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 
Abstract: Despite extensive developments in improving cache 

hit rates, designing an optimal cache replacement policy that 
mimics Belady’s algorithm still remains a challenging task. 
Existing standard static replacement policies does not adapt to 
the dynamic nature of memory access patterns, and the diversity 
of computer programs only exacerbates the problem. Several 
factors affect the design of a replacement policy such as 
hardware upgrades, memory overheads, memory access patterns, 
model latency, etc. The amalgamation of a fundamental concept 
like cache replacement with advanced machine learning 
algorithms provides surprising results and drives the 
development towards cost-effective solutions. In this paper, we 
review some of the machine-learning based cache replacement 
policies that outperformed the static heuristics. 

Keywords: Belady’s algorithm, Cache Replacement, Machine 

Learning 

I. INTRODUCTION 

With the rapid advancement in the field of high-speed 

processors and memory hierarchy, caches prove to be 
promising mechanisms in reducing the memory access 
latency. The performance gains shown by caches are one of 
the key reasons for their inclusion in most systems 
[1].  Caches are small (of about few MBs) and high-speed 
memory units to hold frequently used data. Cache 
performance can be enhanced by increasing cache size but is 
expensive. General approach is to increase the cache hit 
rates by data and instruction prefetching to prevent future 
cache misses and effective cache replacement strategy to 
judiciously discard cache items to make room for new 
entries. In this paper, we focus on various cache replacement 
policies and their performance. Several static cache 
replacement algorithms have been developed, but they are 
restricted to a subset of access patterns and perform poorly 
in complex circumstances which leads us to the discussion of 
modern technologies to advance in such challenging areas. 

Machine learning and deep learning have shown 
remarkable improvements in the field of natural language 
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processing, computer vision, speech recognition and time 
series analysis [2]. The use of these modern and powerful 
tools in computer architecture is not new and has been 
extensively studied to improve certain areas such as branch 
prediction, cache replacement, data prefetching [3]. 
However, there are few challenges when it comes to 
applying it to hardware predictors. Training a neural 
network consumes enormous amounts of data and resources 
and therefore necessitates offline training. But for a wide 
range of computer programs and with dynamic changes 
exhibited by the access patterns, the offline model proves to 
be less effective. Deploying the offline model on a hardware 
chip constrained by memory is another key issue. For time-
critical systems, the model's prediction time can become a 
hindrance. Apart from these, some approaches require 
hardware modifications and may result in additional 
overheads. Nonetheless, machine-learning based cache 
replacement techniques have significantly outperformed the 
static heuristics and can be considered as a feasible solution 
to improve overall system performance and performance 
scaling in case of a multithreaded environment [4]. In this 
paper, we explore some of the recent cache replacement 
policies based on machine learning 

II.  BACKGROUND 

Cache replacement policies are heuristics that evicts a 
data entry present in the cache to account for the new entry 
being fetched. The primary objective is to replace those 
entries that are least likely to be accessed sooner rather than 
later. The most optimal and efficient algorithm that always 
evicts data that will no longer be required in the near future 
is termed as Belady’s algorithm. This is infeasible to be 

practically implemented as forecasting the future is 
difficult. Thus, any replacement algorithm should strive to 
closely resemble Belady's algorithm. Here, we review some 
of the common conventional cache replacement policies [5]: 
 

First in first out (FIFO): The simplest of all policies 
which evicts the block in the order in which it was cached 
[6]. 

 Random replacement (RR): This algorithm takes a 
data item from the cache at random and replaces it with the 
desired one. Both FIFO and RR policies do not take into 
account the history of the cache contents and hence costs 
less than the competing algorithms [7]. 
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Least recently used (LRU): One of the most widely 
used algorithms, with a growing number of variants. As the 
name suggests, this caching algorithm evicts those entries 
which are least recently used by keeping track of the history 
of contents. This is implemented using aging bits and can be 
expensive as the state of the aging bits of every cache line 
changes after every cache reference [8]. 

Pseudo LRU (PLRU): A variant of LRU in which the 
core principle remains the same but the age of the cache 
block is approximated rather than maintained as an exact 
value. It can be implemented in two ways namely, Tree-
PLRU and Bit-PLRU. Tree-PLRU constructs a binary search 
tree where each node contains a flag that aids in traversing 
the tree to find the PLRU element. Bit-PLRU maintains one 
bit called MRU-bit for each cache line. The bit is set to 1 if a 
reference is made to that line and whenever that last zero bit 
is set to 1, the remaining bits are set to 0. During cache 
misses, the algorithm replaces the leftmost line whose bit is 
0. PLRU is considered to be better than LRU in terms of low 
power consumption and low overheads. However, it has the 
worst miss ratio. 

Segmented LRU (SLRU):  This technique depends on 
the cache design and is divided into protected and 
probationary segments [9]. Fetched data is first cached in the 
probationary segment and with the next hit is moved to the 
protected segment. Since the size of the protected segment is 
fixed, the line at LRU end of protected segment is moved to 
MRU end of probationary segment when the protected 
segment is full. SLRU replaces the LRU end of the 
probationary segment. 

Least frequently used (LFU): This caching algorithm is 
based on the frequency of access and entries with least 
frequencies are evicted. The eviction of entries with the 
same frequency are done arbitrarily. 

CLOCK: LRU uses a single global lock to serialise 
cache hits. The CLOCK method seeks to alleviate lock 
contention and emulates LRU, resulting in increased 
concurrency and throughput [10]. 

Adaptive replacement cache (ARC): The caching 
algorithm is a hybrid of LRU and LFU that serves as an 
adaptive filter for tracking temporal locality and offers the 
advantage of both recency and frequency. Its implementation 
is similar to LRU but outperforms LRU tremendously and is 
scan-resistant in nature [11]. 

Clock with adaptive replacement (CAR): By adopting 
the features of ARC and CLOCK, this caching technique 
achieves high performance with low overheads [12]. 

While the list of standard replacement policies and their 
variants is extensive, the algorithms described above provide 
a solid overview for understanding and evaluating machine 
learning-based cache replacement techniques. 

III. ML BASED CACHE REPLACEMENT POLICIES 

Commonly used machine learning techniques to enhance 
cache replacement are reinforcement learning (RL) [13] and 
recurrent neural networks (RNNs), particularly long short -
term memory (LSTMs) [14]. RL can be viewed as a typical 
cache replacement solution where a sequence of actions that 
serves past cache access are assessed and learnt to generate a 
new policy. In any intermediate state, no action is regarded 
as the best; an action is deemed to be good if it leads to a 
good policy. LSTMs are neural networks that learn 

sequential data in order to predict the output at the next time 
step. In the context of cache replacement, the history of 
cache accesses forms the sequential data. One way of 
classifying ML-based cache replacement policies are PC-
based (program counter), non PC-based and models trained 
using traditional static heuristics as experts. Some of these 
techniques are discussed below: 

A. LeCAR 

LeCAR is an ML based cache replacement algorithm 
designed for small cache sizes (relative to the workload) that 
exploits the benefits offered by the well-known static 
heuristics, LRU and LFU [15]. Every cache miss is served 
by either of the policies based on the probability distribution 
of weights of LRU and LFU. LeCAR framework is modelled 
as a reinforcement learning problem with regret 
minimization. The fundamental principle of regret 
minimization is “sometimes regretting is a good way to 

improve”. Regret refers to the course of action that should 

have been adopted.  
LeCAR maintains a FIFO queue that holds the recent 

evictions (history) from the cache. Every entry in the queue 
is labelled by the policy that led to its eviction i.e, LRU or 
LFU. If a reference made is found in the queue/history, the 
regret associated with the policy is increased and the weights 
of the other policy is updated indicating that a better 
decision could have been made. It’s an online model where 

the model learns after every miss to minimize regret. When 
evaluated against ARC, LeCAR consumes 3x the amount of 
space yet outperforms it by 18 times with a cache size of 
(1/1000)th the working set. 

B. CACHEUS 

CACHEUS is the adaptive version of LeCAR that 
adopted a gradient-based stochastic hill climbing approach 
to compute the learning rate. While LeCAR proved to be 
efficient for only certain types of workloads (LRU and LFU 
friendly), CACHEUS was designed to accommodate other 
working sets, scan and churn [16]. Scan refers to a set of 
cache entries that are accessed only once. Churn refers to a 
set of cache entries that are accessed repeatedly with equal 
probability. CACHEUS first used state-of-the-art caching 
algorithms LFU, LIRS, and ARC as experts, similar to how 
LeCAR picked two policies, LRU and LFU, to make the 
eviction decision. However, the performance across a wide 
range of workloads were enhanced with the design of a 
novel adaptive scan resistant LRU (SR-LRU) and churn 
resistant LFU (CR-LFU).  

When tested for webmail workloads, cache hit rates of 
ARC, LIRS, LeCAR were 30.08%, 40.71% and 42.08%, 
while CACHEUS with SR-LRU and CR-LFU as experts 
showed a cache hit rate of 43.95% and proved to be the most 
consistent algorithm [16]. 

C. Hawkeye 

Hawkeye formulates cache replacement as a binary 
classification problem where the cache line is classified as 
cache-friendly or cache-averse [17].  
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Hawkeye consists of 3 main components namely 
OPTgen, Hawkeye predictor and a sampler. OPTgen can be 
viewed as a simulator which effectively emulates Belady's 
algorithm to generate inputs. Inputs basically represent the 
history of memory accesses. If OPTgen identifies a 
particular line as a cache hit, then any PC that access those 
lines are considered as positive examples, and otherwise 
negative. These examples are used to train the Hawkeye 
predictor/binary classifier based on Belady’s optimal policy. 

If the classifier computes cache-friendly, the lines are 
marked as high priority while cache-averse lines are flagged 
as eviction/replacement candidates. The most difficult aspect 
of this method was in constructing OPTgen which was 
addressed using a novel approach called liveness intervals. 
Another challenge imposed by OPTgen was the long history 
requirement to compute optimal decisions which was 
resolved using the Set Dueling sampler by sampling a subset 
of cache lines that was sufficient to mirror optimal cache and 
reduce storage requirements. For SPEC 2006 CPU 
benchmarks, Hawkeye reduces miss rates over LRU by 8.4% 
with 2MB LLC and by 15% for four core systems with 8MB 
LLC [17]. 

D. Glider 

Glider cache replacement policy is built on Hawkeye and 
significantly improves prediction accuracy. Glider is 
modelled as a sequence labelling problem where each 
memory access in a sequence is assigned a binary label [18]. 
The input sequence is a series of loads represented by their 
program counters (PC). The objective of the learning model 
is to predict whether a particular PC accesses cache lines 
that are cache-friendly or cache-averse. 

Three step approach - offline caching model, offline 
analysis and an online model is employed. Offline model is 
based on LSTM with attention mechanisms to predict the 
important program counters in the input sequence. The 
weights are then analyzed and input feature is encoded 
compactly as caching decisions does not depend on the long 
history of input sequences but only on a few memory 
accesses. These insights are used to train a SVM based 
online model to predict important PCs and the accuracy was 
comparable to the offline LSTM model. The reason to build 
an SVM model on encoded input features was that the 
LSTM was large and slow and could not be trained or 
deployed on hardware predictors. For SPEC 2006 and 2017 
programs, Glider reduces the miss rate by 8.9% over LRU in 
a single core configuration, whereas Hawkeye only reduces 
it by 6.5 percent. Glider reduces the miss rate over LRU by 
14.7 percent in a multicore scenario, whereas Hawkeye 
reduces it by 13.6 percent [18].  

E. Reinforcement Learning Replacement (RLR) 

While Hawkeye and Glider are two of the most effective 
PC-based predictors, it is critical to have cost-effective 
replacement strategies with little overhead and hardware 
upgrades. In RLR, initially, a set of target features were 
derived by training a reinforcement learning (RL) agent and 
hill climbing analysis [19]. The features preuse distance, line 
last access type, line hits since insertion and line recency 
were selected based on the neural network weights. The 
process of feature selection was completely automated and 
allowed the RL agent to be adaptive to dynamic changes in 

access patterns. A replacement policy was then designed 
using these limited features by assigning priority levels to 
cache lines. PC was intentionally excluded from the feature 
set as it adds to hardware complexity as well as 
communication overhead incurred in transmitting PC data to 
LLC. RLR outperformed the existing non-PC based 
predictor DRRIP. With negligible overhead, RLR enhances 
single-core and four-core system performance by 3.25 
percent and 4.86 percent, respectively, over LRU [19]. 

F. PARROT 

PARROT is the first method to construct an end -to-end 
cache replacement policy using imitation learning that 
approximates Belady’s [20]. The algorithm begins by 

converting the input i.e, cache accesses (embedded memory 
address and embedded PC) into states. To minimize 
compounding errors caused by the difference in state 
distribution during train and test periods, the conversion 
adopts the DAgger approach. The states are sampled and 
initialised as hidden states in the LSTM model, which is 
subsequently trained using the BPTT algorithm. Applying 
the initialised replacement policy to the remaining states 
yields the loss function. Loss function is given by the sum of 
rank loss and loss incurred while predicting the reuse 
distance. The weight parameters are updated based on this 
loss function, allowing the replacement strategy to be 
learned. For PARROT, the number of previous accesses to 
be considered to accurately approach Belady's was 
discovered to be 80, after which the improvement saturates. 
PARROT improves cache hit rates by 61 percent over a 
traditional LRU policy for the web search benchmark. 
Unfortunately, the practical application of this model is 
limited due to its large size and high latency.  

IV. CONCLUSION 

Cache replacement policies are constantly evolving with 
the aim to approach theoretical results defined by Belady's 
algorithm. The trend is towards applying ML/DL to solve 
cache replacement problems. The goal while designing any 
cache replacement policy must be to build cost-effective 
solutions with little hardware modifications, reduce off-chip 
bandwidth needs and minimize overheads. The algorithms 
must also strive towards reducing the model size and low 
latency so that the benefits offered by the policies are not 
obscured which would eventually enable practical 
deployment.  

The paper starts with a discussion on some of the 
conventional cache replacement algorithms to facilitate easy 
interpretation of the machine learning based techniques. A 
survey on numerous ML based cache replacement 
algorithms showed significant enhancement over 
conventional methods but each policy is optimized to cater 
to only certain types of workloads. Designing a well 
generalized policy that works for all workloads still remains 
a challenging task. Furthermore, most of these techniques 
are developed for only single level caches leaving the 
development of hierarchical level cache replacement policies 
as the hot research topic in ML. 
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