at each moment to ensure the optimality and real-time performance in control time domain 

[23]. Ref. [24] builds up a novel hierarchy MPC based energy management framework, in which the radial basis 

function neural network (RBFNN) and wavelet transform (WT) are employed cooperatively to achieve the 



speed prediction, and the MPC is applied to derive preferable fuel economy online. Ref. [25] establishes a 

Markov chain model for driving power demand, and then a stochastic MPC (SMPC) is proposed for 

instantaneous and predictive energy management of HEVs. In [26], a Markov speed prediction model is 

deployed, and DP is applied in the rolling optimization of SMPC. The HIL experiment validation indicates that 

the SMPC method can lead to better energy savings. In [27], a multi-objective strategy is proposed based on a 

global fast SOC planning, and the back propagation neural network (BPNN) is employed to predict the vehicle 

speed. Then, the direct configuration method and sequential quadratic programming (SQP) are employed as the 

optimization scheme in the controlling horizon. The simulation results validate the effectiveness of proposed 

method in mitigating operating costs.  

More recently, with the rapid explosion of artificial intelligence (AI) technology, machine learning (ML) 

has been incrementally explored and exploited in energy management field. RL, a fundamental ML algorithm, 

has been operated in various applications such as robot control [28], transport [29] and other intelligent systems. 

In particular, RL exhibits better online and optimal performance in the energy management of PHEVs. In [30], 

an adaptive method based on RL is proposed, and its optimality of RL is justified. In [31], a RL-based method 

is proposed to reasonably distribute the power flow between the battery and super-capacitor, by which not only 

the energy consumption can be effectively reduced, but also the maximum discharge current of battery can be 

limited. Ref. [32] reveals that the RL-based method can yield better fuel performance while ensuring safe 

operation of battery, compared with the ECMS. In [33], a deep Q-learning method is proposed, and the results 

manifest that the convergence and training speed of the proposed method is faster than that of the conventional 

Q-learning algorithm, and the fuel economy improvement can reach 89% of that by DP.  

Based on the above literature review, it can be found that most of the MPC algorithms attempt to follow 

the designated curve (such as SOC trajectories), which is solved by the global optimization algorithm, in a short-

term rolling horizon [34], and occasionally, the computational efficiency can be low. In addition, to the authors’ 

knowledge, RL is rarely applied in MPC for real-time energy management controller design [35]. Motived by 

this, the study designs a SMPC controller based on RL to improve the fuel economy of PHEV. To achieve this, 

the power distribution of a typical power-split PHEV is analyzed in detail first. Subsequently, to construct the 

stochastic model in the SMPC controller, different driving scenarios are selected, and the Markov chain model 

is built to pave the way for the application of one typical RL algorithm, i.e., the Q-learning method. Then, two 

diverse Markov speed predictors, namely single-step and multi-step Markov speed predictor, are involved in the 



controller to conduct speed prediction. By comparing the predictive error, the multi-step Markov speed 

prediction method with better accuracy is selected as the stochastic prediction model. Finally, numerical 

simulation validations are conducted to evaluate the fuel economy improvement, and the computation speed of 

the proposed method and its applicability in different SOC reference trajectories are analyzed. The main 

contributions of this study are attributed to the following two aspects: 1) The RL is employed to resolve online 

rolling control optimization required by SMPC. 2) An RL based controller incorporating speed prediction is 

established, and it provides an effective support for online application of ML based energy management 

strategies of PHEVs. 

The rest of this paper is structured as follows. Section II introduces the dynamic system structure of studied 

power-split PHEV and elaborates the mathematical analysis. In Section III, the principle of Q-learning is 

demonstrated, and a convergent Q-learning controller is constructed. Section IV introduces and establishes a 

framework of SMPC based on the RL. In Section V, the effectiveness, adaptability and scalability of the 

proposed method is verified. Section VI draws the main conclusions and findings of this study. 

II. MODELING OF PHEV 

A power-split PHEV is taken as a case study in this paper, and its powertrain framework is shown in Fig. 

1. The vehicle powertrain consists of a petrol engine, a lithium-ion battery pack, two electric motors, a planetary 

gear set, a final drive and two electric convertors. Among them, two motors can be employed as driving motors 

to propel the vehicle or as used as generators to charge the battery pack. The corresponding parameters are listed 

in Table I. In this study, the main purpose is to minimize the fuel consumption of the PHEV in a certain driving 

range, and the objective function can be expressed as: 

 
0

min min
T

total rateJ F F dt= =    (1) 

 ( , )rate eng engF f T=   (2) 

where 
totalF  represents the total fuel consumption of whole driving process, 

rateF  is the fuel rate, T  is the 

entire driving schedule, eng  and engT  denote the speed and torque of petrol engine, respectively. For the sake 

of minimizing the engine fuel consumption, the relevant factors affecting the instantaneous fuel consumption 

of the engine needs to be analyzed in detail. 
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Fig. 1. The power-split PHEV powertrain framework. 

 
Table I. Vehicle parameters. 

Units Parameters Value 

Vehicle Mass 1801 kg 

Lithium-ion battery 
Rated capacity 39 Ah 

Rated voltage 220 V 

Motor 1 
Peak power 50 kW 

Rated power 25 kW 

Motor 2 
Peak power 30 kW 

Rated power 15 kW 

Engine Peak power 57 kW 

Planet gear set 
Sun gear 30 

Ring gear 78 

As shown in Fig. 1, the required power requirement at wheel is supplied by the engine and two motors, of 

which the latter power is obtained from the battery pack. The detailed relationships can be expressed as: 
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  (3) 

where reqP , finalP , 
1motP , 

2motP , engP  and batP  represent the power of vehicle chassis, final drive, motor 1, 

motor 2, engine and battery, respectively. 
accP  denotes the accessory power, which is supposed to be a constant 

value: 220 W in this study. fianl  and gear  denote the drive efficiency factor of final drive and gear. 
1c  and 

2c  express the transmission efficiency of motors 1 and 2, respectively. 
1mot , 

2mot , 
1motT  and 

2motT  are the 

speed and torque of two motors. In addition, a simplified equivalent circuit model, including an internal resistor 

and an ideal voltage source, is elicited to characterize the battery’s electric performance. On this basis, batP , the 

battery current bati , and the battery SOC ( )SOC t  can be formulated as:  
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where OCV   is the open-circuit voltage, 
batC   is the parallel connected capacitance, 

intR   is the internal 

resistance, and
initSOC  denotes the initial SOC. In this simplified model, OCV  and 

intR  are attained by the 

interpolation with SOC, as shown in Fig. 2. As can be seen, OCV  varies from 165 V to 220 V with the increase 

of SOC, and 
intR  ranges from 0.09 ohm to 0.14 ohm.  

 

Fig. 2. OCV  and intR  variation with SOC. 

The engine and two motors are dynamically coupled via a planetary set. According to its working principle, 

the relationship between the engine and the two motors can be described as:  
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where   denotes the gear ratio of ring gear and sun gear. According to (2) to (5), we can find that the control 

degrees of freedom of energy management problem is two, causing difficulty of directly solving it. To mitigate 

the complexity, the engine optimal operation line (OOL), as shown in Fig. 3, is introduced to simplify the control 

design [36]. The OOL of engine denotes the optimal engine speed with respect to a determined power output, 

and under the current group of power and speed, the fuel efficiency is highest among all the combinations. The 

corresponding mathematical relation can be formulated, as: 

 *( )eng engg P =   (6) 

 

Fig. 3. Optimal operating point at different engine power. 

According to the above analysis, we may conclude that only if the battery power is given, the engine power 

and the corresponding instantaneous fuel rate can be determined. From this point of view, the battery power is 

the only controlling input determining the fuel rate. Due to the power limitations and performance requirement 



of each part, the optimization problem is subjected to the following constraints:  
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where the subscripts of min and max denote the minimum and maximum values of corresponding variables, 

respectively.  

Based on the above energy relationship, a novel RL-based SMPC method is proposed to determine the 

optimal battery power at each moment and consequently ensure the reduction of fuel consumption in the whole 

driving range, which is to be presented in the next Section. 

III. REINFORCEMENT LEARNING APPLICATION 

To apply the RL to SMPC, it is imperative to theoretically analyze the RL principle, and then an effective 

RL controller can be established to optimize the SMPC process. 

A. Markov Chain Model 

As well known, RL is built on the Markov decision (MD) theory, and the Markov chain supplies the 

fundamental framework k for the MD [30]. Actually, the required propelling power in practice can be treated as 

a random process with Markov properties, and the required power state at the next moment of the vehicle is 

only related to the current power state, independent of the historical state [32]. To obtain the state transition 

matrix, different driving cycles such as SC03, REP05, LA92, US06, WLTC and JC08 are merged and employed 

as the cycle database, trying to involve different driving conditions. The selected cycles stand for highway, 

suburb, urban and crowded urban roads, including low-, medium- and high-speed driving conditions and 

therefore exhibit the random characteristics of most traffic environment. The speed profile and the required 

power profile are shown in Fig. 4. It can be found that the vehicle speed ranges from 0 m/s to 35 m/s, and the 

required power ranges from -100 kW to 100 kW. The maximum likelihood estimation method is exploited to 

estimate the transfer probability of the required power at different speed, as: 
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where 
,i j

kp  is the transition probability of required power from i

reqP  to j

reqP  at speed 
kv . 

,

k

i jX  denotes the 

number transiting from i

reqP to j

reqP  at speed 
kv , and k

iX  represents the total number for variation of i

reqP  

at speed 
kv .  

(a) (b)  

Fig. 4. The speed profile and the required power profile of training cycles. 

The required power transition probability at different speed is shown in Fig. 5. As can be seen, the transition 

of the required power occurs between two adjacent states, and obviously the probability of large variation of the 

required power is small.  

 

Fig. 5. Examples of required power transition probability at different speed. (a) v=25km/h; (b) v=50km/h. 

B. RL Algorithm 

As a profoundly popular branch of machine learning, RL is widely employed to solve optimal solution 

problem in the control field. The main RL mechanism is that the agent perceives the surrounding environment 

(i.e. the controller object) and performs reasonable actions to interact with the controller object, so as to 

maximize the benefits of agent. As a popular candidate of RL methods with an intelligible structure and a feature 

of easy implementation, Q-learning (QL) algorithm has been widely applied. The main content of QL is to build 

a Q table that can be directly iterated and optimized via the state-action pairs, and performs direct action 

selection according to the iteratively updated Q value to obtain the desired benefit result. The QL algorithm is 

employed as the main method for training the QL controller to attain the consequent optimization of SMPC.  



In this study, the QL table can be described as a five-element group { , , , , }a

s sS A P R→ . Among them, the 

state variables S  of the model include the required power reqP , vehicle speed v  and battery SOC; the control 

action A   is battery power; '

a

s s
P

→
  represents the probability of state transfer from s   to s   by executing 

control action a ;   denotes the discount factor in the learning process; and R  is the reward function, which 

is defined as the negative number of fuel consumption at each moment. The corresponding relationship can be 

expressed as: 
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The QL-based strategy is a mapping function from state to action : S A → ; that said, as long as a state 

s  is given, the current action can be determined according to the strategy ( )a s= . For each state, the value 

function is defined as the sum of the mathematical expectations of the discounted reward function, as: 
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Based on the Bellman principle, equation (10) can be reformulated as: 
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For a given state s  , the Q function ( , )Q s a   is defined as the expectation of the total number of discount 

rewards for the agent when performing the action a  and the follow-up policy in this state. The relationship 

between value functions V  and Q  can be described as: 
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Then, the optimal Q function in the QL algorithm can be expressed as: 

 * *( , ) ( , )+ max ( , )a
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Q s a r s a p Q s a →




 =    (13) 

The update rule of Q function is: 

 ( )( , ) ( , ) max ( , ) ( , )
a

Q s a Q s a r Q s a Q s a   + + −   (14) 

where   is the learning efficiency. The higher value  , the faster convergence speed of the QL method will 



be. Nevertheless, an extreme high learning efficiency will lead to overfitting [37]. Fig. 6 shows the mean error 

of Q value under different SOC at the same speed with a discount factor of 0.9 and a maximum number of 

iterations of 10000. The mean error can be expressed as: 

 ( )
100

max ( , ) ( , ) 100
N

error
a

N

Mean r Q s a Q s a 
+

= + −   (15) 

According to (15), the average increment of the Q value after every 100 iterations is calculated, as depicted in 

Fig. 6. With the increase of iteration operation, the mean error of Q value gradually decreases towards 0, 

indicating the convergence of the QL method. It can be also found that when the controller starts the learning 

process, the exploration process is employed to expand the leaning samples and enrich the information of the 

reward function. After a certain period of learning, the learned sample information is applied to optimize the 

control action, and the optimal control strategy is attained after the final convergence.  

 

Fig. 6. The mean error of Q value. 

After a convergent QL controller is yielded, a SMPC control framework is introduced in the next section, 

and the trained QL controller is incorporated into the SMPC optimization process. 

IV. APPLICATION OF SMPC IN ENERGY MANAGEMENT STRATEGY 

MPC is an online optimization control method based on the concept of receding horizon. In cooperation 

with the local optimization, the rolling optimization mechanism is exploited in prediction time domain. It 

advances preferable robustness, strong stability and near-optimal control performance in dealing with linear or 

nonlinear problems. As a special MPC framework, the exclusive difference between SMPC and traditional MPC 

is the stochasticity of the prediction model. Specifically, the traditional MPC is based on a fixed prediction 

model; whereas for the SMPC, a random prediction target is taken into account, and the stochastic process 

prediction is applied to update the prediction model. The SMPC framework proposed in this study is shown in 

Fig. 7. First, the Markov Monte Carlo method is employed to construct a random speed prediction model. Then, 

based on the previously introduced QL controller, the SOC curve obtained by the QL offline controller is taken 



as the reference trajectory for the SMPC, and the input information of the stochastic prediction model is 

optimized by the QL controller. Finally, the control of the first second in the prediction horizon is imposed to 

the PHEV model after feedback correction.  
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Fig. 7. The proposed SMPC framework. 

A. Markov Based Speed Prediction 

The vehicle acceleration varies arbitrarily due to external environment and driver’s operations during actual 

driving. It can be understood that the acceleration change is only related to the current acceleration, independent 

of the historical acceleration information. In other words, it shows the characteristic of Markov properties. 

Similarly, the acceleration of the vehicle is also regarded as a stochastic process with Markov properties, and in 

this study, the short-term speed prediction process is performed by the Monte Carlo (MC) algorithm [38]. To 

integrate the QL controller, six standard driving cycles, as shown in Fig. 4, are employed as the training set, and 

the corresponding acceleration profiles are shown in Fig. 8. It can be found that the acceleration, ranging from 

-4 to 4 m/s2, includes rapid accelerations, rapid decelerations and normal driving, thus effectively involving 

different conditions of acceleration. Note that in the process of acceleration discretization, excessive sparse 

interval of deviation leads to distorted acceleration profiles; and instead an extremely narrow one can raise much 

more computational labor. To ensure the accuracy of speed prediction without a heavy computational burden, a 

tradeoff of 80 discrete points is determined. Additionally, the maximum likelihood estimation is employed to 

reckon the state transition probability. The single-step and the multi-step state transition probability are 

calculated by: 
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where 
iF   represents the total number of possible next step transitions of 

ia  , ijF   denotes the number of 

transiting from 
ia  to ja , and ijp  is the probability of the acceleration shifting from 

ia  to ja . 

 

Fig. 8. The acceleration profile of training cycle. 

The acceleration transition probability in different steps are exhibited in Fig. 9. The probability of one-step 

state transition matrix is basically diagonally distributed, indicating few deviations between adjacent state 

interval. In the multi-step state transition matrix, thanks to the longer prediction time, the diagonal characteristics 

are less obvious, and the state transition trends to be scattered. The reason is that as the number of steps increases, 

the probability of wider state variation increases, thus enabling more dispersed probability distribution.  

 
(a) 

 
(b) 



Fig. 9. The acceleration transition probability with different steps. (a) One-step and five-step acceleration transition 

probability; (b) Ten-step and fifteen-step acceleration transition probability. 

In this study, the root-mean-square error (RMSE) is adopted as the evaluation index to verify the precision 

of speed prediction, as: 
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where T  represents the total duration of the predicted driving schedule, pt  is the predictive horizon, 
*

,t iv  is 

the ith predicted speed, ,t iv  denotes the ith real speed, and ( )Erri t  is the mean error between the predicted 

speed and the real speed in the tth time domain.  
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Fig. 10. The results of Markov speed prediction. (a) Single-step method; (b) Multi-step method. 

Fig. 10 shows the results of single-step and multi-step Markov speed prediction for under different 

prediction horizons. We can find that with the extension of prediction horizon, the deviation between predicted 

speed and actual speed becomes more noticeable. For example, when the prediction horizon is 15 s, the forecast 

error apparently appears. From this point of view, it can be confirmed that the terminal deviation by a single-

step Markov method is better than that of multi-step Markov method. To further validate the accuracy of multi-

step prediction method. Table II shows the RMSE of four driving cycles, including HWFET, NEDC, WVUSUB 

and UDDS, in different prediction horizons under two Markov speed prediction methods. As detailed in Table 

II, the prediction results of multi-step method are better than those of single-step method under different test 

cycles, especially in high-speed driving cycles: HWFET and WUVSUB. As such, the multi-step Markov method 



is eventually taken as the stochastic prediction algorithm. Besides, by trading off the computational ability and 

the prediction accuracy, the prediction horizon is selected to be 10 s in this study. 

Table II. Markov speed prediction results. 

Prediction accuracy 
HWFET NEDC 

Single-step Multi-step Improved accuracy Single-step Multi-step Improved accuracy 

3s 0.5489 0.4822 12.15% 0.7258 0.6627 7.42% 

5s 0.7899 0.6807 13.82% 1.0635 0.9833 7.54% 

10s 1.3200 1.0945 17.08% 1.8978 1.7636 7.07% 

15s 1.8773 1.4520 22.65% 2.6923 2.5473 5.39% 

Prediction accuracy 
WVUSUB UDDS 

Single-step Multi-step Improved accuracy Single-step Multi-step Improved accuracy 

3s 0.7222 0.6291 12.89% 0.9890 1.9662 2.3% 

5s 1.0694 0.9086 15.04% 1.4705 1.4219 3.3% 

10s 1.8554 1.5372 17.15% 2.5508 2.4724 3.1% 

15s 2.5390 2.1180 16.58% 3.4924 3.3957 2.8% 

B. Rolling Optimization Process Based on RL 

In this study, the state equation of SMPC can be expressed as:  

 ( )( 1) ( ), ( ), ( )x t f x t u t w t+ =   (18) 

where ( ) ( )x t SOC t=   is the state variable, ( ) ( )batu t P t=   represents the control variable, and ( )w t   is 

considered as the system stochastic disturbance, i.e., the predictive speed. It should be pointed out that 

considering the random disturbance caused by the prediction speed error, the prediction horizon of the SMPC 

controller is with the same length as that of the control horizon. The rolling optimization criterion 
tJ  in each 

predictive horizon can be expressed as: 

 min ( ) ( )
pt N

t fuel soc

t

J L t L t

+

= +   (19) 

where 
tJ  is the optimization criterion in prediction time domain, ( ) ( )fuel rateL t F t=  denotes the instantaneous 

fuel consumption function at each step, and ( )socL t  is the cost for the SOC penalty. Considering the SOC 

deviation from the reference trajectory at step t , it can be formulated as:  
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where   represents the negative weighting factor. Note that the purpose of specifying the battery SOC here is 

to ensure that the real SOC trajectory follows the referred curve. The realization process of the QL-based SMPC 

(QL-SMPC) is designed as follows: 

(1) Calculate the predicted speed sequence 
1 2, , ,

pt t t Nv v v+ + +
  based on the multi-step Markov speed 

prediction model.  



(2) Calculate the required power sequence 
, 1 , 2 ,, , ,

preq t req t req t NP P P+ + +
 in the prediction horizon based on 

the predicted speed sequence 
1 2, , ,

pt t t Nv v v+ + +
. 

(3) Employ the QL controller to incorporate the prediction speed sequence, the required power and the 

SOC reference trajectory for achieving the online receding-horizon optimization of QL-SMPC, of which the 

detailed optimization process is shown in Table III. The matrix in the QL controller is denoted as ( , )originalQ s a , 

and the matrix participating in rolling optimization at each step is denoted as 
newQ . Note that in Table III, the 

learning process of each step in the proposed rolling optimization is based on the QL controller, and all actions 

in the predictive horizon are employed to maximize the reward function in the current step, as formulated in 

(21).  

(4) Set the first control element in the predictive horizon to the PHEV model after feedback correction. 

Table III. The rolling optimization implementation process of QL-SMPC. 

The rolling optimization process: 

1. Extract the matrix in the QL-SMPC: ( , )originalQ s a , S , A  and R  

2. The predictive speed, required power and SOC reference are numbered to obtain the serial numbers 
1, ,

pt t t Ns s s+ +
 

3. Put forward all action sequence corresponding to the serial number from ( , )originalQ s a , and create a new learning matrix 
newQ .  

4. For k t= : pt N+   

Initialization state s = k  

Perform a selected action ka  based on the  -greedy algorithm. 

Modify the instantaneous reward by equation (20): 
soc socr L= . 

Update the 
newQ : 

 ( ) ( ) ( ) ( )( ), ( ) ( ), ( ) ( ) max ( ),: ( ), ( )
pN

new new soc new new

j i

Q s t a t Q s k a k r k Q s k Q s k a k
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 
 + + − 

  
   (21) 

1s k= +   

End  

In the next step, the simulation is conducted, and the validation analysis is performed to verify the 

feasibility of the proposed algorithm. 

V. SIMULATION RESULTS AND ANALYSIS 

In this paper, all the simulations are conducted based on Autonomie, which is a vehicle simulation software 

developed by Argonne National Laboratory [39]. Four standard driving schedules, i.e., HWFET, UDDS, NEDC 

and a real driving schedule in Kunming, China (denoted by KM), as shown in Fig. 11, are adopted to represent 

the most typical driving conditions. A sequential combination of these driving cycles, that is, 5 consecutive 

HWFET, 6 consecutive UDDS, 8 consecutive NEDC and 12 consecutive KM (simplified as 5 HWFE, 6 UDDS, 

8 NEDC and 12 KM) are constructed as long cycles to evaluate the control effect of the proposed algorithm.  



(a)

(c)

(b)

(d)
 

Fig. 11. Four testing cycles. (a) HWFET; (b) UDDS; (c) NEDC; (d) KM. 

The simulation results of this paper are divided into four parts. Firstly, the SDP method is regarded as a 

evaluation benchmark. Compared with the SDP method and the QL method, the effectiveness and adaptability 

of the proposed method can be properly evaluated. Then, based on the two different speed prediction methods, 

the impact of speed prediction accuracy is addressed in terms of the controlling performance of the proposed 

method. Next, considering the influence of different SOC reference trajectories in practical application, two 

different SOC reference trajectories are employed to expand the application of the proposed method. Finally, 

the computational efficiency of the proposed method is analyzed to assess practical application potential.  

The SDP algorithm is considered as an energy control method with great adaptability to various driving 

conditions. Based on the Markov Chain model established in Section III, the SDP strategy based on the modified 

policy iteration method is taken as a benchmark example, of which the target function can be formulated as: 

 
0

min ( , )
T

rate t tJ F s a dt=    (22) 

In the SDP strategy, the setting of state and control variables remains almost the same with those of the QL 

controller, and the only difference lies in that the cost function of SDP method is in the instantaneous time 

domain.  

A. Analysis of Fuel Economy 

Table IV shows the comparison of the fuel consumption with SOC correction under different strategies 

[40]. It can be observed that the proposed method is close to the global SDP strategy, and the fuel consumption 

of the proposed method is 0.7%, 3.1%, 0% and 3.5% higher than those of the SDP method under four testing 

cycles. In addition, the same fuel consumption can be achieved under 8 NEDC, compared with the SDP result. 



Furthermore, in comparison with the QL algorithm, the SOC results of the proposed method are similar to those 

of the QL method, and the fuel economy is better than the QL method most of time, except under 12 KM cycles. 

Fig. 12 sketches the SOC profiles of 5 HWFET and 6 UDDS under different strategies, and it can be found that 

the proposed method can track the reference trajectory effectively.  

Table IV. Comparison of fuel consumption and engine performance. 

Driving cycles Method Fuel consumption (kg) Ending SOC Fuel saving (%) 

5 HWFET 

SDP Method 1.8597 0.3024 - 

QL Method 1.8492 0.3024 -0.6 

Proposed method 1.8785 0.3052 +0.7 

6 UDDS 

SDP Method 1.1478 0.2960 - 

QL Method 1.1750 0.2958 +2.4 

Proposed method 1.1896 0.2992 +3.1 

8 NEDC 

SDP Method 1.8317 0.3133 - 

QL Method 1.8200 0.3131 -0.6 

Proposed method 1.8310 0.3133 +0 

12 KM 

SDP Method 1.2897 0.2887 - 

QL Method 1.3386 0.2887 +3.7 

Proposed method 1.3388 0.2907 +3.5 

Note: +: Increment; -: Reduction.  

(a) (b)

(d)(c)  

Fig. 12. The SOC profiles under four testing cycles. (a) 5 HWFET; (b) 6 UDDS; (c) 8 NEDC; (d) 12 KM. 

To further verify the efficacy of the proposed method, Fig. 13 shows the engine efficiency when driving 

on the four test cycles. We can observe that the engine efficiency of the proposed method is close to that by the 

SDP method and that by the QL method. All the three methods can enable the engine to work in more efficient 

region, and try to avoid the engagement in the low torque area, thus improving the vehicle’s overall fuel 

economy. Table V shows the engine working rate regarding the three methods. The engine on/off frequency of 

the proposed method is similar to that of the QL method and lower than that of the SDP method. This is caused 

by the negative value of the reward function for instantaneous fuel consumption in the QL controller. In this 

case, when the engine is off, only the battery pack supplies the propelling power, and the fuel consumption is 

zero for the QL control at this point, thus maximizing the reward. Due to the learning principle of RL, the 



learning tends to attain more awards. Thus, the possibility of larger reward function value will increase, and the 

engine tends to remain off. Similarly, the engine on/off frequency based on the propose algorithm is less than 

that by the SDP method. On the other hand, this can, to some extent, explain why the fuel consumption of two 

methods becomes similar.  
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Fig. 13. The engine efficiency under four test cycles. (a) 5 HWFET; (b) 6 UDDS; (c) 8 NEDC; (d) 12 KM. 

Table V. Comparison of engine working rate. 

Driving cycles Method Working rate (%) Driving cycles Method Working rate (%) 

5 HWFET 

SDP Method 40.84 

8 NEDC 

SDP Method 14.5 

QL Method 34.82 QL Method 11.31 

Proposed method 41.75 Proposed method 11.37 

6 UDDS 

SDP Method 12.46 

12 KM 

SDP Method 5.8 

QL Method 10.23 QL Method 5.1 

Proposed method 11.56 Proposed method 5.48 

In summary, by comparing with the SDP method and QL method, the proposed method is verified effective 

and robust in terms of fuel economy, engine efficiency and engine working rate, under different driving cycles. 

B. Fuel Consumption Comparison of Speed Predictive Accuracy 

For the sake of comparing the fuel economy influenced by the speed prediction accuracy, one single-step 

Markov speed prediction method and multi-step Markov speed prediction method are integrated into the SMPC 

controllers as different prediction models discussed in Section IV. In this part of comparison, all the other 

settings remain the same. The fuel consumption by the two predictive models is shown in Fig. 14. As can be 

found, the fuel consumption of single-step Markov-based SMPC (SQL-SMPC) controller is more than that of 

multi-step Markov-based SMPC (MQL-SMPC) controller in these four test cycles. The MQL-SMPC can 

effectively increase the fuel economy by 0.6%, 0.4%，0.4% and 0.6%, respectively. In short, it can be found 

that the higher the accuracy of speed prediction in advance is, the better the fuel economy will be. 



 

Fig. 14. Influence of prediction accuracy on fuel consumption. 

C. Tracking Effect Analysis of Different SOC Reference Trajectories. 

The proposed method of this paper is based on the QL controller. To extend the application range, two 

different SOC references are employed to further validate the learning effect of the proposed method. Here, two 

SOC curves generated by the SDP and an ideal linear time averaging method are taken as the references, of 

which the latter can be formulated as: 

 ( ) ( )line init init low

k
SOC k SOC SOC SOC

T
= − −   (23) 

where ( )lineSOC k  denotes the linear SOC reference value at step k; 
lowSOC  is the SOC terminal value at the 

end of driving, and is set to 0.3 in this study. Fig. 15 shows the tracking effect of two SOC references under 5 

HWFET and 6 UDDS cycles. From Fig. 15 (a), we can find that although the decline trend of two SOC 

references is quite different, the proposed method can perform the SOC tracking with high accuracy. As 

observed from Fig. 15 (b), the decline trend of the SDP reference and the ideal linear time reference remains 

nearly consistent, and it can also be easily found that from the two partially enlarged figures, the SOC curve of 

proposed method is always close to the SOC reference, thus manifesting the effectiveness of proposed controller. 



(a)

(b)  

Fig. 15. The following effect of different SOC references. (a) Five HWFET. (b) Six UDDS. 

Table VI compares the fuel consumption based on different SOC references. As can be found, the proposed 

method can achieve preferable fuel economy under both SOC references. In comparison with the SDP method, 

the fuel consumption of different SOC references increases by 1.7% and 2% under 5 HWFET cycles and by 3% 

and 3.3% under 6 UDDS cycles. Moreover, the fuel consumption based on the SDP reference is lower than that 

based on the linear method. The reason can be explained as follows. The SDP enables the global sub-optimality; 

and on this account, the SOC reference generated by the SDP method also highlights the characteristics of the 

global sub-optimality to certain extent. In contrast, the ideal linear SOC reference is simply an average curve 

and does not feature any global optimal or sub-optimal characteristics.  

Table VI. Comparison of fuel consumption under different SOC references. 

Driving cycles SOC reference Ending SOC (%) Fuel consumption (kg) Fuel saving (%) 

5 HWFET 

SDP (no reference) 30.24 1.8597 - 

SDP reference 30.51 1.8962 +1.7 

Line reference 31.63 1.9231 +2 

6 UDDS 

SDP (no reference) 29.60 1.1478 - 

SDP reference 29.88 1.1826 +3 

Line reference 29.74 1.188 +3.3 

Note: +: Increment; -: Decrement.  

D. Analysis of Computational Efficiency 

In this study, the computation is performed in Matlab/Simulink through a computer with 8GB RAM and a 

core i5 processor @ 2.6GHz. It should be mentioned that the calculation time does not include the time of the 

QL controller, but only accounts for the computational load of the speed prediction and the QL-SMPC 



controller. The computation duration is listed in Table VII. The total computation time for the speed prediction 

and QL-SMPC at each step ranges from 35.9 ms to 57.15 ms, which is verified qualified in real-time application 

with 1 s as a step. Thus, it can be concluded that the proposed strategy shows certain potential of online 

implementation.  

Table VII. Comparison of the calculation time under different cycles. 

 Single step calculation time (ms) 

5 HWFET 6 UDDS 8 NEDC 12 KM 

Speed prediction 0.3 0.35 0.36 0.36 

SMPC 35.6 56.8 39.9 38.4 

VI. CONCLUSION 

In this study, a stochastic model predictive control energy management strategy based on Q-learning is 

proposed to improve the fuel economy of plug-in hybrid electric vehicles. Firstly, different driving conditions 

are considered, and the propelling power is modeled by Markov Chain. The Q-learning algorithm is applied to 

train a convergent optimal reinforcement learning controller. Then, based on the stochastic characteristics of 

vehicle acceleration, the Markov stochastic speed prediction model is established. After verifying the speed 

predicting accuracy, the multi-step Markov speed prediction is applied to the stochastic model predictive control, 

and the Q-learning controller is employed in the rolling optimization process. Finally, a series of simulations 

are performed to evaluate the performance of the proposed controller. The simulation results manifest that the 

proposed algorithm can achieve similar fuel economy as that of the offline stochastic dynamic programming 

method. Furthermore, one single step calculation time of the proposed controller is less than 57.15 ms, indicating 

its real-time application potential.  

Our future work will focus on further improving the fidelity of the speed prediction model and the 

reinforcement learning controller performance. In addition, hardware-in-the-loop experiments and real vehicle 

validation will be conducted to further improve the performance of the proposed method. 
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