
International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

44

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29910810621
DOI:10.35940/ijeat.F2991.0810621
Journal Website: www.ijeat.org

 Abstract: Deep neural networks have been continuously
evolving towards larger and more complex models to solve
challenging problems in the field of AI. The primary bottleneck
that restricts new network architectures is memory consumption.
Running or training DNNs heavily relies on the hardware (CPUs,
GPUs, or FPGA) which are either inadequate in terms of memory
or hard-to-extend. This would further make it difficult to scale. In
this paper, we review some of the latest memory footprint
reduction techniques which would enable faster low model
complexity. Additionally, it improves accuracy by increasing the
batch size and developing wider and deeper neural networks with
the same set of hardware resources. The paper emphasizes on
memory optimization methods specific to CNN and RNN training.

Keywords: Memory footprint reduction, Backpropagation
through time (BPTT), CNN, RNN.

I. INTRODUCTION

Data being “the new oil of digital economy” is only

accelerating in terms of volume, velocity, and variety. This
valuable asset is exploited by modern technologies like
machine learning, deep learning, data mining and big data
analytics. Despite the fact that these techniques have become
standard tools for handling any complicated problem in the
domains of video analytics, image processing, speech
recognition, and natural language processing, they still suffer
from memory bottlenecks. Since many deep network models
are resource-intensive, researchers struggle with the limited
memory bandwidth of the devices used.

The most resource or compute-intensive phase of deep
learning is the training phase. GPUs are commonly used to
train these heavy machine learning or deep learning
workloads for it offers several benefits over its
non-specialized hardware counterparts. They are optimized
for parallelizing training tasks, simultaneous compute
operations (10-15x faster than CPUs), and sparing CPU for
other jobs. However, the main motivation behind employing
GPUs is due to its high memory bandwidth which also
proves to be insufficient for larger networks. Table 1 shows
memory and performance capacities of GPUs commonly

Manuscript received on July 19, 2021.
Revised Manuscript received on July 25, 2021.
Manuscript published on August 30, 2021.
* Correspondence Author

Pratheeksha P, Department of Computer Science, R. V College of
Engineering, Bengaluru (Karnataka), India. Email:
pratheekshap.cs17@rvce.edu.in

Pranav B M*, Department of Computer Science, R. V College of
Engineering, Bengaluru (Karnataka), India. Email:
pranavbm.cs17@rvce.edu.in

Dr. Azra Nasreen, Assistant Professor, Department of Computer
Science, R. V College of Engineering, Bengaluru (Karnataka), India. Email:
azranasreen@rvce.edu.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

used by scientists, researchers and enthusiasts for deep
learning tasks.

Table- I: Memory and Performance capacities of
commonly used GPUs

GPU
Model

Memory
(GB)

Cache
(MB)

Performance
(TFLOPS)

NVIDIA
GeForce
RTX 2080
Ti

11 6 120

NVIDIA
Titan V
(Standard
Edition)

12 4.5 110

NVIDIA
Titan RTX

24 6 130

NVIDIA
GeForce
RTX 2080
Ti

11 6 120

Table 2 shows GPU memory consumption (in GB) of

state-of-the-art models when trained using some of the
standard DL frameworks like Tensorflow, Pytorch and
MXNet for an input size of 224x224x3 and batch size of 128.

Table- II: GPU memory consumption (in GB) of

state-of-the-art models [1].
GPU Model Memory

(GB)
Cache
(MB)

Performance
(TFLOPS)

NVIDIA
GeForce
RTX 2080 Ti

11 6 120

NVIDIA
Titan V
(Standard
Edition)

12 4.5 110

NVIDIA
Titan RTX

24 6 130

NVIDIA
GeForce
RTX 2080 Ti

11 6 120

As depicted in Table 2, some of the networks like LSTM,

ResNet and other simpler models can be trained on any of the
GPUs mentioned above but networks like Inception v3 and
VGG-16 hit memory bottlenecks for just a batch-size of 128.
With increase in batch size and also the trend moving
towards deeper and wider networks to improve training
accuracy, the existing hardware proves to be restrictive.

Memory Optimization Techniques in Neural
Networks: A Review
Pratheeksha P, Pranav B M, Azra Nasreen

http://www.ijeat.org/
mailto:pratheekshap.cs17@rvce.edu.in
mailto:pranavbm.cs17@rvce.edu.in
https://www.rvce.edu.in/azranasreen@rvce.edu.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F2991.0810621&domain=www.ijeat.org

Memory Optimization Techniques in Neural Networks: A Review

45

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29910810621
DOI:10.35940/ijeat.F2991.0810621
Journal Website: www.ijeat.org

Over the previous five years, tensor processing in
top-of-the-line GPUs has increased by 32 times, yet total
accessible memory has only increased by 2.5 times. Hence,
optimization techniques to reduce memory footprint in
DNNs is indispensable. Dealing with memory bottleneck
issues requires either changing the network architecture or
scaling the training to multiple nodes. In this paper, a
comprehensive review on the latest software based
approaches developed for memory reduction in neural
networks is carried out.

II. RELATED WORK

Memory consumption in DNNs can be categorized as
memory footprint for DNN training and DNN inference.
Modern neural network algorithms are difficult to deploy on
limited hardware resources (such as mobile devices, IoT
devices and other embedded systems) owing to their large
memory requirements. Major sources of storage overhead in
DNN inference are weights. Several prior compression
techniques have resulted in a significant reduction in storage
requirements and also to efficiently operate on the
compressed networks with no accuracy loss [2,3].

As per [4], memory usage while training is classified as
(i) model memory : to store weights and biases of each layer,
(ii) optimizer memory : to store gradients and momentum
buffers if any, and (iii) activation memory to store the
activations of each layer in both forward and backward pass.
Activation memory contributes to the majority of the
memory usage while optimizer memory is 2-3x the model
memory. Since memory for the training constitutes
about twice as much as inference, approaches to optimize
memory requirements for training are crucial to further
improve model performance.

Prior works [4-8] effectively reduce memory footprint
for training and minimizing computational overhead and it
ensures efficient resource utilization [9]. [10] shows how
heuristic algorithms for memory allocation reduces memory
consumption and speeds up the training process. Recent
approaches are progressing with the aim of accelerating
DNNs to be more scalable and in a highly parallel
architecture [11]. Although these methods prove to be
efficient, they are generic. LSTM RNNs have tanh or
sigmoid as their activation function and with their high
runtime overhead for small layers cannot make use of
optimization methods that are applicable to CNN training ,
thus necessitating neural network (CNNs, RNNs or GANs)
specific optimization techniques.

In the following section, some of the latest memory
footprint reduction techniques for CNN and RNN training
are explored.

III. MEMORY FOOTPRINT REDUCTION

TECHNIQUES

Efficient management of memory and reduction in
memory requirements are the two main techniques in
reducing the memory footprints. In this section, such
state-of-the-art techniques employed in CNNs and RNNs are
studied and their performance enhancements are noted.

A. Convolutional Neural Networks (CNNs)

CNN and its variants are known to be the most efficient
approaches in deep learning models. Primarily, CNNs are
used for computer vision and Image processing tasks and

have achieved many state-of-the-art results. CNN often
consists of multiple types of layers, which are basically
categorized as convolutional (CONV) layers, subsampling
or so-called pooling (POOL) layers, fully-connected (FC)
layers, and activation (ACTV) layers.

1. Memory-Scheduling Strategy through
virtualization

Shilje Li et al.[12] have proposed a novel memory
scheduling strategy named mixed memory CNN (mmCNN).
In this model, memory is virtualized as CNNs perform
computations. In general, the programmers spend most of the
time optimizing the memory while coding. But this model
takes care of optimization and helps the developers to
concentrate on network architecture. The essence of this
model is in the concept of virtualization of memory.
Virtualization is done by transferring the memory between
host and device which might appear like a costly operation.
But the model is sophisticated enough to decide the set of
operations so that it does not affect performance.

The mmCNN framework is constructed using three

main components.
(i) Preprocessing module - This module is used to fetch

hardware and network configuration of the platform.
(ii) Control module - This module executes the

proposed algorithm and hence is considered as the core
module of the model.

(iii) Feed-forward module - This module is responsible
for handling the data obtained from the control module.

In this algorithm, the initial starting point of all
convolutional segments are found out. In the next step, the
potential peak memory usage is calculated and it is denoted
by Memmax. After calculating the Memmax, the available
memory and maximum memory usage are updated. The
Convolutional Part Number and Self Part Number indicates
the convolutional layers to be prefetched and the number of
parts the current layer’s feature map should be divided into

respectively. These numbers are calculated in the next step.
When the current convolutional finishes the computation, the
memory reserved by the layer is calculated and released. It is
then added to available memory for the next iteration.

The experimental analysis shows that this method saves
98% memory as compared to traditional CNN. It also
indicates that this methods saves more than 90% of memory
compared to state-of-the-art related to Virtual DNNs (
vDNNs) [13]

2. Designing Hardware Accelerators for CNNs

The approach used in [10] profiles on-chip memory size
and off-chip memory bandwidth according to requirements
of CNNs. This profiling helps in understanding the effect of
memory system on accelerator design.

The memory requirements and memory bandwidth for
various networks, and for various layers within a network,
can differ by several orders of magnitude. Because of this
fact, designing of fast and efficient hardware for all CNN
applications becomes difficult. The system [10] thus
proposes four heuristic design points that tries to optimize
different data flow scenarios.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

46

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29910810621
DOI:10.35940/ijeat.F2991.0810621
Journal Website: www.ijeat.org

The CNN accelerator uses both on-chip memory and
off-chip memory bandwidth. The on-chip memory is helpful
in reducing the expensive off-chip memory accesses. The
key constraint that has been dealt with is the determination of
the amount of on-chip memory sufficient to guarantee that
each activation or weight accessed off-chip utmost once per
layer. Four memory schemes provided in the paper are as
follows:

(i) Everything is present on-chip
(ii) Working set of activations and all filters with

activations stored off-chip
(iii) Working set of filters and all activations with

activations stored off-chip
(iv) Working set of both filters and activations with both

stores off-chip
Here the working set refers to the number of filters/

activations that are computed in parallel and thus need to be
stored on-chip.

There is a large variation across networks in terms of
memory requirements, memory size, bandwidth, and
between activation memory and weight memory. To
minimize off-chip traffic for weight-intensive and
activation-intensive networks, schemes 2 and 3 respectively
offer a good heuristic design. Minimizing on-chip memory
is desirable in some use cases and scheme 4 represents such a
design point.

3. CPU offloading to reduce the memory cost of
training CNNs

Training large CNNs demand huge amount of resources
such as specialized Graphical Processing Units (GPU) and
highly optimized implementations to get the most efficient
performance out of hardware. During CNN training
procedure, size of both inputs and model architecture are
limited because of GPU memory which is a major
bottleneck. The GPU memory contains the input activations
of every layer and they are used in the backward pass to
compute the layer weight gradients. As a result, during
forward and backward computations across higher layers,
the activations of lower layers are kept idle in GPU memory.

System proposed in [14] alleviates this memory
bottleneck by leveraging an under-utilized resource of
modern systems: the device to host bandwidth. Their method
is termed CPU offloading, works by transferring hidden
activations to the CPU upon computation, in order to free
GPU memory for upstream layer computations during the
forward pass. These activations are then transferred back to
the GPU as needed by the gradient computations of the
backward pass. However, this method faces a key challenge
of efficiently overlapping data transfers and computations in
order to minimize wall time overheads induced by the
additional data transfers. The results show that there was a
35% decrease in memory requirements which added a wall
time overhead of 21%.

While optimizations on computation have been
extensively studied, off-chip memory accesses continue to
restrict the energy efficiency of such accelerators because
their energy cost is orders of magnitude higher than other
operations. Minimizing off-chip memory access volume is
thus the secret to improving energy efficiency even further.
Xiaowei Li et al. [15] addresses the technique to overcome
the problem in the prior state-of-the-art which used rigid data
reuse patterns and is suboptimal for some, or even all, of the
individual convolutional layers. They proposed an adaptive

layer partitioning and scheduling scheme, called
SmartShuttle, to minimize off-chip memory accesses for
CNN accelerators. Smartshuttle dynamically matches
different convolutional layers and fully connected layers by
switching between different data reuse schemes and the
corresponding tiling factor settings. Furthermore,
SmartShuttle explores the effect of data reusability and
sparsity on memory access volume in depth. SmartShuttle
processes the convolutional layers at 434.8 multiply and
accumulations (MACs)/DRAM access for VGG16 (batch
size = 3) and 526.3 MACs/DRAM access for AlexNet (batch
size = 4), outperforming the state-of-the-art method (Eyeriss)
by 52.2 percent and 52.6 percent, respectively, according to
the experimental results [15].

4. Heterogeneous Memory Management System for
Optimization

Split Convolutional Neural Network (Split-CNN) [16] is
a new type of CNN that is generated from the automatic
transformation of current CNN models. Split-CNN differs
from standard CNN in that it divides the input images into
small patches and operates on these patches independently
before proceeding to the next stage of the CNN model. They
also present a novel heterogeneous memory management
system (HMMS) that takes advantage of Split CNN's
memory-friendly qualities. HMMS’s five-step method of
planning memory usage for computation graphs is as
follows:

(i) The training model is split during the first stage.
HMMS automatically converts a conventional convolutional
neural network (CNN) to a Split-CNN with a splitting depth
d determined by the percentage of convolutional layers to
break apart and a 2-tuple of integers (h,w) specifying the
number of splits in each spatial dimension (height and
width).

(ii) Computations are serialized by topologically sorting
compute nodes in the dataflow graph.

(iii) Later, each tensor in the computation graph is
assigned with a tensor storage object.

(iv) Optimal offloading and prefetching scheme is
derived to offload the most amount of memory without
hurting the performance.

(v) In the final stage, three memory pools are created to
accommodate the memory storage space requirements of the
computation graph and its corresponding offloading or
prefetching plan.

B. Recurrent Neural Networks (RNNs)

Recurrent neural networks are an important class of
neural networks known for processing sequential data with
its application ranging from sequence learning, neural
machine translation, speech-to-text conversion,
image-to-text translation to captioning videos, language
translations, and many more. A typical RNN consists of
stacks of input, hidden, and output layers. It works on the
principle of saving the output of a particular layer and
feeding it back to the input in order to predict the output of
the layer.

http://www.ijeat.org/

Memory Optimization Techniques in Neural Networks: A Review

47

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29910810621
DOI:10.35940/ijeat.F2991.0810621
Journal Website: www.ijeat.org

With the introduction of LSTM, the vanishing gradient
problem caused by RNNs was resolved to a certain extent but
the need for an efficient network to process the ever-growing
data in real-time was evident.

 LSTMs, RNNs and their variants consume huge
amounts of resources for training as well as deploying
making it almost impossible to scale.

1. Compiler-based GPU Memory Footprint
Reduction

Compiler-based automated optimization technique
to reduce memory footprint in LSTM RNN based deep
learning tasks [7] provides a comprehensive memory and
runtime profile analysis of state-of-the-art NMT models.
The model addresses two key challenges which were
overlooked by prior works. These challenges are accurately
estimating footprint reduction by adopting a selective
recomputation strategy and non-conservatively estimating
runtime overhead by deducing the data dependencies of the
gradient operators [7]. Echo integrated with NNVM - a
computation graph compiler (MXNet framework) is
adjusted to collect relevant information (shape and
datatype) prior to Echo pass. This allows for accurate
estimation of footprint reduction.

The workflow begins with gradient node insertion and
inferring shape and datatype of each tensor edge. In
EdgeUseRef pass, the compiler traverses through the whole
computation graph to compute the number of tensor
references made by different operators. This is essential to
account for the global effect of storage allocations in
contrast to local which is a mere difference between
memory released and allocated. Echo identifies targets for
recomputation (backward pass), partitions the computation
graph into disjoint subgraphs with compute-heavy layers as
boundaries and eliminates those recomputation which do
not contribute to the footprint reduction (forward pass). It
also considers compute-heavy operators for recomputation
if the runtime overhead is minimal. The backward-forward
pass loop is repeated until all the inputs of the whole graph
are covered. DeadNodeElimination as the name suggests,
eliminates those nodes whose outputs are not referenced by
any other node. The result of this method is that only those
feature maps are saved in the memory whose
recomputations prove to be costly. Scope of Echo is not just
limited to RNNs but proves to be efficient across diverse
machine learning models such as CNNs. Other factors that
stand out for Echo is minimal/no programming/manual
effort as it does not alter the training algorithms.

Echo when evaluated against four state-of-the-art
models namely NMT, DeepSpeech2, Transformer and
ResNet shows an incredible footprint reduction ratio of
3.13x, 1.59x, 1.56x, and 2.13x respectively. This reduction
can be used to boost the training performance by either
increasing the batch size or deepening the neural network.

2. Memory-Efficient Recurrent Neural Networks for
language processing

A novel method to effectively reduce memory footprint
and computational complexity in RNN models specific to
language processing tasks is presented in [17]. Language
modelling often involves a large vocabulary which limits
the GPU memory capacity and as the size increases,
compute-intensive operations like multiplication of
output-embedding matrix with hidden state of a sequence
can be quite laborious making it difficult to train and

deploy. This issue is addressed by using 2-Component
shared embedding where each word is characterized by a
row and column vector. The model LightRNN [17] consists
of 3 components : Bootstrap framework for word allocation,
training the RNN model with 2C shared embedding, and
MCMF algorithm for minimum weight perfect matching to
refine the word allocation.

The model is evaluated on ACLW and BillionW datasets
against state-of-the-art HSM and C-HSM algorithms with
perplexity as a performance metric. With similar perplexity,
LightRNN reduces the model size by a factor of 40-100 and
improves the training speed by a factor of 2. The reduction
in size allows for training the model with larger dimensions
of embedding vectors which leads to better training
accuracy.

3. Variants of Backpropagation through time
algorithm

The following method [18] highlights multiple
enhancements on the well-known backpropagation through
time (BPTT) algorithm with a preset user-defined memory
budget, allowing RNN training to fit on nearly any existing
hardware resources. Three optimizations proposed are: (i)
backpropagation through time with selective hidden state
memorization (BPTT-HSM), (ii) backpropagation through
time with selective internal state memorization
(BPTT-ISM) and (iii) backpropagation through time with
mixed state memorization (BPTT-MSM). These three
strategies leverage memory reuse and dynamic
programming to identify the optimal memory consumption
policy with maximum computational performance.

In BPPT-HSM, initially, the hidden state (result of
forward propagation) of any arbitrarily chosen RNN core
(partitioning the sequence into two halves) is saved into one
memory slot. Similar forward operation is then performed
on the second half with the remaining memory slots. After
computing the gradients (backpropagation) for the second
half, the memory slots can be released and reused while
backpropagating in the first half. It makes use of the
divide-and-conquer approach to partition time steps and
recursively solves each part. However, memory reuse and
savings comes at the cost of increased recomputations. The
cost of choosing the first hidden state to be saved is solved
using dynamic programming and optimal state is chosen.
BPPT-ISM follows the same approach as BPPT-HSM, but
saves internal state instead of the hidden state. Thus,
reducing one recomputation (forward operation during
backpropagation) in every divide-and-conquer step. But
BPPT-ISM requires more memory since the internal state
takes up more space than the hidden state. BPPT-MSM is a
combination of BPPT-HSM and BPPT-ISM where either
internal or hidden state is saved depending on the optimal
position and computational cost (equations solved using
dynamic programming). For long sequences, BPPT-HSM
performs better than BPPT-ISM, while BPPT-MSM
significantly outperforms the other two approaches. When
evaluated against standard BPTT, this method saves upto
95% of memory for a sequence length of 1000 but with 33%
more training time per iteration.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

48

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29910810621
DOI:10.35940/ijeat.F2991.0810621
Journal Website: www.ijeat.org

IV. CONCLUSION

Various methods to reduce memory requirement to
effectively manage memory in CNNs and RNNs are
explored in this paper. It outlines the strategies that
outperforms earlier state-of-the-art models. The popular
approaches to memory optimization includes running
operations such as activation functions ‘in-place,' allowing
the input data to be overwritten directly by the output.

It was found that memory can be reused by analysing
data dependencies between network operations and
allocating the same memory to operations that do not use it
simultaneously. Memory in neural networks has been
shown to be reduced by a factor of 2 to 3 when these
methods are combined as seen in Echo and mmCNN. It is
observed that these models improve memory requirements
substantially as compared to others. Buffering and paging,
model compression, memory sharing, and memory
swapping are some of the techniques that can provide
performance benefits when GPUs are used. Memory
reduction frequently comes at the expense of
recomputation, more training time, accuracy loss, or all of
these. To identify the suitable technique, the trade-off
between these factors must be carefully examined.

REFERENCES

1. Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu,
Haoxiang Lin, Mao Yang, “Estimating GPU Memory Consumption of

Deep Learning Models”, 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 1342–1352, Nov 2020.

2. Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, William J. Dally, “EIE: Efficient Inference Engine on

Compressed Deep Neural Network”, IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA), vol. 44, no. 3, pp.
243-254, June 2016

3. Song Han, Huizi Mao, William J. Dally, “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding”, arXiv:1510.00149 [cs.CV], Feb

2016.
4. Nimit S. Sohoni, Christopher R. Aberger, Megan Leszczynski, Jian

Zhang, Christopher R´e, “Low-Memory Neural Network Training: A
Technical Report”, arXiv:1904.10631 [cs.LG], Apr 2019.

5. Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram,
Philipp Krähenbühl, “Memory Optimization for Deep Networks”,
arXiv:2010.14501 [cs.LG], Oct 2020.

6. Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang and
Gennady Pekhimenko, “Gist: Efficient Data Encoding for Deep Neural

Network Training”, IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), July 2018.

7. Bojian Zheng, Abhishek Tiwari, Nandita Vijaykumar, Gennady
Pekhimenko, “Echo: Compiler-based GPU Memory Footprint
Reduction for LSTM RNN Training”, IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), pp. 1089–1102, May
2020.

8. Donglin Yang, Dazhao Cheng, “Efficient GPU Memory Management

for Nonlinear DNNs”, 29th International Symposium on
High-Performance Parallel and Distributed Computing, pp. 185–196,
June 2020M. Young, The Techincal Writers Handbook. Mill Valley,
CA: University Science, 1989.

9. Minsoo Rhu; Natalia Gimelshein; Jason Clemons; Arslan Zulfiqar;
Stephen W. Keckler, “vDNN: Virtualized deep neural networks for
scalable, memory-efficient neural network design”, 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 1-13, Oct 2016.

10. Sekiyama, T., Imamichi, T., Imai, H., & Raymond, R. (2018),
“Profile-guided memory optimization for deep neural networks”, arXiv
preprint arXiv:1804.10001.

11. M. Imani, M. Samragh Razlighi, Y. Kim, S. Gupta, F. Koushanfar and
T. Rosing, "Deep Learning Acceleration with Neuron-to-Memory
Transformation," 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020, pp. 1-14

12. S. Li, Y. Dou, J. Xu, Q. Wang and X. Niu, "mmCNN: A Novel Method
for Large Convolutional Neural Network on Memory-Limited Devices,"
2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), 2018, pp. 881-886

13. K. Siu, D. M. Stuart, M. Mahmoud and A. Moshovos, "Memory
Requirements for Convolutional Neural Network Hardware
Accelerators," IEEE International Symposium on Workload
Characterization (IISWC), 2018, pp. 111-121

14. Hascoet, T., Zhuang, W.H., Febvre, Q., Ariki, Y. and Takiguchi, T.
“Reducing the Memory Cost of Training Convolutional Neural
Networks by CPU Offloading”. Journal of Software Engineering and
Applications, vol 12, pp. 307-320, 2019

15. J. Li et al., "SmartShuttle: Optimizing off-chip memory accesses for
deep learning accelerators," 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2018, pp. 343-348

16. Jin, Tian & Hong, Seokin, “Split-CNN: Splitting Window-based
Operations in Convolutional Neural Networks for Memory System
Optimization”, Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2019, pp. 835-847

17. Xiang Li, Tao Qin, Jian Yang, Tie-Yan Liu, “LightRNN: memory and

computation-efficient recurrent neural networks”, 30th International

Conference on Neural Information Processing Systems, pp. 4392–4400,
Dec 2016.

18. Audrūnas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, Alex

Graves, “Memory-Efficient Backpropagation Through Time”, 30th
International Conference on Neural Information Processing Systems,
pp. 4132–4140, Dec 2016.

19. Wei R, Li C, Chen C, Sun G, He M. “Memory Access Optimization of a
Neural Network Accelerator Based on Memory Controller”. Electronics,

vol. 10, no. 4, pp. 438, Feb 2021
20. Kim, H., Lyuh, C.‐G. and Kwon, Y., “Automated optimization for

memory‐efficient high‐performance deep neural network accelerators”,
ETRI Journal, vol 42, pp. 505-517, July 2020

21. S. Rajbhandari, J. Rasley, O. Ruwase and Y. He, "ZeRO: Memory
optimizations Toward Training Trillion Parameter Models," SC20:
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1-16

22. Zhang, Junzhe, Sai Ho Yeung, Yao Shu, Bingsheng He, and Wei Wang.
"Efficient memory management for gpu-based deep learning systems."
arXiv preprint arXiv:1903.06631 (2019).

AUTHORS PROFILE

Pratheeksha P, is a data science enthusiast with a strong
desire to solve complex system architecture challenges in
critical applications with a real-world impact. She is
currently pursuing her BE in Computer Science from RV
College of Engineering. Bangalore. Her technical interests
include Deep Learning, Cloud Computing and Big Data
Analytics and has worked on multiple projects. Email:

pratheekshap.cs17@rvce.edu.in

Pranav B M, is currently pursuing his BE in computer
science from RV College of Engineering, Bangalore. He
has worked in many start-ups to understand the real-world
challenges and learn creative approaches in solving them.
His technical interests include Deep learning, IoT, Cyber
security and Networking. Email:
pranavbm.cs17@rvce.edu.in

Dr. Azra Nasreen, has over 15 years of teaching and
research experience. Presently, she is an Assistant
professor at RV College of Engineering, Bangalore. She
has guided many UG and PG projects and also published
her works in various international journals and
conferences. Her research interests include Deep learning,
Video Analytics and High-Performance Computing.

Email: azranasreen@rvce.edu.in

http://www.ijeat.org/
https://d.docs.live.net/9cc7f0141243438f/Documents/pratheekshap.cs17@rvce.edu.in
mailto:pranavbm.cs17@rvce.edu.in
https://www.rvce.edu.in/azranasreen@rvce.edu.in

