
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

 216

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F30830810621
DOI: 10.35940/ijeat.F3083.0810621
Journal Website: www.ijeat.org

Performance of Adder Architectures on Encrypted
Integers

Paulin Boale Bomolo, Simon Ntumba Badibanga, Eugene Mbuyi Mukendi

Abstract: The fully Homomorphic encryption scheme is corner
stone of privacy in an increasingly connected world. It allows to
perform all kinds of computations on encrypted data. Although,
time of computations is bottleneck of numerous applications of
real life. In this paper, a brief description is made on the
homomorphic encryption scheme TFHE of Illaria Chillota and the
others. TFHE, implemented in c language in a library, improves
the bootstrapping execution time of the FHEW scheme to 13
milliseconds. TFHE performs homomorphic processing on a
multitude of logic gates. This variety made it possible to construct,
implement five adder architectures and compare them in terms of
the execution time of the bootstrapping per logic gate. In a single-
processor computing environment, the Carry Look-ahead Adder
completed a two-integer addition in 90 seconds, whereas the Ripple
carry Adder did the same processing in 109 seconds. An
improvement in processing time of 15% is observed. And, the same
ratio of about 15% was obtained on four integers, respectively for
279 seconds for the first adder and 320 seconds for Wallace's
dedicated adder. While in the dual-processor environment, a 50%
improvement was seen on all adders in the same processing on
integers. The Carry Look-ahead Adder saw his handling improved
by the sum of two numbers from 90 seconds to 46 seconds and four
numbers from 279 seconds to 139 seconds, respectively.

Keywords: fully Homomorphic encryption, bootstrapping,
logic gate, binary adder.

I.INTRODUCTION

Homomorphic encryption performs processing on
encrypted data without decrypting them. This concept
remained an open problem for a long time until the
breakthrough of Gentry in 2009 [4] who showed in his thesis
the possibility of dealing any function on encrypted data.
In homomorphic encryption, plaintexts are encrypted by
masking a value called noise and decryption consists of
removing said noise to retrieve the original plaintext. Said
noise increases in value after each homomorphic evaluation
of an elementary operation. The somewhat homomorphic
encryption scheme evaluated a limited number of various
operations up to a threshold where the decryption fails. This
number may be asymptotically made unlimited by the
bootstrapping technique. Said technique introduced by
Gentry reduces the value of noise in the resulting encrypted
message.

Manuscript received on August 19, 2021.
Revised Manuscript received on August 25, 2021.
Manuscript published on August 30, 2021.
* Correspondence Author

Paulin Boale B.*, Lecturer & Ph.D, Department of Mathematics and
Computers Sciences. University of Kinshasa. Congo - Kinshasa

Simon Ntumba B., Professor and head Department of Mathematic and
Computers Sciences University of Kinshasa. Congo - Kinshasa

Eugene Mbuyi M, Professor, Department of Mathematic and Computers
Sciences University of Kinshasa. Congo - Kinshasa

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

 It allows a homomorphic evaluationofarbitrary circuits and
including its own decryption circuit. It is very expensive in
terms of time and space. Since then, several improvements
have been proposed either in terms of efficiency [6][14] or by
new alternative concepts [10].
Despite this, small changes have been observed until [5]
which presents a very fast bootstrapping that takes place
around 0.69 seconds. Said technique paves the way for
applications with more complex circuits by a homomorphic
universal NAND on a bit with an evaluation key of about 1
GBytes. This performance was improved by [7] and [8] by
reducing the execution time to 0.1 seconds with an evaluation
key of about 23 MBytes. It is implemented in a library called
TFHE.
Based on this library, this paper evaluates the performance
of different most well-known circuits in homomorphic
additions on two or more 16-bit integers.

II.PRELIMINARY CONCEPTS

A. Notations and symbols.

The symbols and notations listed below will be used in the
remainder of this document:
• B the set of 0,1 ;
• ai is the value of ith bit of integer a ;
• T the real torus RZ: the fractional part of a real number;
• M(N)X the set of polynomials under an abelian group M

modulo XN+1: MXXN+1;
• Mn The set of vectors of (dimension) of n elements of

M;
• et Mn,m the set of dimension matrices of mn elements

of M.
1. The R-module.

Given R, +, × a commutative ring. A set M is a R-module if
M, + is an abelian group, and if there is a Bi-distributive and
homogeneous external operation. Namely, r,s ∈R et x, y ∈M,
1R. x=x, r+s.x=r.x+r.s, r.x+y=r.x+r.y, et r ×s.x=r.(s.x).

B. The homogeneous version of the Learning problem
With Errors (LWE).

Given n ≥1 an integer, the noise ∈ R+ parameter, and a
uniformly distributed secret s within a certain limit
of SZn. A distribution on TnT is denoted Ds,LWEa, b. It is
obtained by drawing the pair (a, b), where the left member a
is chosen uniformly and randomly in Tn and the right member
is an evaluation of the expression b=as+e . The error e is
taken from a Gauss distribution of parameter .
• Search problem: given LWE samples, find sS;
• Decision problem: distinguish between two distributions

of LWE samples and uniform and random samples from
TnT.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F3083.0810621&domain=www.ijeat.org

Performance of Adder Architectures on Encrypted Integers

 217

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F30830810621
DOI: 10.35940/ijeat.F3083.0810621
Journal Website: www.ijeat.org

C. The hard problem of Learning With Errors on a Torus
(TLWE).

Let be k≥1 an integer, N a power of 2, and ≥0 a noise
parameter. A TLWE s ∈ BNX secret key is a vector of k
polynomials ∈ R=ZXXN+1 with binary coefficients. The
sample space for messages is TNX. A fresh TLWE sample ∈
TNX message with the parameter under the key s is an
element a, bTNXkTNX, b ∈ TNX with a Gaussian distribution
D, sα+ around +sμ . The sample is random if and only if its
left member a called a mask is uniformly random in TNXk,
trivial if a is fixed to 0, less noisy if =0, and homogenous if
and only if =0.
• Search problem: given several TLWE samples, find

their keys ∈ BNXk;
• Decision problem: distinction between a homogeneous

and random TLWE sample from a uniform and random
sample of TNXk.

D. The phase of a sample.

Let c= a, bTNXkTNX et sBNXk, the phase of a sample is
defined by the expression sc=b-as. A phase is linear on
TNXkand is kN+1-Lipschitzian for the norm if l∀ x, y ∈

TNXk+1, ‖sx-sy‖kN+1‖x-y‖

III.THE TFHE HOMOMORPHIC ENCRYPTION
SCHEME

GSW is a leveled homomorphic encryption scheme that was
proposed by Gentry, Sahai and Waters in [3] and has been
improved in [11]. Its security is based on the error learning
problem (LWE).

A. TGSW.

The Torus GSW is a generalization of the scaled invariant
version of GSW. It is also extending the decomposition
function to polynomials. This threshold approximation of
accuracy parameter induces an improvement in execution
time and memory prerequisites for additional noise.

1. Decomposition function.

Let as h∈Md,k+1TNX in (1). Dech,, vis a decomposition
algorithm on h, with quality and precision if and only if for
any TLWE sample v ⊂ TNXk+1, its efficient and public
output gives a small vector uRdsuch that ‖u‖ et ‖uh-v‖. In
addition, u.h-v must be 0 when v is uniformly distributed in
TNXk+1.

1Bg 1Bgl 0 0 ⋱ 0 0 1Bg 1Bgl 1

2. TGSW sample.

Let be l et k ≥1 two integers, the noise parameter ≥0 and h
the decomposition function defined in (1). Let sBNXk be a
key RingLWE. C ∈ Mk+1l, k+1TNX is a fresh TGSW sample
of ∈ Rh with a noise parameter if and only if C=Z+.hZ ∈
Mk+1l,k+1TNX where each row of is homogeneous TLWE
sample of 0 with a gauss parameter.
Conversely, an element C ∈ Mk+1l, k+1TNX is a valid
TGSW sample if and only if there exists a unique s and a
unique key ∈ Rh such that each row of C-uh is a valid TLWE
sample 0 for a key s. The polynomial is the message C, and
denoted by msg(C).

3. Phase and error.

Let be A∈ Mk+1l, k+1TNX a TGSW sample for a secret key
sBNXk by the parameter ≥0. sATNXk+1l, The noted phase

A, is defined as a list of k+1l TLWE phases of each row of A.
Similarly, the error of A , denoted err(A) , is defined as the
list of k+1l TLWE errors in each row of A.

4. External product.

The external product . is defined as follows:
. :TGSW ×TLWE →TLWE
 .→A.b= Dech,β,ϵb.A

5. Theorem 1.

Let A a valid TGSW sample of the message A and b a TLWE
sample of the message B then A.b is a TLWE sample of the
message A.B and ‖errA.B‖≤

k+1lNβ‖errA‖+‖A‖11+kN+‖A‖1‖errB‖ where et are the
parameters used in the decomposition function Dech, ,b If ..
‖errA.B‖14 then A.B is valid TLWE sample.

6. The internal product.
Let be a product : TGSW ×TGSW →TGSW
7. A, B→A×B=
b1⋮A.bk+1l=h,𝛽,𝜖1.A⋮Dech,𝛽,𝜖k+1l.A
With A, B two valid samples TGSW respectively of the
messages A et B and bi corresponding to the ith row of B.
AB is a valid TGSW sample of the message A.B and
‖errA.B‖≤ k+1lNβ‖errA‖+‖A‖11+kN+‖A‖1‖errB‖ If
‖errA.B‖14 then is a valid TGSW sample A.B.
7. Bootstrapping in the TFHE.

Theorem 1 is used to speed up bootstrapping presented in [5].
The performed optimizations reduced the size of the
bootstrapping key and removed excess noise in ciphertext.
To perform bootstrapping, a sample LWE (a, b)∈Tn+1X is
scaled back as a, b mod 2N using ciphertexts from its secret
key sBn, the following steps must be followed:
1. Choose a phase detector testv ∈ TN a fixed polynomial

whose coefficients are setting up to values that
bootstrapping must return if sa, b=i2N;

2. Encode testv in a trivial TLWE sample;
3. Then, rotate the coefficients using external

multiplication with TGSW ciphertexts of hidden
monomials X-siai. testv rotates from a hidden phase of
a, b;

4. Finally, extract the constant terms as an LWE sample.
a. Extracting LWE from TLWE.

Extracting an LWE sample from a TLWE sample consists of
rewriting the polynomials in their coefficients ignoring the
last N-1 coefficients of b. it provides an LWE ciphertext of
constant terms of the initial or original polynomial message.
Definition 1. Let a'',b'' a sample TLWEs''with a key s''Rk ,
KeyExtracts'' is the vector of integers s'=coefss1''X,
…………….,coefssk''X ZkN and Sampleextracta'',b'' the
sample LWEa',b'∈ TkN+1 where a'=coefsa1''1X,
………….,coefsak''1X and b'=b0'' the constant term of b''
Then s'a',b' (resp msga',b') is equal to s''a'',b''the constant
term of resp au terme constant de =msga'',b'' and
‖Erra',b'‖‖Erra'',b''‖ and VarErra',b'VarErra'',b''.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

 218

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F30830810621
DOI: 10.35940/ijeat.F3083.0810621
Journal Website: www.ijeat.org

b. Procedure for switching keys in an LWE sample.

Given LWEs' a sample of a message T, the key switching
procedure initially proposed in [9,6] outputs a sample of the
same message without increasing noise. This procedure
tolerates the approximation of this scheme unlike its use in
other schemes.
Definition 2. Let s'0,1n', s0,1n , ∈R be a parameter and t∈N
a precision parameter, the switching key KSs's,,t is a sequence
of fresh samples of LWE KSi,jLWEs,si'2-j for i1,n' and j1,t.
Algorithm 2: Key switching procedure.
Input: A sample LWE a'=a1',……,an''LWEs', the switching
key KSs's where s'0,1n's0,1n, t∈N and a precision parameter.
Output: an LWE sample LWEs.
1. Set up ai' a multiple close to 12l of ai', so ai'-ai'<2-

t+1 ;
2. Decompose into binary each ai'=j=1tai'2-j where

ai,j'0,1 ;
3. Return a,b=0,b'-i=1n'j=1tai,j'KSi,j.
c. The bootstrapping procedure.

Given an LWEs=a,b sample, said procedure constructs a
ciphertext of under the same key s but with a fixed and low
noise. As in [14], a TLWE sample is used as an intermediate
cipher to perform a homomorphic evaluation of the phase, but
here the external product of theorem 1 is used with a TGSW
ciphertext of the key s.
Definition 3. Let sBn, s''BNXkand a noise parameter. The
bootstrapping key BKss'', is defined as a sequence of n
TGSW samples where BKiTGSWs'',si.
Algorithm 3: Bootstrapping procedure.
Input: a sample LWEa, bLWEs,, a bootstrapping key BKss'',,
a switching key KSs's, where s'=Key Extracts'' and two
messages 0,1T.
Output: a sample LWEs0 si sa,b ∈]-14, 14[sinon 1.
1. Set up =1+02 and '=0- ;
2. Set up b=⌊2Nb⌋ and ai=⌊2Nai⌋ for i1,n ;
3. Set up testv≔1+X+…………+XN-1X-2N4.'TNX
4. Acc←Xb.o,testvTNXk+1
5. pour i de 1 à n
6. Acc←h+X-ai-1.BKi . Acc
7. Set up ≔0, +Sample Extract Acc
8. Return Key Switch KS.

8. The TFHE library.

TFHE is an open source library for fully homomorphic
encryption distributed under the terms of the Apache 2.0
license. It is written in C/C++ by implementing a very fast
bootstrapping based on the [7,8,9].
It homomorphically evaluates 10 logical gates (AND, OR,
NAND, NOR, ... etc) as well as negation NOT and The MUX
gate. Each binary gate takes about 13 milliseconds which
improve the [15] by a factor of 53, and the MUX gate takes
about 26 CPU-milliseconds.
Bootstrapping in this library does not impose a restriction on
the number of gates or even on the circuit composition
compared to the [5] which does not support similar inputs.

1. Features of the TFHE library.

It is easy to use on manually made circuits and circuits
automatically generated by a hardware or software utility.
From the user's point of view, this library can:
1. Generate a set of secret keys and a set of keys for the

cloud. All secret keys are private, and provide
encryption and decryption capability respectively. All

keys for the cloud can be exported to the cloud, and
allow operations to be performed on encrypted data;

2. With all the secret keys, the library is used to encrypt
and decrypt the data. Encrypted data can be securely
exported to the cloud to perform homomorphically
secure calculations;

3. With all the cloud keys, the library can evaluate a list of
binary gates homomorphically at a rate of 76 gate per
second per core without decrypting them.
2. Fast Fourier Transform processors.

To run the TFHE needs at least one of the processors listed in
the table below:

Table-I: FFT Processors

Name License Language
and

portability

Performance Website

Nayuki Mit C and AVX 1 www.nayuki.io
spqlios Apache

2
AVX and
FMA

1

FFTW3 Gpl C and
FORTRAN

2 - 3 www.fftw.org

In terms of performance, the FFT processor performs better
than the other two. It reduces their execution times by a factor
of 2 or 3.

IV. HOMOMORPHIC ADDITION OPERATIONS
WITH TFHE

The plaintext space in the TFHE is Z2. The addition operation
is defined in said scheme using respectively the logical gates
XOR and AND. These gates are the cornerstone of the
implementation of increasingly complex circuits. Addition is
performing by adder. This section presents an
implementation of arithmetic addition by making the full
binary adder with the AND and XOR gates.
This arithmetic addition operation will be performed on
integers with a size of 16 bits.

A. Adder.

The adder is a circuit that is made from two basic circuits
which are the half-adder and the full adder. These are using
for making four architectures of adders mentioned above.

1. Half-adder.

The half-adder is a circuit that allows the calculation of the
sum s and the output carry c when adding two bits a and b.

s=a⊕b et c=ab

2. Full adder.

A full adder is a circuit that allows the calculation of the ith
sum si and the i+1th carry ci+1 when adding two bits and an
input carry of ith stage. They are ai, bi and ci includes half-
adders and full adders. The difference is that a half-adder does
not accept a carry while the adder accepts it.
The implementation can vary as long as the logical
expressions of different implementations are equivalent. In
[1], for example, the expressions of sum and carry can be
written as follows:

ci+1=ai.bi⨁ci.ai⨁bi
si=ai⨁bi⨁ci

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Performance of Adder Architectures on Encrypted Integers

 219

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F30830810621
DOI: 10.35940/ijeat.F3083.0810621
Journal Website: www.ijeat.org

Where ai and bi are the ith bit of two summations, ci is the
ith carry, and si is the ith sum of bits. The expression of carry
may be reduced as follows:

ci+1=ai.bi⨁ci.ai⨁bi= ai⨁ci.bi⨁cici

This optimized expression is found in [2]. It uses only for
each bit an AND gate, and therefore a full adder of one bit at
a multiplicative depth equivalent to1 (L = 1).

B. Adder Architectures.

The adder circuit has built five addition circuits which are the
Ripple Carry Adder (RCA), the Carry Look-ahead Adder
(CLA), Carry Save Adder (CSA) and Carry Select Adder and
Wallace shift adder.

1. The carry propagation adder.

The carry propagation adders (called Ripple Carry Adder)
allow to perform the addition of two binary numbers of n bits,
a=an-1,an-2,…………., a0 and b=bn-1, bn-2,…………,b0, and
an optional carry cin, ensuring the propagation of the carry.
The result is a number of n + 1 bits, consisting of a number
s=sn-1,sn-2,………..,s0 and a carry cout. The final result is
obtained by waiting for the propagation of carry through the
n cells of full adders. In this architecture, an adder constitutes
a stage and therefore, the carry propagates from the least
significant stage to the most significant stage.
The n bit carry propagation adder algorithm is constructed by
n-1 full adder. This adder adds one bit at a time from less
significant bits to more significant bits. The multiplicative
depth is L = n – 1, for each bit except the most significant bit
of the bit, a gate AND is useful and each subsequent bit
depends on the preceding bit.
Algorithm 4:
Input: two n bit-encrypted integers a, b
Output: the sum s of n bits
c0 = 0
Pour i = 0 à n – 2
Faire ci+1=ai⨁ci.bi⨁cici
si=ai⨁bi⨁ci
fin faire
End For
sn-1=an-1 ⊕ bn-1 ⨁ cn-1
return s

2. The carry anticipation adder.

 In a carry propagation architecture, the addition depends on
the propagation of the carry through stages of the parallel
adder. To reduce the propagation time and speed up the
addition processing, it is possible to anticipate the output
carry of each stage and to produce, from the inputs, the carry
by generation or propagation. This technique is called "carry
anticipation."
A carry generation occurs when a carry is generated by the
full adder. A carry can only take place when the two input
bits are 1 . The carry generated is denoted g and is equivalent
to g =ab.
A carry propagation is created when an input carry is passed
to the output carry. In a full adder, the propagation of an input
carry can take place when at least one of the bits is 1. The
propagated deduction denoted p and is equivalent to p = a+b.
The output carry of a full adder can be expressed as a
propagated carry p or as a generated carry g. The denoted
csor output carry is 1 if the generated output is 1 or if the
propagated output is 1 and the input carry (cen) is 1.

In other words, an output carry of 1 is generated by the full
adder if a=1 et b=1 or by propagation of the adder of the
input carry(a=1 ou b=1) et (cen =1). The following
expression summarizes all the cases: csor =g + p.cen.
Let's illustrate this concept by applying it to a four-bit parallel
adder. Stage i produces an output carry either by generating
it or by propagating the internal carry to the output carry. For
each stage i, it generates gi and pi propagates as follows:
• Column i produces an output carry if the inputs;ai and

bi are equal to a binary 1: gi =ai .bi ;
• Column i propagates the internal carry to the output

carry if one of the inputs is equal to1: pi = ai + bi ;
• The output carry of column i is given by the following

expression:
ci = ai.bi + ai + bi.ci-1 = gi+ pi.ci-1.

The carry anticipation adder algorithm can be described in the
steps below:
• Step 1: calculate gi and pi for all columns;
• Step 2: calculate the g and p for each block of k-bits;
• Step 3: the cen input carry propagates through the k-bit

block by the functions of generation and propagation of
carry.

Example for a block of 4 bits (p3:0 and g3:0):
g 3:0= g3 + p3.(g2 + p2.(g1 + p1.g0)
p3:0 = p3.p2.p1.p0
In general,

gi:j= gi + pi.(gi-1 +pi-1.(gi-2+pi-2.gj))
pi:j = pi.pi-1.pi-2.pj
ci = gi:j + pi:j.cj-1

The complexity of the algorithm of the adder with anticipated
carry respectively in time is O(n log n). The carry
anticipation adder of n is faster than the carry propagation
adder which has respectively a time and space complexity of
O(n).

3. Carry Save Adder.

Carry Save Adder (CSA) perform the addition function by
dealing with the intermediate carry as an output, and without
propagating it through the next cell. The carry of each stage
is thus "saved". The result is composed of two numbers of n
bits: S for the sum and C for the carry. The architecture of this
adder is a linear arrangement of full adders. An additional
calculation must be made to obtain the result.
The carry save adder is a set of k full adders paralleled
without any horizontal connection. The main feature of this
circuit is the addition of three numbers a, b and c to produce
two numbers c' and s such that c' + s = a+b+c.
Given a=40, b=25 and c=20, c' and s are calculated as
follows:

Table-II: carry saver adder of three numbers of 8 bits.
a = 40 =

1 0 1 0 0 0

b = 25 =

0 1 1 0 0 1
c = 20 =

0 1 0 1 0 0

S = 37 =

1 0 0 1 0 1
c' = 48 = 0 1 1 0 0 0

The ith bit of the sum Si and (i + 1)th bit of the report c'i+1 is
calculated using the expressions given below:
si=ai⨁bi⨁ci
ci+1=ai.bi⨁ci.ai⨁bi=
ai⨁ci.bi⨁cici

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

 220

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F30830810621
DOI: 10.35940/ijeat.F3083.0810621
Journal Website: www.ijeat.org

In other words, a Carry Save Adder circuit is a full adder cell
with three data inputs instead of two inputs plus the previous
carry.
And to determine the noted r result of adding three numbers,
the following steps are performed:
• For the stage of the adder with the least significant

value: r0= s0;
• For the adder stage whose value directly precedes the

least significant, the expressions are used and r1 =
s1+c’1c2’=s1c’1;

• For the other stages, the expressions of the fully adder
are used;

• For the stage of the adder with the most significant
value: rn-1 = cn-1 +c’n-1.

5. The selective carry adder.

A Carry Select Adder is a logical and arithmetic
combinatorial circuit that sums two numbers of n-bits and
outputs their sums of n-bits and a carry bit.
It offers a different design than that of a carry propagation
adder. It does not propagate the carry through the full adders.
Thus, the addition time is reduced.
It is a circuit composed of two adders with parallel
propagation of n-bits and a multiplexer for the selection of
the outgoing sum. To perform an addition between two
numbers of n-bits, two propagation adders receive at all
stages respectively an incoming carry at 1 and an incoming
carry at 0, once the effective carry is generated a simple active
selection of the appropriate outgoing sum.

6. Wallace tree adder.

Wallace tree adders are composed of a tree structure of carry
save adders, and a Ripple Carry Adder. This configuration is
a very fast multi-operand architecture. The following
expressions give the example of adding 4 operands denoted
a, b, c, and d:
First stage:

set10= a0⨁b0⨁c0
cet11=a0c0.b0c0c0

Second stage:
set20= set10⨁cet10⨁d0

cet21=set10d0.cet10d0d0

Third stage:
s0= set20⨁cet20⨁cet30

cet31=set20cet30.cet20cet30cet30

V. EXPERIMENTAL RESULT

This section reports the experimental results of our
implementation described above.

A. Setting up parameters.

To perform this experiment, the provided default security
settings were used without any changes. The library provides
an API that implements the majority of logical gates. the
gates below have built the architecture of different adders
listed above:
1. Homomorphic assignment function: void boots

CONSTANT (Lwe Sample* result, int value, const TFhe
Gate Bootstrapping Cloud Key Set* bk);

2. Function of copying one variable into another: void
boots COPY (Lwe Sample* result, const Lwe Sample*
ca, const TFhe Gate Bootstrapping Cloud Key Set* bk);

3. Logical function to reverse a boolean value: void boots
NOT (Lwe Sample* result, const Lwe Sample* ca, const
TFhe Gate Bootstrapping Cloud Key Set* bk);

4. Two-bit multiplication logic function: void boots AND
(Lwe Sample* result, const Lwe Sample* ca, const Lwe
Sample* cb, const TFhe Gate Bootstrapping Cloud Key
Set* bk);

5. Two-bit addition logic function: void boots XOR (Lwe
Sample* result, const Lwe Sample* ca, const Lwe
Sample* cb, const TFhe Gate Bootstrapping Cloud Key
Set* bk);

B. Performance and interpretation.

The implementations were tested on three environments that
has a RAM of 4 Gigabytes. In Table 1, the column
represents the type of processor used during the experiment
and the row when it the adder type. The intersection between
the row and the column represents the time it takes to perform
an addition operation on two numbers of 16-bit numbers,
respectively.

Table-III: Performance of adders in adding two numbers.

Duration(s) AMD E1-2100 APU with Radeon ™ HD Graphics

1000 Mhz
Intel® Core™ i5-3210 CPU @

2.50 Ghz
Intel ® Xeon ® CPU 5120 @ 1.86

Ghz(2)
RCA 131(2) 109(2) 55(2)
 CLA 109(2) 90(2) 46(2)
CSA 247(3) 205(3) 105(3)

CSSA 393(2) 325(2) 167(2)
In Table 1, the more CPU capacity increases, the shorter the execution time. The execution time of the addition of two numbers
on a carry propagation adder architecture is reduced by 16% from processor 1 to processor 2, from processor 2 to processor 3
and by 58% from processor 1 to processor 3, respectively.
The best architecture in terms of performing the addition of two numbers is the anticipated carry. It improves the execution
time of the addition on two numbers respectively by 16% on average on all processors of the carry propagation technique and
by 72% of the selective carry technique.

Table-IV: Performance of adders on the sum of four numbers.

Duration(s) AMD E1-2100 APU with Radeon ™ HD Graphics

1000 Mhz
Intel® Core™ i5-3210 CPU @

2.50 Ghz
Intel ® Xeon ® CPU 5120 @ 1.86

Ghz(2)
RCA 393(4) 333(4) 167(4)

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Performance of Adder Architectures on Encrypted Integers

 221

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F30830810621
DOI: 10.35940/ijeat.F3083.0810621
Journal Website: www.ijeat.org

CLA 326(4) 279(4) 139(4)
CSA 378(4) 322(4) 161(4)

WALLACE 377(4) 320(4) 161(4)

The pipeline anticipated carry architecture for the addition of
four numbers is better than the CSA and WALLACE
dedicated architectures. Indeed, a reduction of 15% is noted
between it and dedicated architectures regardless of the type
of processor. The multiprocessor environment gives
encouraging results compared to the single processor
environment with a 50% reduction in execution time.

VI. CONCLUSION

This paper applies the bootstrapping is implemented by Illaria
Chillota and al. which performs a two-bit homomorphic logic
operation in 13 milliseconds and is generalized to multiple
input and multiple output adder architectures. This extension
took advantage of the efficiency of these schemes to handle
additions over two integers and four integers of 16-bit. The
implementation of these adder architectures in the c language
has given promising results on three computing
environments. Indeed, regardless of the environment used
single or multiprocessor, the Carry Look-ahead Adder
architecture applies a reduction coefficient to the execution
time compared to other architectures. In addition, the
multiprocessor environment has been a useful in the extent of
addition on encrypted data because it reduces by half the
execution time of an addition on several encrypted numbers.
Although the execution time of this operation is still in the
order of minutes (about 3 minutes). It would be useful to
explore the parallelism per Central Processing Unit or per
Graphics Processing Unit for more performance.

REFERENCES
1. [YG15] Chen, Y., Gong, G.: Integer arithmetic over ciphertext and

homomorphic data aggregation. In: Proceedings of 2015 IEEE
Conference on Communications and Network Security, pp. 628–632.
IEEE, Piscataway, NJ (2015);

2. [KSS09] Kolesnikov, V., Sadeghi, A.R. Scheinder, T.: Improved
garbled circuit building blocks and application to auctions and
computing minima. In: Garay, J.A., Miyaji, A, Otsuka, A. (eds) CANS
2009, CNSL, vol. 5888, pp. 1–20. Springer Berlin (2009);

3. [GSW13] Craig Gentry, Amit Sahai, and Brent Waters.
"Homomorphic Encryption from Learning with Errors: Conceptually-
Simpler, Asymptotically-Faster, Attribute-Based". In: CRYPTO
2013, Part I. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. CNSL.
Springer, Heidelberg, Aug. 2013, pp. 75–92. doi: 10.1007/978-3-642-
40041-4_5;

4. [GEN09] Craig Gentry "A fully homomorphic encryption scheme".
crypto.stanford.edu/craig. PhD thesis. Stanford University, 2009;

5. [DM15] Léo Ducas and Daniele Micciancio. "FHEW: Bootstrapping
Homomorphic Encryption in Less Than a Second". In: EUROCRYPT
2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
CNSL. Springer, Heidelberg, Apr. 2015, pp. 617–640. DOI:
10.1007/978-3-662-46800-5_24;

6. [DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. "Fully Homomorphic Encryption over the Integers".
In: EUROCRYPT 2010. Ed. By Henri Gilbert. Vol. 6110. CNSL.
Springer, Heidelberg, May 2010, pp. 24–43.

7. [CGGI16a] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
TFHE: Fast Fully Homomorphic Encryption Library over the Torus.
https://github. com /tfhe/tfhe. 2016;

8. [CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and
Malika Izabachène. "Faster Fully Homomorphic Encryption:
Bootstrapping in Less Than 0.1 Seconds". In: ASIACRYPT 2016,
Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031.
CNSL. Springer, Heidelberg, Dec. 2016, pp. 3–33. doi: 10.1007/978-
3-662-53887-6_1;

9. [CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and
Malika Izabachène. "Faster Packed Homomorphic Operations and
Efficient Circuit Bootstrapping for TFHE". In: ASIACRYPT 2017,

Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
CNSL. Springer, Heidelberg, Dec. 2017, pp. 377– 408;

10. [BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
"(Leveled) fully homomorphic encryption without bootstrapping". In:
ITCS 2012. Ed. by Shafi Goldwasser. ACM, Jan. 2012, pp. 309–325;

11. [AP14] Jacob Alperin-Sheriff and Chris Peikert. "Faster
Bootstrapping with Polynomial Error". In: CRYPTO 2014, Part I. Ed.
by Juan A. Garay and Rosario Gennaro. Vol. 8616. CNSL. Springer,
Heidelberg, Aug. 2014, pp. 297–314. doi: 10.1007/978-3-662-44371-
2_17;

12. [AAR78] R. L. Rivest, L. Adleman, and M. L. Dertouzos. "On Data
Banks and Privacy Homomorphisms". In: Foundations of Secure
Computation, Academia Press (1978), pp. 169–179;

13. [Reg05] Oded Regev. "On lattices, learning with errors, random linear
codes, and cryptography". In: 37th ACM STOC. Ed. by Harold N.
Gabow and Ronald Fagin. ACM Press, May 2005, pp. 84–93;

14. [ZIMMERMANN] Binary Adder Architectures for Cell-Based VLSI
and their Synthesis. PhD Thesis Swiss FederaI lnstitute of Technology
Zurich 1998.

AUTHOR PROFILES

Paulin Boale B. is senior lecturer and PhD Student at
university of Kinshasa in Mathematics and Computers
sciences department. his field of research is cryptography,
in particular homomorphic cryptography. he works to
improve algorithms in everyday applications. he
contributed to the publication of articles respectively in
the journal IJCSI and IJSR such as « Study of Master-

Slave Database replication in distributed database », IJCSI , 2011.

Simon Ntumba B. is professor and head of Mathematic
and computers sciences department of the University of
Kinshasa. As publications, Author of many publications,
such as: "Enhanced Parallel Skyline on multi-core
architecture with lax Memory space Cost", IJCSI,
volume 13, Issue 5, September 2016, Data mart approach

for stock management model with a calendar under budgetary constraint,
IJCSI, volume 15, Issue 5, September 2018, Poster et the 2nd International
conference on Big Data Analysis and Data Mining, San Antonio, USA, 30
november- 01 December 2015 "; Data Mart Approach for Stock Management
Model with a calendar Under Budgetary constraint, IJCSI, volume 15, Issue
5, September 2016,

Eugene Mbuyi M, is professor at the Mathematic and
Computers Sciences department of the University of
Kinshasa. Director of informatics laboratory of the faculty
of sciences at the university of Kinshasa. He is author of
many articles in many scientific journals like in IJCSI .
Poster et the 2nd International conference on Big Data

Analysis and Data Mining, San Antonio, USA, 30 november- 01 December
2015.

http://www.ijeat.org/

