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 Abstract: Deep neural networks have been continuously 
evolving towards larger and more complex models to solve 
challenging problems in the field of AI. The primary bottleneck 
that restricts new network architectures is memory consumption. 
Running or training DNNs heavily relies on the hardware (CPUs, 
GPUs, or FPGA) which are either inadequate in terms of memory 
or hard-to-extend. This would further make it difficult to scale. In 
this paper, we review some of the latest memory footprint 
reduction techniques which would enable faster low model 
complexity. Additionally, it improves accuracy by increasing the 
batch size and developing wider and deeper neural networks with 
the same set of hardware resources. The paper emphasizes on 
memory optimization methods specific to CNN and RNN training. 

Keywords: Memory footprint reduction, Backpropagation 
through time (BPTT), CNN, RNN.  

I. INTRODUCTION 

Data being “the new oil of digital economy” is only 

accelerating in terms of volume, velocity, and variety. This 
valuable asset is exploited by modern technologies like 
machine learning, deep learning, data mining and big data 
analytics. Despite the fact that these techniques have become 
standard tools for handling any complicated problem in the 
domains of video analytics, image processing, speech 
recognition, and natural language processing, they still suffer 
from memory bottlenecks. Since many deep network models 
are resource-intensive, researchers struggle with the limited 
memory bandwidth of the devices used.   

The most resource or compute-intensive phase of deep 
learning is the training phase. GPUs are commonly used to 
train these heavy machine learning or deep learning 
workloads for it offers several benefits over its 
non-specialized hardware counterparts. They are optimized 
for parallelizing training tasks, simultaneous compute 
operations (10-15x faster than CPUs), and sparing CPU for 
other jobs. However, the main motivation behind employing 
GPUs is due to its high memory bandwidth which also 
proves to be insufficient for larger networks. Table 1 shows 
memory and performance capacities of GPUs commonly 
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used by scientists, researchers and enthusiasts for deep 
learning tasks. 
 

Table- I: Memory and Performance capacities of 
commonly used GPUs 

GPU 
Model 

Memory 
(GB) 

Cache 
(MB) 

Performance 
(TFLOPS) 

NVIDIA 
GeForce 
RTX 2080 
Ti 

11 6 120 

NVIDIA 
Titan V 
(Standard 
Edition) 

12 4.5 110 

NVIDIA 
Titan RTX 

24 6 130 

NVIDIA 
GeForce 
RTX 2080 
Ti 

11 6 120 

 
Table 2 shows GPU memory consumption (in GB) of 

state-of-the-art models when trained using some of the 
standard DL frameworks like Tensorflow, Pytorch and 
MXNet for an input size of 224x224x3 and batch size of 128. 

 
Table- II: GPU memory consumption (in GB) of 

state-of-the-art models [1]. 
GPU Model Memory 

(GB) 
Cache 
(MB) 

Performance 
(TFLOPS) 

NVIDIA 
GeForce 
RTX 2080 Ti 

11 6 120 

NVIDIA 
Titan V 
(Standard 
Edition) 

12 4.5 110 

NVIDIA 
Titan RTX 

24 6 130 

NVIDIA 
GeForce 
RTX 2080 Ti 

11 6 120 

 
As depicted in Table 2, some of the networks like LSTM, 

ResNet and other simpler models can be trained on any of the 
GPUs mentioned above but networks like Inception v3 and 
VGG-16 hit memory bottlenecks for just a batch-size of 128. 
With increase in batch size and also the trend moving 
towards deeper and wider networks to improve training 
accuracy, the existing hardware proves to be restrictive.  
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Over the previous five years, tensor processing in 
top-of-the-line GPUs has increased by 32 times, yet total 
accessible memory has only increased by 2.5 times. Hence, 
optimization techniques to reduce memory footprint in 
DNNs is indispensable. Dealing with memory bottleneck 
issues requires either changing the network architecture or 
scaling the training to multiple nodes. In this paper, a 
comprehensive review on the latest software based 
approaches developed for memory reduction in neural 
networks is carried out.  

II. RELATED WORK 

Memory consumption in DNNs can be categorized as 
memory footprint for DNN training and DNN inference. 
Modern neural network algorithms are difficult to deploy on 
limited hardware resources (such as mobile devices, IoT 
devices and other embedded systems ) owing to their large 
memory requirements. Major sources of storage overhead in 
DNN inference are weights. Several prior compression 
techniques have resulted in a significant reduction in storage 
requirements and also to efficiently operate on the 
compressed networks with no accuracy loss [2,3]. 

As per [4], memory usage while training is classified as 
(i) model memory : to store weights and biases of each layer, 
(ii) optimizer memory : to store gradients and momentum 
buffers if any, and (iii) activation memory to store the 
activations of each layer in both forward and backward pass. 
Activation memory contributes to the majority of the 
memory usage while optimizer memory is 2-3x the model 
memory. Since memory for the training constitutes 
about  twice as much as inference, approaches to optimize 
memory requirements for training are crucial to further 
improve model performance. 

Prior works [4-8] effectively reduce memory footprint 
for training and minimizing computational overhead  and it 
ensures efficient resource utilization [9]. [10] shows how 
heuristic algorithms for memory allocation reduces memory 
consumption and speeds up the training process. Recent 
approaches are progressing with the aim of accelerating 
DNNs to be more scalable and in a highly parallel 
architecture [11]. Although these methods prove to be 
efficient, they are generic. LSTM RNNs have tanh or 
sigmoid as their activation function and with their high 
runtime overhead for small layers cannot make use of 
optimization methods that are applicable to CNN training , 
thus necessitating neural network (CNNs, RNNs or GANs) 
specific optimization techniques.  

In the following section, some of the latest memory 
footprint reduction techniques for CNN and RNN training 
are explored. 

III. MEMORY FOOTPRINT REDUCTION 

TECHNIQUES 

Efficient management of memory and reduction in 
memory requirements are the two main techniques in 
reducing the memory footprints. In this section, such 
state-of-the-art techniques employed in CNNs and RNNs are 
studied and their performance enhancements are noted.  

A. Convolutional Neural Networks (CNNs)  

CNN and its variants are known to be the most efficient 
approaches in deep learning models. Primarily, CNNs are 
used for computer vision and Image processing tasks and 

have achieved many state-of-the-art results. CNN often 
consists of multiple types of layers, which are basically 
categorized as convolutional (CONV) layers, subsampling 
or so-called pooling (POOL) layers, fully-connected (FC) 
layers, and activation (ACTV) layers.  

1. Memory-Scheduling Strategy through 
virtualization 

Shilje Li et al.[12] have proposed a novel memory 
scheduling strategy named mixed memory CNN (mmCNN). 
In this model, memory is virtualized as CNNs perform 
computations. In general, the programmers spend most of the 
time optimizing the memory while coding. But this model 
takes care of optimization and helps the developers to 
concentrate on network architecture. The essence of this 
model is in the concept of virtualization of memory. 
Virtualization is done by transferring the memory between 
host and device which might appear like a costly operation. 
But the model is sophisticated enough to decide the set of 
operations so that it does not affect performance.  

 
The mmCNN framework is constructed using three 

main components.  
(i) Preprocessing module - This module is used to fetch 

hardware and network configuration of the platform. 
(ii) Control module - This module executes the 

proposed algorithm and hence is considered as the core 
module of the model. 

(iii) Feed-forward module - This module is responsible 
for handling the data obtained from the control module. 

In this algorithm, the initial starting point of all 
convolutional segments are found out. In the next step, the 
potential peak memory usage is calculated and it is denoted 
by Memmax. After calculating the Memmax, the available 
memory and maximum memory usage are updated. The 
Convolutional Part Number and Self Part Number indicates 
the convolutional layers to be prefetched and the number of 
parts the current layer’s feature map should be divided into 

respectively. These numbers are calculated in the next step. 
When the current convolutional finishes the computation, the 
memory reserved by the layer is calculated and released. It is 
then added to available memory for the next iteration.  

The experimental analysis shows that this method saves 
98% memory as compared to traditional CNN. It also 
indicates that this methods saves more than 90% of memory 
compared to state-of-the-art related to Virtual DNNs ( 
vDNNs) [13]  

2. Designing Hardware Accelerators for CNNs 

The approach used in [10] profiles on-chip memory size 
and off-chip memory bandwidth according to requirements 
of CNNs. This profiling helps in understanding the effect of 
memory system on accelerator design.  

The memory requirements and memory bandwidth for 
various networks, and for various layers within a network, 
can differ by several orders of magnitude. Because of this 
fact, designing of fast and efficient hardware for all CNN 
applications becomes difficult. The system [10] thus 
proposes four heuristic design points that tries to optimize 
different data flow scenarios.   
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The CNN accelerator uses both on-chip memory and 
off-chip memory bandwidth. The on-chip memory is helpful 
in reducing the expensive off-chip memory accesses. The 
key constraint that has been dealt with is the determination of 
the amount of on-chip memory sufficient to guarantee that 
each activation or weight accessed off-chip utmost once per 
layer. Four memory schemes provided in the paper are as 
follows: 

(i) Everything is present on-chip  
(ii) Working set of activations and all filters with 

activations stored off-chip  
(iii) Working set of filters and all activations with 

activations stored off-chip  
(iv) Working set of both filters and activations with both 

stores off-chip 
Here the working set refers to the number of filters/ 

activations that are computed in parallel and thus need to be 
stored on-chip.  

There is a large variation across networks in terms of 
memory requirements, memory size, bandwidth, and 
between activation memory and weight memory. To 
minimize off-chip traffic for weight-intensive and 
activation-intensive networks, schemes 2 and 3 respectively 
offer a good heuristic design.  Minimizing on-chip memory 
is desirable in some use cases and scheme 4 represents such a 
design point. 

3. CPU offloading to reduce the memory cost of 
training CNNs 

Training large CNNs demand huge amount of resources 
such as specialized Graphical Processing Units (GPU) and 
highly optimized implementations to get the most efficient 
performance out of hardware. During CNN training 
procedure, size of both inputs and model architecture are 
limited because of GPU memory which is a major 
bottleneck. The GPU memory contains the input activations 
of every layer and they are used in the backward pass to 
compute the layer weight gradients. As a result, during 
forward and backward computations across higher layers, 
the activations of lower layers are kept idle in GPU memory.  

System   proposed in [14] alleviates this memory 
bottleneck by leveraging an under-utilized resource of 
modern systems: the device to host bandwidth. Their method 
is termed CPU offloading, works by transferring hidden 
activations to the CPU upon computation, in order to free 
GPU memory for upstream layer computations during the 
forward pass. These activations are then transferred back to 
the GPU as needed by the gradient computations of the 
backward pass. However, this method faces a key challenge 
of efficiently overlapping data transfers and computations in 
order to minimize wall time overheads induced by the 
additional data transfers. The results show that there was a 
35% decrease in memory requirements which added a wall 
time overhead of 21%.  

While optimizations on computation have been 
extensively studied, off-chip memory accesses continue to 
restrict the energy efficiency of such accelerators because 
their energy cost is orders of magnitude higher than other 
operations. Minimizing off-chip memory access volume is 
thus the secret to improving energy efficiency even further. 
Xiaowei Li et al. [15] addresses the technique to overcome 
the problem in the prior state-of-the-art which used rigid data 
reuse patterns and is suboptimal for some, or even all, of the 
individual convolutional layers. They proposed an adaptive 

layer partitioning and scheduling scheme, called 
SmartShuttle, to minimize off-chip memory accesses for 
CNN accelerators. Smartshuttle dynamically matches 
different convolutional layers and fully connected layers by 
switching between different data reuse schemes and the 
corresponding tiling factor settings. Furthermore, 
SmartShuttle explores the effect of data reusability and 
sparsity on memory access volume in depth. SmartShuttle 
processes the convolutional layers at 434.8 multiply and 
accumulations (MACs)/DRAM access for VGG16 (batch 
size = 3) and 526.3 MACs/DRAM access for AlexNet (batch 
size = 4), outperforming the state-of-the-art method (Eyeriss) 
by 52.2 percent and 52.6 percent, respectively, according to 
the experimental results [15]. 

4. Heterogeneous Memory Management System for 
Optimization 

Split Convolutional Neural Network (Split-CNN) [16] is 
a new type of CNN that is generated from the automatic 
transformation of current CNN models. Split-CNN differs 
from standard CNN in that it divides the input images into 
small patches and operates on these patches independently 
before proceeding to the next stage of the CNN model. They 
also present a novel heterogeneous memory management 
system (HMMS) that takes advantage of Split CNN's 
memory-friendly qualities. HMMS’s five-step method of 
planning memory usage for computation graphs is as 
follows: 

(i) The training model is split during the first stage. 
HMMS automatically converts a conventional convolutional 
neural network (CNN) to a Split-CNN with a splitting depth 
d determined by the percentage of convolutional layers to 
break apart and a 2-tuple of integers (h,w) specifying the 
number of splits in each spatial dimension (height and 
width).  

(ii) Computations are serialized by topologically sorting 
compute nodes in the dataflow graph.  

(iii) Later, each tensor in the computation graph is 
assigned with a tensor storage object.  

(iv) Optimal offloading and prefetching scheme is 
derived to offload the most amount of memory without 
hurting the performance.  

(v) In the final stage, three memory pools are created to 
accommodate the memory storage space requirements of the 
computation graph and its corresponding offloading or 
prefetching  plan.  

B. Recurrent Neural Networks  (RNNs) 

Recurrent neural networks are an important class of 
neural networks known for processing sequential data with 
its application ranging from sequence learning, neural 
machine translation, speech-to-text conversion, 
image-to-text translation to captioning videos, language 
translations, and many more. A typical RNN consists of 
stacks of input, hidden, and output layers. It works on the 
principle of saving the output of a particular layer and 
feeding it back to the input in order to predict the output of 
the layer.  
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With the introduction of LSTM, the vanishing gradient 
problem caused by RNNs was resolved to a certain extent but 
the need for an efficient network to process the ever-growing 
data in real-time was evident. 

 LSTMs, RNNs and their variants consume huge 
amounts of resources for training as well as deploying 
making it almost impossible to scale. 

1. Compiler-based GPU Memory Footprint 
Reduction  

Compiler-based automated optimization technique 
to  reduce memory footprint in LSTM RNN based deep 
learning tasks [7] provides a comprehensive memory and 
runtime profile analysis of state-of-the-art NMT models. 
The model addresses two key challenges which were 
overlooked by prior works. These challenges are accurately 
estimating footprint reduction by adopting a selective 
recomputation strategy  and non-conservatively estimating 
runtime overhead by deducing the data dependencies of the 
gradient operators [7]. Echo integrated with NNVM - a 
computation graph compiler (MXNet framework) is 
adjusted to collect relevant information (shape and 
datatype) prior to Echo pass. This allows for accurate 
estimation of footprint reduction. 

The workflow begins with gradient node insertion and 
inferring shape and datatype of each tensor edge. In 
EdgeUseRef pass, the compiler traverses through the whole 
computation graph to compute the number of tensor 
references made by different operators. This is essential to 
account for the global effect of storage allocations in 
contrast to local which is a mere difference between 
memory released and allocated. Echo identifies targets for 
recomputation (backward pass), partitions the computation 
graph into disjoint subgraphs with compute-heavy layers as 
boundaries and eliminates those recomputation which do 
not contribute to the footprint reduction (forward pass). It 
also considers compute-heavy operators for recomputation 
if the runtime overhead is minimal. The backward-forward 
pass loop is repeated until all the inputs of the whole graph 
are covered.   DeadNodeElimination as the name suggests, 
eliminates those nodes whose outputs are not referenced by 
any other node. The result of this method is that only those 
feature maps are saved in the memory whose 
recomputations prove to be costly. Scope of Echo is not just 
limited to RNNs but proves to be efficient across diverse 
machine learning models such as CNNs. Other factors that 
stand out for Echo is minimal/no programming/manual 
effort as it does not alter the training algorithms. 

Echo when evaluated against four state-of-the-art 
models namely NMT, DeepSpeech2, Transformer and 
ResNet shows an incredible footprint reduction ratio of 
3.13x, 1.59x, 1.56x, and 2.13x respectively. This reduction 
can be used to boost the training performance by either 
increasing the batch size or deepening the neural network.  

2. Memory-Efficient Recurrent Neural Networks for 
language processing 

A novel method to effectively reduce memory footprint 
and computational complexity in RNN models specific to 
language processing tasks is presented in [17]. Language 
modelling often involves a large vocabulary which limits 
the GPU memory capacity and as the size increases, 
compute-intensive operations like multiplication of 
output-embedding matrix with hidden state of a sequence 
can be quite laborious making it difficult to train and 

deploy. This issue is addressed by using 2-Component 
shared embedding where each word is characterized by a 
row and column vector. The model LightRNN [17] consists 
of 3 components : Bootstrap framework for word allocation, 
training the RNN model with 2C shared embedding, and 
MCMF algorithm for minimum weight perfect matching to 
refine the word allocation. 

The model is evaluated on ACLW and BillionW datasets 
against state-of-the-art HSM and C-HSM algorithms with 
perplexity as a performance metric. With similar perplexity, 
LightRNN reduces the  model size by a factor of 40-100 and 
improves the training speed by a factor of 2. The reduction 
in size allows for training the model with larger dimensions 
of embedding vectors which leads to better training 
accuracy.  

3.  Variants of Backpropagation through time 
algorithm 

The following method [18] highlights multiple 
enhancements on the well-known backpropagation through 
time (BPTT) algorithm with a preset user-defined memory 
budget, allowing RNN training to fit on nearly any existing 
hardware resources. Three optimizations proposed are: (i) 
backpropagation through time with selective hidden state 
memorization (BPTT-HSM), (ii) backpropagation through 
time with selective internal state memorization 
(BPTT-ISM) and (iii) backpropagation through time with 
mixed state memorization (BPTT-MSM). These three 
strategies leverage memory reuse and dynamic 
programming to identify the optimal memory consumption 
policy with maximum computational performance.  

In BPPT-HSM, initially, the hidden state (result of 
forward propagation) of any arbitrarily chosen RNN core 
(partitioning the sequence into two halves) is saved into one 
memory slot. Similar forward operation is then performed 
on the second half with the remaining memory slots. After 
computing the gradients (backpropagation) for the second 
half, the memory slots can be released and reused while 
backpropagating in the first half. It makes use of the 
divide-and-conquer approach to  partition time steps and 
recursively solves each part. However, memory reuse and 
savings comes at the cost of increased recomputations. The 
cost of choosing the first hidden state to be saved is solved 
using dynamic programming and optimal state is chosen. 
BPPT-ISM follows the same approach as BPPT-HSM, but 
saves internal state instead of the hidden state. Thus, 
reducing one recomputation (forward operation during 
backpropagation) in every divide-and-conquer step. But 
BPPT-ISM requires more memory since the internal state 
takes up more space than the hidden state. BPPT-MSM is a 
combination of  BPPT-HSM and BPPT-ISM where either 
internal or hidden state is saved depending on the optimal 
position and computational cost (equations solved using 
dynamic programming). For long sequences, BPPT-HSM 
performs better than BPPT-ISM, while BPPT-MSM 
significantly outperforms the other two approaches. When 
evaluated against standard BPTT, this method saves upto 
95% of memory for a sequence length of 1000 but with 33% 
more training time per iteration.  
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IV. CONCLUSION 

Various methods to reduce memory requirement to 
effectively manage memory in CNNs and RNNs are 
explored in this paper. It outlines the strategies that 
outperforms earlier state-of-the-art models. The popular 
approaches to memory optimization includes running 
operations such as activation functions ‘in-place,' allowing 
the input data to be overwritten directly by the output.  

It was found that memory can be reused by analysing 
data dependencies between network operations and 
allocating the same memory to operations that do not use it 
simultaneously. Memory in neural networks has been 
shown to be reduced by a factor of 2 to 3 when these 
methods are combined as seen in Echo and mmCNN. It is 
observed that these models improve memory requirements 
substantially as compared to others. Buffering and paging, 
model compression, memory sharing, and memory 
swapping are some of the techniques that can provide 
performance benefits when GPUs are used. Memory 
reduction frequently comes at the expense of 
recomputation, more training time, accuracy loss, or all of 
these. To identify the suitable technique, the trade-off 
between these factors must be carefully examined.  
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