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Abstract: The fully Homomorphic encryption scheme is corner 
stone of privacy in an increasingly connected world. It allows to 
perform all kinds of computations on encrypted data. Although, 
time of computations is bottleneck of numerous applications of 
real life. In this paper, a brief description is made on the 
homomorphic encryption scheme TFHE of Illaria Chillota and the 
others. TFHE, implemented in c language in a library, improves 
the bootstrapping execution time of the FHEW scheme to 13 
milliseconds. TFHE performs homomorphic processing on a 
multitude of logic gates. This variety made it possible to construct, 
implement five adder architectures and compare them in terms of 
the execution time of the bootstrapping per logic gate. In a single-
processor computing environment, the Carry Look-ahead Adder 
completed a two-integer addition in 90 seconds, whereas the Ripple 
carry Adder did the same processing in 109 seconds. An 
improvement in processing time of 15% is observed. And, the same 
ratio of about 15% was obtained on four integers, respectively for 
279 seconds for the first adder and 320 seconds for Wallace's 
dedicated adder. While in the dual-processor environment, a 50% 
improvement was seen on all adders in the same processing on 
integers. The Carry Look-ahead Adder saw his handling improved 
by the sum of two numbers from 90 seconds to 46 seconds and four 
numbers from 279 seconds to 139 seconds, respectively. 

Keywords: fully Homomorphic encryption, bootstrapping, 
logic gate, binary adder. 

I.INTRODUCTION 

Homomorphic encryption performs processing on 
encrypted data without decrypting them. This concept 
remained an open problem for a long time until the 
breakthrough of Gentry in 2009 [4] who showed in his thesis 
the possibility of dealing any function on encrypted data.  
In homomorphic encryption, plaintexts are encrypted by 
masking a value called noise and decryption consists of 
removing said noise to retrieve the original plaintext. Said 
noise increases in value after each homomorphic evaluation 
of an elementary operation. The somewhat homomorphic 
encryption scheme evaluated a limited number of various 
operations up to a threshold where the decryption fails. This 
number may be asymptotically made unlimited by the 
bootstrapping technique. Said technique introduced by 
Gentry reduces the value of noise in the resulting encrypted 
message. 
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 It allows a homomorphic evaluationofarbitrary circuits and 
including its own decryption circuit. It is very expensive in 
terms of time and space. Since then, several improvements 
have been proposed either in terms of efficiency [6][14] or by 
new alternative concepts [10]. 
Despite this, small changes have been observed until [5] 
which presents a very fast bootstrapping that takes place 
around 0.69 seconds. Said technique paves the way for 
applications with more complex circuits by a homomorphic 
universal NAND on a bit with an evaluation key of about 1 
GBytes. This performance was improved by [7] and [8] by 
reducing the execution time to 0.1 seconds with an evaluation 
key of about 23 MBytes. It is implemented in a library called 
TFHE. 
Based on this library, this paper evaluates the performance 
of different most well-known circuits in homomorphic 
additions on two or more 16-bit integers.  

II.PRELIMINARY CONCEPTS 

A. Notations and symbols. 

The symbols and notations listed below will be used in the 
remainder of this document: 
• B the set of 0,1  ; 
• ai is the value of ith bit of integer a ; 
• T the real torus RZ: the fractional part of a real number; 
• M(N)X the set of polynomials under an abelian group M 

modulo XN+1: MXXN+1;  
• Mn The set of vectors of (dimension) of n elements of 

M; 
• et Mn,m the set of dimension matrices of mn elements 

of M. 
1. The R-module. 

Given R, +, × a commutative ring. A set M is a R-module if 
M, + is an abelian group, and if there is a Bi-distributive and 
homogeneous external operation. Namely, r,s ∈R et x, y ∈M, 
1R. x=x, r+s.x=r.x+r.s, r.x+y=r.x+r.y, et r ×s.x=r.(s.x). 

B. The homogeneous version of the Learning problem 
With Errors (LWE). 

Given n ≥1 an integer, the noise  ∈ R+ parameter, and a 
uniformly distributed secret s within a certain limit 
of  SZn.  A distribution on TnT  is denoted Ds,LWEa, b. It is 
obtained by drawing the pair (a, b), where the left member a 
is chosen uniformly and randomly in Tn and the right member 
is an evaluation of the expression b=as+e .  The error e is 
taken from a Gauss distribution of parameter .  
• Search problem: given LWE samples, find sS; 
• Decision problem: distinguish between two distributions 

of LWE samples and uniform and random samples from 
TnT. 
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C. The hard problem of Learning With Errors on a Torus 
(TLWE). 

Let be k≥1  an integer, N a power of 2, and  ≥0 a noise 
parameter. A TLWE s ∈ BNX secret key is a vector of k 
polynomials ∈ R=ZXXN+1 with binary coefficients. The 
sample space for messages is TNX. A fresh TLWE sample ∈ 
TNX message with the parameter  under the key s is an 
element a, bTNXkTNX, b ∈ TNX with a Gaussian distribution 
D, sα+ around +sμ . The sample is random if and only if its 
left member a called a mask is uniformly random in TNXk, 
trivial if a is fixed to 0, less noisy if =0, and homogenous if 
and only if =0.  
• Search problem: given several TLWE samples, find 

their keys ∈ BNXk;  
• Decision problem: distinction between a homogeneous 

and random TLWE sample from a uniform and random 
sample of TNXk. 

D. The phase of a sample. 

Let c= a, bTNXkTNX et sBNXk, the phase of a sample is 
defined by the expression sc=b-as. A phase is linear on 
TNXkand is kN+1-Lipschitzian for the norm if l∀ x, y ∈ 

TNXk+1, ‖sx-sy‖kN+1‖x-y‖ 

III.THE TFHE HOMOMORPHIC ENCRYPTION 
SCHEME 

GSW is a leveled homomorphic encryption scheme that was 
proposed by Gentry, Sahai and Waters in [3] and has been 
improved in [11]. Its security is based on the error learning 
problem (LWE). 

A. TGSW. 

The Torus GSW is a generalization of the scaled invariant 
version of GSW. It is also extending the decomposition 
function to polynomials. This threshold approximation of 
accuracy parameter induces an improvement in execution 
time and memory prerequisites for additional noise. 

1. Decomposition function. 

Let as h∈Md,k+1TNX in (1).  Dech,, vis a decomposition 
algorithm on h, with quality  and precision  if and only if for 
any TLWE sample v ⊂ TNXk+1, its efficient and public 
output gives a small vector uRdsuch that ‖u‖ et ‖uh-v‖. In 
addition, u.h-v must be 0 when v is uniformly distributed in 
TNXk+1.  

1Bg  1Bgl   0  0   ⋱  0  0   1Bg  1Bgl  1 

2. TGSW sample. 

Let be l et k ≥1  two integers, the noise parameter  ≥0 and h 
the decomposition function defined in (1). Let sBNXk be a 
key RingLWE. C ∈ Mk+1l, k+1TNX  is a fresh TGSW sample 
of  ∈ Rh with a noise parameter  if and only if C=Z+.hZ ∈ 
Mk+1l,k+1TNX where each row of is homogeneous TLWE 
sample of 0 with  a gauss parameter. 
Conversely, an element C ∈ Mk+1l, k+1TNX is a valid 
TGSW sample if and only if there exists a unique s and a 
unique key  ∈ Rh such that each row of C-uh is a valid TLWE 
sample 0 for a key s. The polynomial  is the message C, and 
denoted by msg(C). 

3. Phase and error. 

Let be A∈ Mk+1l, k+1TNX a TGSW sample for a secret key 
sBNXk by the parameter ≥0. sATNXk+1l, The noted phase 

A, is defined as a list of k+1l TLWE phases of each row of A. 
Similarly, the error of A , denoted err(A) , is defined as the 
list of k+1l  TLWE errors in each row of A. 

4. External product. 

The external product . is defined as follows: 
. :TGSW ×TLWE →TLWE  
           .→A.b= Dech,β,ϵb.A 

5. Theorem 1. 

Let  A a valid TGSW sample of the message A and  b a TLWE 
sample of the message B then A.b  is a TLWE sample of the 
message A.B and ‖errA.B‖≤ 

k+1lNβ‖errA‖+‖A‖11+kN+‖A‖1‖errB‖ where  et  are the 
parameters used in the decomposition function Dech, ,b If .. 
‖errA.B‖14 then A.B is valid TLWE sample. 

6. The internal product. 
Let be a product  : TGSW ×TGSW →TGSW  
7.                                      A, B→A×B= 
b1⋮A.bk+1l=h,𝛽,𝜖1.A⋮Dech,𝛽,𝜖k+1l.A 
With A, B two valid samples TGSW respectively of the 
messages A et B and bi corresponding to the ith row of B. 
AB  is a valid TGSW sample of the message A.B and 
‖errA.B‖≤ k+1lNβ‖errA‖+‖A‖11+kN+‖A‖1‖errB‖ If 
‖errA.B‖14 then is a valid TGSW sample A.B.  
7. Bootstrapping in the TFHE. 

Theorem 1 is used to speed up bootstrapping presented in [5]. 
The performed optimizations reduced the size of the 
bootstrapping key and removed excess noise in ciphertext. 
To perform bootstrapping, a sample LWE (a, b)∈Tn+1X is 
scaled back as a, b mod 2N using ciphertexts from its secret 
key sBn, the following steps must be followed: 
1. Choose a phase detector testv ∈ TN a fixed polynomial 

whose coefficients are setting up to values that 
bootstrapping must return if sa, b=i2N; 

2. Encode testv in a trivial TLWE sample; 
3. Then, rotate the coefficients using external 

multiplication with TGSW ciphertexts of hidden 
monomials X-siai.  testv rotates from a hidden phase of 
a, b;  

4. Finally, extract the constant terms as an LWE sample. 
a. Extracting LWE from TLWE. 

Extracting an LWE sample from a TLWE sample consists of 
rewriting the polynomials in their coefficients ignoring the 
last N-1 coefficients of b. it provides an LWE ciphertext of 
constant terms of the initial or original polynomial message.  
Definition 1. Let a'',b'' a sample TLWEs''with a key s''Rk , 
KeyExtracts'' is the vector of integers s'=coefss1''X, 
…………….,coefssk''X ZkN and Sampleextracta'',b'' the 
sample LWEa',b'∈ TkN+1 where a'=coefsa1''1X, 
………….,coefsak''1X  and b'=b0'' the constant term of b'' 
Then s'a',b' (resp msga',b') is equal to s''a'',b''the constant 
term of resp au terme constant de =msga'',b'' and 
‖Erra',b'‖‖Erra'',b''‖ and VarErra',b'VarErra'',b''.  
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b. Procedure for switching keys in an LWE sample. 

Given LWEs' a sample of a message T, the key switching 
procedure initially proposed in [9,6] outputs a sample of the 
same message  without increasing noise. This procedure 
tolerates the approximation of this scheme unlike its use in 
other schemes. 
Definition 2. Let s'0,1n', s0,1n  , ∈R  be a parameter and t∈N 
a precision parameter, the switching key KSs's,,t is a sequence 
of fresh samples of LWE KSi,jLWEs,si'2-j for i1,n' and j1,t. 
Algorithm 2: Key switching procedure. 
Input: A sample LWE a'=a1',……,an''LWEs', the switching 
key KSs's where s'0,1n's0,1n, t∈N and a precision parameter. 
Output: an LWE sample LWEs. 
1. Set up ai' a multiple close to 12l of ai', so ai'-ai'<2-

t+1 ; 
2. Decompose into binary each ai'=j=1tai'2-j where 

ai,j'0,1 ; 
3. Return a,b=0,b'-i=1n'j=1tai,j'KSi,j. 
c. The bootstrapping procedure. 

Given an LWEs=a,b sample, said procedure constructs a 
ciphertext  of under the same key s but with a fixed and low 
noise. As in [14], a TLWE sample is used as an intermediate 
cipher to perform a homomorphic evaluation of the phase, but 
here the external product of theorem 1 is used with a TGSW 
ciphertext of the key s. 
Definition 3. Let sBn, s''BNXkand  a noise parameter. The 
bootstrapping key BKss'', is defined as a sequence of n 
TGSW samples where BKiTGSWs'',si. 
Algorithm 3: Bootstrapping procedure. 
Input: a sample LWEa, bLWEs,, a bootstrapping key BKss'',, 
a switching key KSs's, where s'=Key Extracts'' and two 
messages 0,1T. 
Output: a sample LWEs0 si sa,b ∈ ]-14, 14[ sinon  1. 
1. Set up =1+02 and '=0- ; 
2. Set up b=⌊2Nb⌋ and ai=⌊2Nai⌋ for  i1,n ; 
3. Set up testv≔1+X+…………+XN-1X-2N4.'TNX 
4. Acc←Xb.o,testvTNXk+1 
5. pour i de 1 à n 
6. Acc←h+X-ai-1.BKi . Acc 
7. Set up ≔0, +Sample Extract Acc 
8. Return Key Switch KS. 

8. The TFHE library. 

TFHE is an open source library for fully homomorphic 
encryption distributed under the terms of the Apache 2.0 
license.  It is written in C/C++ by implementing a very fast 
bootstrapping based on the [7,8,9].  
It homomorphically evaluates 10 logical gates (AND, OR, 
NAND, NOR, ... etc) as well as negation NOT and The MUX 
gate. Each binary gate takes about 13 milliseconds which 
improve the [15] by a factor of 53, and the MUX gate takes 
about 26 CPU-milliseconds. 
Bootstrapping in this library does not impose a restriction on 
the number of gates or even on the circuit composition 
compared to the [5] which does not support similar inputs. 

1. Features of the TFHE library. 

It is easy to use on manually made circuits and circuits 
automatically generated by a hardware or software utility. 
From the user's point of view, this library can:  
1. Generate a set of secret keys and a set of keys for the 

cloud. All secret keys are private, and provide 
encryption and decryption capability respectively. All 

keys for the cloud can be exported to the cloud, and 
allow operations to be performed on encrypted data; 

2. With all the secret keys, the library is used to encrypt 
and decrypt the data. Encrypted data can be securely 
exported to the cloud to perform homomorphically 
secure calculations; 

3. With all the cloud keys, the library can evaluate a list of 
binary gates homomorphically at a rate of 76 gate per 
second per core without decrypting them. 
2. Fast Fourier Transform processors. 

To run the TFHE needs at least one of the processors listed in 
the table below: 

Table-I: FFT Processors 

Name  License  Language 
and 

portability 

Performance  Website  

Nayuki Mit C and AVX 1 www.nayuki.io 
spqlios Apache 

2 
AVX and 
FMA 

1 
 

FFTW3 Gpl C and 
FORTRAN 

2 - 3 www.fftw.org 

In terms of performance, the FFT processor performs better 
than the other two. It reduces their execution times by a factor 
of 2 or 3. 

IV. HOMOMORPHIC ADDITION OPERATIONS 
WITH TFHE 

The plaintext space in the TFHE is Z2. The addition operation 
is defined in said scheme using respectively the logical gates 
XOR and AND. These gates are the cornerstone of the 
implementation of increasingly complex circuits. Addition is 
performing by adder. This section presents an 
implementation of arithmetic addition by making the full 
binary adder with the AND and XOR gates.  
This arithmetic addition operation will be performed on 
integers with a size of 16 bits. 

A. Adder. 

The adder is a circuit that is made from two basic circuits 
which are the half-adder and the full adder. These are using 
for making four architectures of adders mentioned above. 

1. Half-adder. 

The half-adder is a circuit that allows the calculation of the 
sum s and the output carry c when adding two bits a and b. 

s=a⊕b et c=ab 

2. Full adder. 

A full adder is a circuit that allows the calculation of the ith 
sum si and the i+1th carry ci+1 when adding two bits and an 
input carry of ith stage. They are  ai, bi and ci includes half-
adders and full adders. The difference is that a half-adder does 
not accept a carry while the adder accepts it.  
The implementation can vary as long as the logical 
expressions of different implementations are equivalent. In 
[1], for example, the expressions of sum and carry can be 
written as follows: 

ci+1=ai.bi⨁ci.ai⨁bi 
si=ai⨁bi⨁ci 
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Where ai  and bi are the ith bit of two summations, ci is the 
ith carry, and si is the ith sum of bits. The expression of carry 
may be reduced as follows: 

ci+1=ai.bi⨁ci.ai⨁bi= ai⨁ci.bi⨁cici 

This optimized expression is found in [2]. It uses only for 
each bit an AND gate, and therefore a full adder of one bit at 
a multiplicative depth equivalent to1 (L = 1).  

B. Adder Architectures. 

The adder circuit has built five addition circuits which are the 
Ripple Carry Adder (RCA), the Carry Look-ahead Adder 
(CLA), Carry Save Adder (CSA) and Carry Select Adder and 
Wallace shift adder. 

1. The carry propagation adder. 

The carry propagation adders (called Ripple Carry Adder) 
allow to perform the addition of two binary numbers of n bits, 
a=an-1,an-2,…………., a0 and b=bn-1, bn-2,…………,b0, and 
an optional carry cin, ensuring the propagation of the carry. 
The result is a number of n + 1 bits, consisting of a number 
s=sn-1,sn-2,………..,s0 and a carry cout. The final result is 
obtained by waiting for the propagation of carry through the 
n cells of full adders. In this architecture, an adder constitutes 
a stage and therefore, the carry propagates from the least 
significant stage to the most significant stage. 
The n bit carry propagation adder algorithm is constructed by 
n-1 full adder. This adder adds one bit at a time from less 
significant bits to more significant bits. The multiplicative 
depth is L = n – 1, for each bit except the most significant bit 
of the bit, a gate AND is useful and each subsequent bit 
depends on the preceding bit. 
Algorithm 4: 
Input: two n bit-encrypted integers a, b 
Output: the sum s of n bits  
c0 = 0 
Pour i = 0 à n – 2 
Faire ci+1=ai⨁ci.bi⨁cici 
si=ai⨁bi⨁ci 
fin faire  
End For 
sn-1=an-1 ⊕ bn-1 ⨁ cn-1 
return s 

2. The carry anticipation adder. 

 In a carry propagation architecture, the addition depends on 
the propagation of the carry through stages of the parallel 
adder. To reduce the propagation time and speed up the 
addition processing, it is possible to anticipate the output 
carry of each stage and to produce, from the inputs, the carry 
by generation or propagation. This technique is called "carry 
anticipation." 
A carry generation occurs when a carry is generated by the 
full adder. A carry can only take place when the two input 
bits are 1 . The carry generated is denoted g and is equivalent 
to g =ab. 
A carry propagation is created when an input carry is passed 
to the output carry. In a full adder, the propagation of an input 
carry can take place when at least one of the bits is 1. The 
propagated deduction denoted p and is equivalent to p = a+b. 
The output carry of a full adder can be expressed as a 
propagated carry p or as a generated carry g. The denoted 
csor output carry is 1 if the generated output is 1 or if the 
propagated output is 1 and the input carry (cen) is 1. 

In other words, an output carry of 1 is generated by the full 
adder if a=1 et b=1  or by propagation of the adder of the 
input carry(a=1 ou b=1) et (cen =1). The following 
expression summarizes all the cases: csor =g + p.cen. 
Let's illustrate this concept by applying it to a four-bit parallel 
adder. Stage i produces an output carry either by generating 
it or by propagating the internal carry to the output carry. For 
each stage i, it generates gi and pi propagates as follows: 
• Column i produces an output carry if the inputs;ai and 

bi are equal to a binary 1: gi =ai .bi ; 
• Column i propagates the internal carry to the output 

carry if one of the inputs is equal to1: pi = ai + bi ; 
• The output carry of column i is given by the following 

expression: 
ci = ai.bi + ai + bi.ci-1 = gi+ pi.ci-1. 

The carry anticipation adder algorithm can be described in the 
steps below: 
• Step 1: calculate gi and pi for all columns; 
• Step 2: calculate the g and p for each block of k-bits; 
• Step 3: the cen input carry propagates through the k-bit 

block by the functions of generation and propagation of 
carry. 

Example for a block of 4 bits ( p3:0 and g3:0):  
g 3:0= g3 + p3.(g2 + p2.(g1 + p1.g0) 
p3:0 = p3.p2.p1.p0 
In general,  

gi:j= gi + pi.(gi-1 +pi-1.(gi-2+pi-2.gj)) 
pi:j = pi.pi-1.pi-2.pj 
ci = gi:j + pi:j.cj-1 

The complexity of the algorithm of the adder with anticipated 
carry respectively in time is O(n log n). The carry 
anticipation adder of n is faster than the carry propagation 
adder which has respectively a time and space complexity of 
O(n). 

3. Carry Save Adder.  

Carry Save Adder (CSA) perform the addition function by 
dealing with the intermediate carry as an output, and without 
propagating it through the next cell. The carry of each stage 
is thus "saved". The result is composed of two numbers of n 
bits: S for the sum and C for the carry. The architecture of this 
adder is a linear arrangement of full adders. An additional 
calculation must be made to obtain the result. 
The carry save adder is a set of k full adders paralleled 
without any horizontal connection. The main feature of this 
circuit is the addition of three numbers a, b and c to produce 
two numbers c'  and s such that c' + s = a+b+c. 
Given a=40, b=25 and c=20, c'  and s are calculated as 
follows: 

Table-II: carry saver adder of three numbers of 8 bits. 
a = 40 = 

 
1 0 1 0 0 0 

b = 25 = 
 

0 1 1 0 0 1 
c = 20 = 

 
0 1 0 1 0 0 

S = 37 = 
 

1 0 0 1 0 1 
c' = 48 = 0 1 1 0 0 0 

 

The ith  bit of the sum Si and (i + 1)th bit of the report c'i+1 is 
calculated using the expressions given below: 
si=ai⨁bi⨁ci 
ci+1=ai.bi⨁ci.ai⨁bi= 
ai⨁ci.bi⨁cici 
 
 

http://www.ijeat.org/


International Journal of Engineering and Advanced Technology (IJEAT) 
ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021 

                                  220 

 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijeat.F30830810621 
DOI: 10.35940/ijeat.F3083.0810621 
Journal Website: www.ijeat.org   

In other words, a Carry Save Adder circuit is a full adder cell 
with three data inputs instead of two inputs plus the previous 
carry.  
And to determine the noted r result of adding three numbers, 
the following steps are performed: 
• For the stage of the adder with the least significant 

value: r0= s0; 
• For the adder stage whose value directly precedes the 

least significant, the expressions are used and r1 = 
s1+c’1c2’=s1c’1; 

• For the other stages, the expressions of the fully adder 
are used; 

• For the stage of the adder with the most significant 
value: rn-1 = cn-1 +c’n-1. 

5.  The selective carry adder. 

A Carry Select Adder is a logical and arithmetic 
combinatorial circuit that sums two numbers of n-bits and 
outputs their sums of n-bits and a carry bit. 
It offers a different design than that of a carry propagation 
adder. It does not propagate the carry through the full adders. 
Thus, the addition time is reduced. 
It is a circuit composed of two adders with parallel 
propagation of n-bits and a multiplexer for the selection of 
the outgoing sum. To perform an addition between two 
numbers of n-bits, two propagation adders receive at all 
stages respectively an incoming carry at 1 and an incoming 
carry at 0, once the effective carry is generated a simple active 
selection of the appropriate outgoing sum. 

6. Wallace tree adder. 

Wallace tree adders are composed of a tree structure of carry 
save adders, and a Ripple Carry Adder. This configuration is 
a very fast multi-operand architecture. The following 
expressions give the example of adding 4 operands denoted 
a, b, c, and d: 
First stage: 

set10= a0⨁b0⨁c0 
cet11=a0c0.b0c0c0 

Second stage: 
set20= set10⨁cet10⨁d0 

cet21=set10d0.cet10d0d0 

Third stage: 
s0= set20⨁cet20⨁cet30 

cet31=set20cet30.cet20cet30cet30 

V. EXPERIMENTAL RESULT 

This section reports the experimental results of our 
implementation described above. 

A. Setting up parameters. 

To perform this experiment, the provided default security 
settings were used without any changes. The library provides 
an API that implements the majority of logical gates.  the 
gates below have built the architecture of different adders 
listed above: 
1. Homomorphic assignment function: void boots 

CONSTANT (Lwe Sample* result, int value, const TFhe 
Gate Bootstrapping Cloud Key Set* bk); 

2. Function of copying one variable into another: void 
boots COPY (Lwe Sample* result, const Lwe Sample* 
ca, const TFhe Gate Bootstrapping Cloud Key Set* bk); 

3. Logical function to reverse a boolean value: void boots 
NOT (Lwe Sample* result, const Lwe Sample* ca, const 
TFhe Gate Bootstrapping Cloud Key Set* bk); 

4. Two-bit multiplication logic function: void boots AND 
(Lwe Sample* result, const Lwe Sample* ca, const Lwe 
Sample* cb, const TFhe Gate Bootstrapping Cloud Key 
Set* bk); 

5. Two-bit addition logic function: void boots XOR (Lwe 
Sample* result, const Lwe Sample* ca, const Lwe 
Sample* cb, const TFhe Gate Bootstrapping Cloud Key 
Set* bk); 

B. Performance and interpretation. 

The implementations were tested on three environments that 
has a RAM of 4 Gigabytes.  In Table 1, the column 
represents the type of processor used during the experiment 
and the row when it the adder type.   The intersection between 
the row and the column represents the time it takes to perform 
an addition operation on two numbers of 16-bit numbers, 
respectively.  

 

Table-III: Performance of adders in adding two numbers. 

Duration(s) AMD E1-2100 APU with Radeon ™ HD Graphics 

1000 Mhz 
Intel® Core™ i5-3210 CPU @ 

2.50 Ghz 
Intel ® Xeon ® CPU 5120 @ 1.86 

Ghz(2) 
RCA 131(2) 109(2) 55(2) 
  CLA 109(2) 90(2) 46(2) 
CSA 247(3) 205(3) 105(3) 

CSSA 393(2) 325(2) 167(2) 
In Table 1, the more CPU capacity increases, the shorter the execution time. The execution time of the addition of two numbers 
on a carry propagation adder architecture is reduced by 16% from processor 1 to processor 2, from processor 2 to processor 3 
and by 58% from processor 1 to processor 3, respectively. 
The best architecture in terms of performing the addition of two numbers is the anticipated carry. It improves the execution 
time of the addition on two numbers respectively by 16% on average on all processors of the carry propagation technique and 
by 72% of the selective carry technique. 

Table-IV: Performance of adders on the sum of four numbers. 

Duration(s) AMD E1-2100 APU with Radeon ™ HD Graphics 

1000 Mhz 
Intel® Core™ i5-3210 CPU @ 

2.50 Ghz 
Intel ® Xeon ® CPU 5120 @ 1.86 

Ghz(2) 
RCA 393(4) 333(4) 167(4) 
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CLA 326(4) 279(4) 139(4) 
CSA 378(4) 322(4) 161(4) 

WALLACE 377(4) 320(4) 161(4) 

The pipeline anticipated carry architecture for the addition of 
four numbers is better than the CSA and WALLACE 
dedicated architectures. Indeed, a reduction of 15% is noted 
between it and dedicated architectures regardless of the type 
of processor. The multiprocessor environment gives 
encouraging results compared to the single processor 
environment with a 50% reduction in execution time. 

VI. CONCLUSION 

This paper applies the bootstrapping is implemented by Illaria 
Chillota and al. which performs a two-bit homomorphic logic 
operation in 13 milliseconds and is generalized to multiple 
input and multiple output adder architectures. This extension 
took advantage of the efficiency of these schemes to handle 
additions over two integers and four integers of 16-bit. The 
implementation of these adder architectures in the c language 
has given promising results on three computing 
environments.  Indeed, regardless of the environment used 
single or multiprocessor, the Carry Look-ahead Adder 
architecture applies a reduction coefficient to the execution 
time compared to other architectures. In addition, the 
multiprocessor environment has been a useful in the extent of 
addition on encrypted data because it reduces by half the 
execution time of an addition on several encrypted numbers. 
Although the execution time of this operation is still in the 
order of minutes (about 3 minutes). It would be useful to 
explore the parallelism per Central Processing Unit or per 
Graphics Processing Unit for more performance. 
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