
Low-rank Tensor Recovery via Iterative Hard
Thresholding

Holger Rauhut
RWTH Aachen University

Templergraben 55,
52056 Aachen, Germany

Email: rauhut@mathc.rwth-aachen.de

Reinhold Schneider
Technische Universität Berlin

Straße des 17. Juni 136,
10623 Berlin, Germany

Email: schneidr@math.tu-berlin.de
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Abstract—We study recovery of low-rank tensors from a
small number of measurements. A version of the iterative hard
thresholding algorithm (TIHT) for the higher order singular
value decomposition (HOSVD) is introduced. As a first step
towards the analysis of the algorithm, we define a corresponding
tensor restricted isometry property (HOSVD-TRIP) and show
that Gaussian and Bernoulli random measurement ensembles
satisfy it with high probability.

I. INTRODUCTION AND MOTIVATION

Low-rank recovery builds on ideas from the theory of
compressive sensing which predicts that sparse vectors can
be recovered efficiently from incomplete measurements via
efficient algorithms including `1-minimization. Given a matrix
X ∈ Rn1×n2 of rank at most r � min{n1, n2}, the goal of
the low-rank matrix recovery is to reconstruct X from linear
measurements y = A(X), where A : Rn1×n2 → Rm with
m� n1n2. Unfortunately, the natural approach of finding the
solution of the optimization problem

min
Z∈Rn1×n2

rank (Z) s.t. A (Z) = y, (1)

is NP-hard. Nevertheless, it has been shown that solving the
convex optimization problem

min
Z∈Rn1×n2

‖Z‖∗ s.t. A (Z) = y, (2)

reconstructs X exactly under suitable conditions on A.
The required number of measurements scales as m ≥
Crmax{n1, n2} for Gaussian measurement ensembles [11],
[2].

In this note, we go one step further and consider the
recovery of low-rank tensors X ∈ Rn1×n2×···×nd from a
small number of linear measurements y = A (X), where
A : Rn1×n2×···×nd → Rm and m � n1n2 · · ·nd. Again,
we are led to consider the rank-minimization problem

min
Z∈Rn1×n2×···×nd

rank (Z) s.t. y = A (Z) . (3)

Different notions of the tensor rank have been introduced,
which correspond to different decompositions. One possibility
is to define the rank of an arbitrary tensor X ∈ Rn1×n2×···×nd ,
analogously to the matrix rank, as the smallest number of
rank one tensors that sum up to X, where a rank one tensor
is of the form A = u1 ⊗ u2 ⊗ · · · ⊗ ud or elementwise

A (i1, i2, . . . , id) = u1 (i1) u2 (i2) · · ·ud (id). Expectedly, the
problem (3) is NP hard [8]. Although it is possible to define
an analog of the nuclear norm ‖·‖∗ for tensors and consider
the minimization problem

min
Z∈Rn1×n2×···×nd

‖Z‖∗ s.t. y = A (Z) ,

the computation of ‖·‖∗ and thereby this problem is NP hard
[8] as well for tensors of order d ≥ 3.

The previous approaches to low-rank tensor recovery and
tensor completion [3] and [9] are based on the sum of nuclear
norms of matrices obtained as unfoldings of the tensor (see
below for the notion of unfolding). Only numerical experi-
ments have been performed in these papers and at least from
a theoretical point of view, we do not believe this to be the
right approach since the tensor structure is lost.

We consider a generalization of the singular value decom-
position, called HOSVD (higher order singular value decom-
position). This decomposition is used in e.g. data mining for
handwritten digit classification [12], in signal processing to
extend Wiener filters [10], in computer vision [13] and in other
applications.

As a proxy for (3) we propose an extension of the IHT
algorithm already used for recovery of sparse signals [1] and
low-rank matrices [5]. The tensor iterative hard thresholding
algorithm (TIHT algorithm) is presented in Section IV. In
the last section, we introduce the tensor restricted isometry
property (HOSVD-TRIP) and also show that random linear
mappings satisfy the HOSVD-TRIP with high probability,
under suitable conditions.

The version for the tensor train decomposition (TT decom-
position) and hierarchical tucker format (HT decomposition)
will be treated in a journal paper in preparation.

II. NOTATION

We work with tensors X ∈ Rn1×n2×···×nd of order d.
With Xik=p, for all p ∈ [nk], where [nk] = {1, 2, . . . , nk},
we denote the (d− 1)-dimensional tensor (called subten-
sor) that is obtained by fixing the k-th component of a
tensor X to p i.e., Xik=p (i1, . . . , ik−1, ik+1, . . . , id) =
X (i1, . . . , ik−1, p, ik+1, . . . , id), for all il ∈ [nl] and for
all l ∈ [d] \ {k}. A matrix obtained by taking the first rk
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columns of the matrix U is denoted by U (:, [rk]). Similary,
S ([r1] , [r2] , . . . , [rd]) ∈ Rr1×r2×···×rd is defined elementwise
as S ([r1] , [r2] , . . . , [rd]) (i1, i2, . . . , id) = S (i1, i2, . . . , id),
for all ik ∈ [rk] and for all k ∈ [d].

Matrices will be denoted with capital bold letters, linear
mappings with caligraphic capital letters and vectors with
small bold letters.

The inner product of two tensors X,Y ∈ Rn1×n2×···×nd is
defined as

〈X,Y〉 =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

X (i1, i2, . . . , id) Y (i1, i2, . . . , id) .

The (Frobenius) norm of a tensor X ∈ Rn1×n2×···×nd ,
‖X‖F , induced by this inner product, is

‖X‖F =

√√√√ n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

X2 (i1, i2, . . . , id).

Matricization (unfolding) is the operation that transforms
a tensor into a matrix. The mode-k matricization of a
tensor X ∈ Rn1×n2×···×nd is denoted by X(k), X(k) ∈
Rnk×n1···nk−1nk+1···nd . The rows of the matrix X(k) are
determined by the k-th component of the tensor X, whereas
all the remaining components determine its column, i.e.,

X(k) (ik; (i1, . . . , ik−1, ik+1, . . . , id)) = X (i1, . . . , id) .

For X ∈ Rn1×n2×···×nd , A ∈ RJ×nk and k ∈ [d], the k-
mode multiplication, X×k A ∈ Rn1×···×nk−1×J×nk+1×···×nd

is defined elementwise as

(X×k A) (i1, . . . , ik−1, j, ik+1, . . . , id) =

=

nk∑
ik=1

X (i1, . . . , id) A (j, ik) .

Remark 1: Notice that the SVD decomposition of a matrix
X ∈ Rn1×n2 can be written using the above notation as X =
UΣVT = Σ×1 U×2 V.

III. HOSVD DECOMPOSITION

The Tucker decomposition, and in particular the HOSVD
decomposition [7], decomposes a tensor into a set of matrices
and one tensor.

Definition 1 (Tucker decomposition): Given a tensor X ∈
Rn1×n2×···×nd the decomposition

X = S×1 U1 ×2 U2 × · · · ×d Ud,

or elementwise

X (i1, i2, . . . , id) =

n1∑
j1=1

n2∑
j2=1

. . .

nd∑
jd=1

S (j1, . . . , jd) ·

·U1 (i1, j1) U2 (i2, j2) · · ·Ud (id, jd)

is called Tucker decomposition. The tensor S ∈
Rr1×r2×···×rd is called the core tensor and Ui ∈ Rni×ni ,
for all i ∈ [d], are matrices.

Remark 2: Given invertible matrices Ui ∈ Rni×ni , the
Tucker decomposition of a tensor X always exists since

S = X×1 U−1
1 ×2 U−1

2 × · · · ×U−1
d

defines the core tensor.
Definition 2 (HOSVD decomposition): The HOSVD is a

special case of the Tucker decomposition where
• the Uk are unitary nk × nk-matrices, for all k ∈ [d],
• any two subtensors of the core tensor S are orthogonal,

i.e., 〈Sik=p, Sik=q〉 = 0, for all k ∈ [d] and for all p 6= q,
• the subtensors of the core tensor S are ordered according

to their Frobenius norm, i.e., ‖Sik=1‖F ≥ ‖Sik=2‖F ≥
. . . ≥ ‖Sik=nk

‖F ≥ 0, for all k ∈ [d].
Definition 3 (HOSVD-rank): Let X ∈ Rn1×n2×···×nd . The

k-rank of X, denoted by Rk = rankk (X), is the rank of the
k-th unfolding, i.e.,

rankk (X) = rank
(
X(k)

)
.

The HOSVD-rank of a tensor X is the vector rHOSVD (X) =
(R1, R2, . . . , Rd).

Remark 3 ( [7]): Let the HOSVD of a tensor X ∈
Rn1×n2×···×nd be given as in Definition 1 and let rk be equal
to the highest index for which ‖Sik=rk‖F > 0. Then

rk = rankk (X) = Rk.

Remark 4: Let X ∈ Rn1×n2×···×nd be a tensor of HOSVD-
rank (r1, r2, . . . , rd) and let X = S×1 U1×2 U2×· · ·×d Ud

be its HOSVD decomposition. Then X can be written as

X = S×1 U1 ×2 U2 × · · · ×d Ud,

where S = S ([r1] , [r2] , . . . , [rd]) ∈ Rr1×r2×···×rd , Uk =
Uk (:, [rk]) ∈ Rnk×rk , for all k ∈ [d]. From now on, we will
assume that the HOSVD decomposition of an arbitrary tensor
is of this form.

IV. TENSOR ITERATIVE HARD THRESHOLDING
ALGORITHM

In this section we present the tensor iterative hard threshold-
ing algorithm (TIHT) and the corresponding numerical results.

In the TIHT algorithm, Hr (X) denotes the rank-r approx-
imation of the tensor X obtained by restricting the compo-
nents of its HOSVD decomposition. To be more precise, if
X = S×1 U1×· · ·×d Ud is its HOSVD decomposition, then
Hr (X) = S×1U1×· · ·×dUd where S = S ([r1] , . . . , [rd]) ∈
Rr1×r2×···×rd and Uk = Uk (:, [rk]) ∈ Rnk×rk for all k ∈ [d].

Remark 5: In the case of sparse vector recovery and of
low-rank matrix recovery, the operator Hr returns the best r-
sparse approximation [1] and best rank-r approximation [5],
respectively. This fact is often used in the analysis of the
algorithm. However, the rank-r approximation Hr (X) of an
arbitrary d-th order tensor X is not necessarily its best rank-r
approximation XBEST [4]. To be more precise,

‖X−Hr (X)‖F ≤
√
d ‖X−XBEST‖F .
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Tensor iterative hard thresholding algorithm (TIHT algorithm)

Input: measurement ensemble A, measurement vector y = A (X), rank
level r
X0 = Hr (A∗ (y)), j = 0.
repeat

Compute µj =
‖A∗(y−A(Xj))‖2F
‖A(A∗(y−A(Xj)))‖22

.

Set Xj+1 = Hr
(
Xj + µjA∗

(
y −A

(
Xj

)))
.

j=j+1
until a stopping criterion is met at j = j.

Output: the r-rank tensor X# = Xj

This fact causes significant obstacles in the theoretical anaysis
of the TIHT. Nevertheless, as we present in the following, the
algorithm still works quite well in practice.

We present the numerical results only for 3rd order tensors
X ∈ Rn1×n2×n3 . In the first two experiments we consider
a cubic tensor, i.e., n1 = n2 = n3 = 10, with equal and
unequal ranks of its unfoldings, respectively. In the last case
we consider a non-cubic tensor X ∈ R6×10×15 with equal
ranks of the unfoldings, i.e., r1 = r2 = r3 = r.

For fixed tensor dimensions n1 × n2 × n3, fixed HOSVD-
rank r = (r1, r2, r3) and a fixed number of measurements m
we performed 200 simulations.

We consider an algorithm to successfully recover the sensed
tensor X0 if it returns a tensor X# s.t.

∥∥X0 −X#
∥∥
F
< 10−3.

The algorithm stops if
∥∥Xj −Xj−1

∥∥
F
< 10−4 in which

case we say that the algorithm converged, or it stops if it
reached 5000 iterations.

A linear mapping A : Rn1×n2×n3 → Rm is defined
by tensors Ak ∈ Rn1×n2×n3 via [A (X)] (k) = 〈X,Ak〉,
for all k ∈ [m]. The entries of the tensors Ak are i.i.d.
Gaussian N

(
0, 1

m

)
. We generate tensors X0 ∈ Rn1×n2×n3

of rank r = (r1, r2, r3) via its Tucker decomposition. If
X0 = S ×1 U1 ×2 U2 ×3 U3 is its Tucker decomposition,
each of the elements of the tensor S is taken independently
from the normal distribution, N (0, 1), and the components
Uk ∈ Rnk×rk are the first rk left singular vectors of a matrix
Mk ∈ Rnk×nk whose elements are also drawn independently
from the normal distribution N (0, 1).

In Figure 1 and Figure 2 we present the recovery results
for low-rank tensors of size 10× 10× 10. The horizontal axis
represents the number of measurements taken with respect to
the number of degrees of freedom of an arbitrary tensor of this
size. To be more precise, for a tensor of size n1×n2×n3, the
number n̄ on the horizontal axis represents m =

⌈
n1n2n2

n̄
100

⌉
measurements. The vertical axis represents the percentage of
the successful recovery. The numerical results for tensors of
rank r = (1, 1, 1), r = (2, 2, 2), r = (5, 5, 5) and r = (7, 7, 7)
are presented in Figure 1. Notice that only for the rank r =
(7, 7, 7), 33% of measurements were not enough for a full
recovery. In this case 54% of the measurements and on average
1107 iterations were needed. For tensors of rank r = (1, 1, 1)
already with 9% of measurements we obtain a full recovery
in 321 iterations on average. The algorithm ended on average
in 185, 337 and 547 iterations for 20%, 21% and 33% of
measurements for ranks r = (2, 2, 2), r = (3, 3, 3) and r =
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Fig. 1. Recovery of low rank 10 x 10 x 10 tensors of the same rank
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Fig. 2. Recovery of low rank 10× 10× 10 tensors of a different rank
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Fig. 3. Recovery of low rank 6× 10× 15 tensors of a different rank

(5, 5, 5), respectively.
In Figure 2 we present the results for tensors of rank

r = (1, 2, 2), r = (1, 5, 5), r = (2, 5, 7) and r = (3, 4, 5).
Only 26% of measurements were enough for a full recovery.
For 10%, 12%, 22% and 26% of measurements, the algorithm
converged on average in 588, 1912, 696, 384 iterations, for
the various ranks respectively.

We obtained similar results for recovery of low-rank tensors
of size 6× 10× 15 and ranks r = (1, 1, 1), r = (2, 2, 2) and
r = (5, 5, 5) - see Figure 3. We managed to get a full recovery
from 8% of measurements for the rank r = (1, 1, 1), and
20% and 37% of measurements for the remaining ranks. The
algorithm ended on average in 511, 214 and 501 iterations, for
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the various ranks and number of measurements, respectively.

V. HOSVD TENSOR RIP

The analysis of the IHT algorithm for recovery of sparse
vectors [1] and low-rank matrices [5] is based on the corre-
sponding notion of restricted isometry property (RIP). There-
fore, we start by introducing an analog for tensors, which we
call the tensor restricted isometry property (HOSVD-TRIP).

Definition 4 (HOSVD-TRIP): Let A : Rn1×n2×···×nd →
Rm be a measurement ensemble. Then for each d-tuple of
the integers r, r = (r1, r2, . . . , rd), where ri ∈ [ni], for all
i ∈ [d], the tensor restricted isometry constant δr of A is the
smallest quantity such that

(1− δr) ‖X‖2F ≤ ‖A (X)‖22 ≤ (1 + δr) ‖X‖2F (4)

holds for all tensors of HOSVD-rank at most r.
We say that A satisfies the HOSVD-TRIP at rank r if δr is

bounded by a sufficiently small constant between 0 and 1.
A random variable X is called L-subgaussian if there exists

a constant L > 0 s.t. E [exp (tX)] ≤ exp
(
L2t2/2

)
holds

for all t ∈ R. We call A : Rn1×n2×···×nd → Rm an
L-subgaussian measurement ensemble if all elements of A,
interpreted as a tensor in Rn1×n2×···×nd×m, are independent
mean-zero, variance one, L-subgaussian variables. Gaussian
and Bernoulli random measurement ensembles where the
entries are standard normal distributed random variables and
Rademacher ±1 variables, respectedly, are special cases of
1-subgaussian measurement ensembles.

Theorem 1: Let δ, ε ∈ (0, 1). A random draw of an L-
subgaussian measurement ensemble A : Rn1×n2×···×nd →
Rm satisfies δr ≤ δ with probability at least 1− ε provided

m ≥ Cδ−2 max
{(
rd + dnr

)
log (d) , log

(
ε−1
)}
,

where n = max {ni : i ∈ [d]} and r = max {ri : i ∈ [d]}. The
constant C > 0 depends only on subgaussian parameter L.

The proof of Theorem 1 uses ε-nets.
Definition 5: A set Nε ⊂ X is called an ε-net of X with

respect to the norm ‖·‖ if for each v ∈ X , there exists v0 ∈ Nε

with ‖v0 − v‖ ≤ ε. The minimal cardinality of an ε-net of X
with respect to the norm ‖·‖, if finite, is denoted N (X, ‖·‖ , ε)
and is called the covering number of X (at scale ε).

Lemma 1 (Covering number of low-HOSVD-rank tensors):
Let

Sr =
{
X ∈ Rn1×n2×···×nd : rankHOSVD (X) ≤ r, ‖X‖F = 1

}
.

Then there exists an ε-net Nε of Sr with respect to the
Frobenius norm obeying

N (Sr, ‖·‖F , ε) ≤ (3 (d+ 1) /ε)
r1r2···rd+

∑d
i=1 niri . (5)

The proof of the above lemma follows a similar strategy as
in [2] and will be presented in a forthcoming journal paper.

Sketch of the proof of the Theorem 1: We use a tool
developed in [6]. We write

A (X) = VXξ,

where ξ is an L-subgaussian random vector of length
n1n2 · · ·ndm and VX is the m×n1n2 · · ·ndm block-diagonal
matrix

VX =
1√
m


xT 0 · · · 0
0 xT · · · 0
...

...
. . .

...
0 · · · 0 xT

 ,
where x is the vectorized version of the tensor X. With this
notation the restricted isometry constant is given by

δr = sup
X∈Sr

∣∣‖VXξ‖22 − E‖VXξ‖22
∣∣ .

Theorem 3.1 in [6] provides a general probabilistic bound
for expressions in the form of the right hand side above
in terms of the diameters dF (B) and d2→2(B) of the set
B := {VX : X ∈ Sr} with respect to the Frobenius norm and
the operator norm, as well as in terms of Talagrand’s functional
γ2(B, ‖·‖2→2). It is straightforward to see that dF (B) = 1 and
d2→2(B) = 1√

m
. The bound of the γ2-functional via a Dudley

type integral [6] yields

γ2 (B, ‖·‖2→2) ≤ C 1√
m

∫ 1

0

√
log (N (Sr, ‖·‖2 , u))du.

Using (5) for N (Sr, ‖·‖F , u) we reach

γ2 (B, ‖·‖2→2) ≤ C̃

√√√√(r1r2 · · · rd +
∑d

i=1 niri

)
log (d)

m
.

The claim follows then from Theorem 3.1 in [6].
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