

Antimicrobial Activity of Benzimidazoles Derivatives

N. Srinivasa Rao, K. Lakshmi, S. Mohan, V. Nagalakshmi

Abstract: The anti-microbial action of benzimidazole of ampicillin, was examined in Vitro beneath a specific conditions, utilizing the disc diffusion method, against different gram-positive and gram-negative pathogenic microorganisms such as Bacillus cereus, Staphylococcus aureus Pseudomonas aeruginosa and Escherichia Coli. An arrangement of these compounds were arranged and have appeared to hinder phthogenic development, the range of the zone of restraint. The zone of Obstacles of compounds founds from 7 mm² to 46 mm² Among the synthesized compounds in common. 6-Methoxy-N-phenyl-1H-benzo [d]imidazol-2-amine(1c, zone of inhibition 9 mm² at 40 and µg/ml against Escherichia coli 6-Chloro-N-phenyl-1H-benzo [d]imidazol-2-amine (1d, zone of inhibition 18 mm² at 40 µg/ml against Bacillus cereus) have appeared great movement. While 1j, zone of inhibition 20 mm² at 40 μ g/ml), and (1i, zone of inhibition 20 mm² at 40 μ g/ml) were found to be displayed directly to great action against Bacillus cereus and Escherichia coli. 1p did not appear any movement against Staphylococcus aureus .1e did not appear any movement against Escherichia Coli and **Staphylococcus** aureus. The results have shown clearly that the contribution of ele ctron -donation and electron- withdrawal to the aromatic ring inc reases antibacterial activity. Target benzimidazolessamples showe d antibacterial & reference antibiotic ampicillin in vitro.

Keywords: Anti-microbial, Benzimidazoles, Inhibiting zone, ampicillin

I. INTRODUCTION

 ${f B}$ enzimidazole [1] and 2-aminobenzimidazole moieties are important compounds due to their significance showed in biological sciences and therapeutic. These molecules can be used in other applications like Nmethyl-D-aspartate (NMDA) antagonist, [2] factor Xa(FXa) inhibitor, [3] poly(ADPribose) polymerase (PARP) inhibitor,[4] neuropeptide YY1 receptor [5] non-peptide thrombin inhibitor,[6] antagonist, preparation of dyes and polymers which are strong tolerance these are showing anti-inflammatory, of temperature antimicrobial and antibacterial activities also. Hence, traditional methods and C-N cross-coupling in the presence of transition metals have been developed for the preparation of benzimidazole.

Revised Manuscript Received on July 15, 2020. * Correspondence Author

Dr. Srinivasa Rao Nathani*, Department of Chemistry, Bapatla College, Engineering Bapatla, India. E-mail: nathanisrinivasarao@gmail.com

Dr. K. Lakshmi, Bapatla Municipality, Ward women Protection Secretary, Bapatla, India. E-mail: lakshmisrinivas41@gmail.com

Dr. Mohan Seelam, Department of Chemistry, Bapatla Engineering College, Bapatla, India. E-mail: seelam.mohan123@gmail.com

Dr. V. Nagalakshmi, Department of chemistry, Ch.S.D.St.Theresa's College for Women(A), Eluru, India. E-mail: nlcheruvu@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

In this context, we wish to describe an efficient synthetic route for the preparation of benzimidazoles through three steps in one pot. In addition, synthesized benzimidazole compounds were screened for checking the antimicrobial activity using disc diffusion method.

II. ANTIMICROBIAL ACTIVITY

A. Preparation of Suspension of Bacteria

Two ml of 10% Sodium Chloride (0.85% w/v) were taken in the sample cell and after that closed with cotton. Wiped off with filter paper by cello tape. Sample cell were put in an autoclave for sterilization for 20lbs for 30 min. One or two colonies of microorganisms sub cultured bacteria from the bacterial plate . Colonies were soluble in 10% sodium chloride solution with stirring. The sample cell was stamped and includes more colonies in the event that required.

III. PROCEDURE FOR SENSITIVITY TEST

A. Arrangement of Muller Hinton Agar Plates

4.0 mg Muller Hinton agar media was dissolution in 120 mL refined water in 250 mL RB Flask with mixing (For the arrangement of four plates) and after that closed with cotton, Wiped off with filter paper by cello tape. Sterilization for 20 lbs for 30 min. After autoclaving, heat the 25-30 mL of media was placed on a petridish plate.. The media remains as solid in petri disk. After that, The plate was kept in incubators for drying to remove water vapor. Now Agar plate was prepared for utilize.

B. Compounds solution preparation

One mg of synthesized benzimidazoles sample soluble in dimethyl sulfoxide and polyethylene glycol in the proportion of 1:10 in the test tube vertex blending warmed. A code number is given to sample tube. With the support of the marker, the organized plate was divided into four quadrants. Every quadrant was given the same code as the test tube code containing the arrangement of the compound. One plate was once swabbing from one bacterial suspension with the help of a cotton swab. With the help of smaller scale pipette, 20-25µl arrangement of benzimidazoles compound used to be dropped on identical code of the quadrant given the sample cell containing as on association of an the benzimidazoles compound. All benzimidazoles sample

plates were put in the hatchery to bring forth for 18-24hrs. The plates were seen after 18-24 hrs. In the event the particular benzimidazole compound was touchy for particular microscopic organisms.

Published By: Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

At that point development was found in the entire plate but where the arrangement of the compound was dropped. In the event that the particular benzimidazole compound was not touchy for particular microscopic organisms. At that point, development was found in entirety plate counting where the arrangement of the compound was dropped.

Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia Coli species was investigated.

C. Reference and Control

The reference was anti-microbial in nature. Ampicillin has b een selected as the standard for all bacterial species The control test comprises a plate of setting agar on to which microorganism blended in a parcel as detailed.

D. Aseptic conditions

The chamber comprises of a wooden box (2 m x 2 m x 0.5 m) the entrance washed with 75 % alcohol and illuminated with short-wave ultra violet light for one hour.

E. Antibacterial Activity

The in vitro antibacterial action of Schiff bases of ampicillin used to be inspected against gram-positive bacteri a like. (*Bacillus cereus* (MTCC 430), *Staphylococcus aureus* (MTCC 3160) and gram-negative bacteria (*Pseudomonas aeruginosa* (MTCC 424), and *Escherichia Coli* (MTCC 40). Relults are summarized in **Table-1** in conjunction with standard medicine.

All analogues, showed up, comparable antibacterial activity at the, estimations 250 μ g/ml against all the tested strains. Results indicate that compounds 1h and 1j appeared most extreme action against *Escherichia Coli* (zone of inhibition=48 mm² and 42 mm² respectively and MIC=30 μ g/ml at the dose of of Schiff 250 μ g/ml) in comparison to other strains utilized by us.

IV. RESULTS AND SISCUSION

The results (Fig-1) of antibacterial action uncovered that most of the synthesized compounds appeared good activity Bacillus cereus *Staphylococcus* against aureus. Pseudomonas aeruginosa, and Escherichia Coli. In general 1g and 1j have appeared great movement against chosen strains, while 1i, and 1j were found to be shown directly to great activity against Staphylococcus aureus and Bacillus cereus. Shockingly 1h did not appear any activity against Escherichia Coli and Bacillus cereus. 1e did not appeared any activity against Bacillus cereus and Escherichia Coli. The results clearly appeared that the commitment of electron donating and electron withdrawing groups on aromatic ring increasing the antibacterial activity.

		rable 1. r nysicochemical propertio	is of the benz	minuazu	103(1-a 10)	L-IX)			
S. No.	Code	Structure of Compound	M F	M. W	M P	% Yield	Elemental Analysis (%)		
							С	Н	N
1.	1-a	N N N N N	$C_{13}H_{11}N_3$	209.25	95-96	96	74.62	5.30	20.08
2.	1-b		$C_{14}H_{13}N_3$	223.27	146-147	92	75.31	5.87	18.82
3.	1-c	MeO H H	C ₁₄ H ₁₃ N ₃ O	239.27	132-133	95	70.28	5.48	17.56
4.	1-d		$C_{13}H_{10}ClN_3$	243.69	104-105	83	64.07	4.14	17.24

 Table 1: Physicochemical properties of the benzimidazoles (1-a to 1-k)

International Journal of Management and Humanities (IJMH) ISSN: 2394-0913 (Online), Volume-4 Issue-11, July 2020

5	1-е	F H H	C ₁₃ H ₁₀ FN ₃	227.24	17.24	70	68.71	4.44	18.49
6	1-f		$C_{14}H_{10}N_4$	234.26	119-120	62	71.78	4.30	23.92
7	1-g	NO_{2}	$C_{13}H_{10}N_4O_2$	254.24	130-131	55	61.55	3.93	21.98
8	1-h	Me Me N H	C ₁₅ H ₁₅ N ₃	237.30	94-95	82	76.00	6.35	17.65
9	1-i		C ₁₅ H ₁₅ N ₃	237.30	95-96	87	76.01	6.34	17.65
10	1-ј	Me N H OMe	C ₁₅ H ₁₅ N ₃	237.30	144-145	95	76.00	6.35	17.65
11	1-k		C ₁₅ H ₁₅ N ₃ O	253.30	131-132	83	71.25	5.95	16.54

Antimicrobial Activity of Benzimidazoles Derivatives

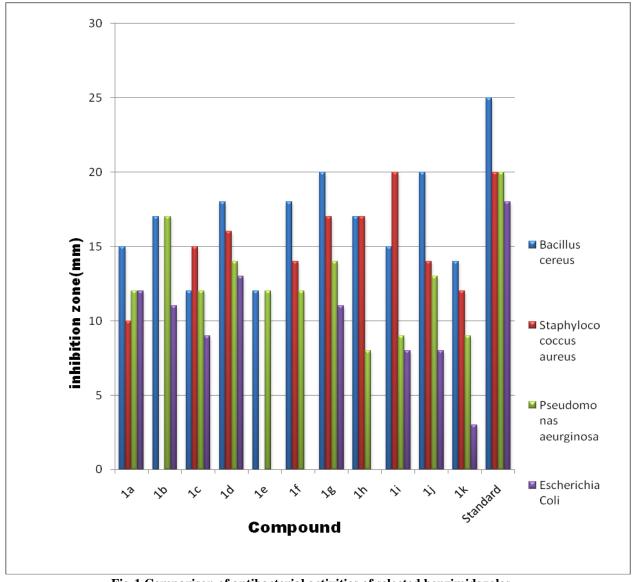


Fig-1.Comparison of antibacterial activities of selected benzimidazoles

V. CONCLUSION

Anti-microbial activity was performed on all synthesized compounds. Compound 1-g showed good activity against *Bacillus cereus* (MTCC 430), *Staphylococcus aureus* (MTCC 3160), *Pseudomonas aeruginosa* (MTCC 424) *and;* Compound 1-i showed good activity against), *Staphylococcus aureus* (MTCC 3160), and *Bacillus cereus* (MTCC 430). Compounds 1-a, 1-b 1-d, 1-g, 1-i, and 1-k and exhibited promising antibacterial activity against all the selected bacterial strains at 250 µg/ml dose.

ACKNOWLEDGMENT

Biological activities of some synthesized substituted 2aminophenyl benzimidazoles were studied using Filter paper disc diffusion method. The authors are highly thankful to I express my sincere thanks to Dr. P. Gopi Krishna, Department of Zoology, Vikram Simhapuri University, Kavali to providing the biological activity studies

REFERENCES

1. K.Bahrami, M. M.Khodaei, and F.Naali, "Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles" *J. Org. Chem.*73, 2008,pp 6835-6837.

Retrieval Number: K10390741120/2020©BEIESP DOI: 10.35940/ijmh.K1039.0741120 Journal Website: <u>www.ijmh.org</u>

- R. B.Baudy, H. Fletcher III, J. P.Yardley, M. M.Zaleska, D. R. Bramlett, R. P. Tasse, D. M. Kowal, A. H.Katz, J. A. Moyer, and M. Abou-Gharbia, "Design, synthesis, and biological evaluation of highly potent benzimidazole spaced phosphono amino acid competitive antagonists of the AP-6 type" J. Med. Chem.44., 2001, pp1516-1529.
- Z. S. Zhao, , D. O.Arnaiz, , B.Griedel, , S.,Sakata, J. L. Dallas, , M Whitlow., Trinh, L,Post J.,Liang A.,Morrissey M. and K.Shaw "Design, synthesis, and in vitro biological activity of benzimidazole based factor Xa inhibitors" *J. Bioorg. Med. Chem. Lett.* 10, 2000.pp 963-966.
- A.W.White, A.H. Almassy, N.J.Calvert, R.J. Curtin, Griffin, Z. Hostomsky, K.Maegley, D.R. Newell, S. Srinivasan, and B.T. Golding, "Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase"J. Med. Chem.43, 2000,pp 4084-4097.
- H.Zarrinmayeh, A.M. Nunes, L.Ornstein, D.M. Zimmerman, M.B.Arnold, D.A.Schober, S.L. Gackenheimer, F.R. Bruns, P.A., Hipskind, T.C. Britton, B.E. Cantrell, and D. Gehlert, "Synthesis and evaluation of a series of novel 2-[(4-chlorophenoxy)methyl] benzimidazoles as selective neuropeptide YY1 receptor antagonists" *J. Med. Chem.41*, 1998, pp 2709-2719.
- N.H.Hauel, H. Nar,H. Priepke, U. Ries, J Stassen, and W.Wienen, "Structure-based design of novel potent nonpeptide thrombin inhibitors" *J. Med. Chem.*, 45, 2002, pp 1757-1766.

Published By: Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

AUTHOR PROFILE

Dr Srinivasa Rao Nathani, M.Sc, Ph,D Assistant Professor.Department of Chemistry. Bapatla Engineering College, Bapatla Andhra Pradesh, India <u>nathanisrinivasarao@gmail.com</u>

Dr. Lakshmi Kondraganti, M.Sc, Ph,D Working as Ward women and weaker Protection Secretary, Ward -09 Vivekanada colony, Bapatla Municipality, Bapatla, Andhra Pradesh,India

Dr. Mohan Seelam, obtained Ph. D from Acharya Nagarjuna University. Currently working as Assistant Professor in the Department of Chemistry, Bapatla Engineering College, Bapatla, Guntur District, Andhra Pradesh, India

Dr. V. Nagalakshmi, M.Sc.,,M.Phil,;Ph.D Associate Professor in Chemistry Ch.S.D.St.Theresa's College for Women(A), Eluru West Godavari District Andhra Pradesh, India <u>nlcheruvu@gmail.com</u>

