
International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

19

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29070810621
DOI:10.35940/ijeat.F2907.0810621
Journal Website: www.ijeat.org


Abstract: Despite extensive developments in improving cache

hit rates, designing an optimal cache replacement policy that
mimics Belady’s algorithm still remains a challenging task.
Existing standard static replacement policies does not adapt to
the dynamic nature of memory access patterns, and the diversity
of computer programs only exacerbates the problem. Several
factors affect the design of a replacement policy such as
hardware upgrades, memory overheads, memory access patterns,
model latency, etc. The amalgamation of a fundamental concept
like cache replacement with advanced machine learning
algorithms provides surprising results and drives the
development towards cost-effective solutions. In this paper, we
review some of the machine-learning based cache replacement
policies that outperformed the static heuristics.

Keywords: Belady’s algorithm, Cache Replacement, Machine

Learning

I. INTRODUCTION

With the rapid advancement in the field of high-speed

processors and memory hierarchy, caches prove to be
promising mechanisms in reducing the memory access
latency. The performance gains shown by caches are one of
the key reasons for their inclusion in most systems
[1]. Caches are small (of about few MBs) and high-speed
memory units to hold frequently used data. Cache
performance can be enhanced by increasing cache size but is
expensive. General approach is to increase the cache hit
rates by data and instruction prefetching to prevent future
cache misses and effective cache replacement strategy to
judiciously discard cache items to make room for new
entries. In this paper, we focus on various cache replacement
policies and their performance. Several static cache
replacement algorithms have been developed, but they are
restricted to a subset of access patterns and perform poorly
in complex circumstances which leads us to the discussion of
modern technologies to advance in such challenging areas.

Machine learning and deep learning have shown
remarkable improvements in the field of natural language

Manuscript received on May 24, 2021.
Revised Manuscript received on July 19, 2021.
Manuscript published on August 30, 2021.
* Correspondence Author

Pratheeksha P*, Student, Department of Computer Science, RV
College of Engineering, Bangalore, India. Email:
pratheekshap.cs17@rvce.edu.in

Revathi SA, Assistant Professor, Department of Computer Science, RV
College of Engineering, Bangalore, India. Email: revathisa@rvce.edu.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/)

processing, computer vision, speech recognition and time
series analysis [2]. The use of these modern and powerful
tools in computer architecture is not new and has been
extensively studied to improve certain areas such as branch
prediction, cache replacement, data prefetching [3].
However, there are few challenges when it comes to
applying it to hardware predictors. Training a neural
network consumes enormous amounts of data and resources
and therefore necessitates offline training. But for a wide
range of computer programs and with dynamic changes
exhibited by the access patterns, the offline model proves to
be less effective. Deploying the offline model on a hardware
chip constrained by memory is another key issue. For time-
critical systems, the model's prediction time can become a
hindrance. Apart from these, some approaches require
hardware modifications and may result in additional
overheads. Nonetheless, machine-learning based cache
replacement techniques have significantly outperformed the
static heuristics and can be considered as a feasible solution
to improve overall system performance and performance
scaling in case of a multithreaded environment [4]. In this
paper, we explore some of the recent cache replacement
policies based on machine learning

II. BACKGROUND

Cache replacement policies are heuristics that evicts a
data entry present in the cache to account for the new entry
being fetched. The primary objective is to replace those
entries that are least likely to be accessed sooner rather than
later. The most optimal and efficient algorithm that always
evicts data that will no longer be required in the near future
is termed as Belady’s algorithm. This is infeasible to be

practically implemented as forecasting the future is
difficult. Thus, any replacement algorithm should strive to
closely resemble Belady's algorithm. Here, we review some
of the common conventional cache replacement policies [5]:

First in first out (FIFO): The simplest of all policies
which evicts the block in the order in which it was cached
[6].

 Random replacement (RR): This algorithm takes a
data item from the cache at random and replaces it with the
desired one. Both FIFO and RR policies do not take into
account the history of the cache contents and hence costs
less than the competing algorithms [7].

Machine Learning-Based Cache Replacement
Policies: A Survey

Pratheeksha P, Revathi SA

mailto:pratheekshap.cs17@rvce.edu.in
mailto:revathisa@rvce.edu.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F2907.0810621&domain=www.ijeat.org

Machine Learning-Based Cache Replacement Policies: A Survey

20

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29070810621
DOI:10.35940/ijeat.F2907.0810621
Journal Website: www.ijeat.org

Least recently used (LRU): One of the most widely
used algorithms, with a growing number of variants. As the
name suggests, this caching algorithm evicts those entries
which are least recently used by keeping track of the history
of contents. This is implemented using aging bits and can be
expensive as the state of the aging bits of every cache line
changes after every cache reference [8].

Pseudo LRU (PLRU): A variant of LRU in which the
core principle remains the same but the age of the cache
block is approximated rather than maintained as an exact
value. It can be implemented in two ways namely, Tree-
PLRU and Bit-PLRU. Tree-PLRU constructs a binary search
tree where each node contains a flag that aids in traversing
the tree to find the PLRU element. Bit-PLRU maintains one
bit called MRU-bit for each cache line. The bit is set to 1 if a
reference is made to that line and whenever that last zero bit
is set to 1, the remaining bits are set to 0. During cache
misses, the algorithm replaces the leftmost line whose bit is
0. PLRU is considered to be better than LRU in terms of low
power consumption and low overheads. However, it has the
worst miss ratio.

Segmented LRU (SLRU): This technique depends on
the cache design and is divided into protected and
probationary segments [9]. Fetched data is first cached in the
probationary segment and with the next hit is moved to the
protected segment. Since the size of the protected segment is
fixed, the line at LRU end of protected segment is moved to
MRU end of probationary segment when the protected
segment is full. SLRU replaces the LRU end of the
probationary segment.

Least frequently used (LFU): This caching algorithm is
based on the frequency of access and entries with least
frequencies are evicted. The eviction of entries with the
same frequency are done arbitrarily.

CLOCK: LRU uses a single global lock to serialise
cache hits. The CLOCK method seeks to alleviate lock
contention and emulates LRU, resulting in increased
concurrency and throughput [10].

Adaptive replacement cache (ARC): The caching
algorithm is a hybrid of LRU and LFU that serves as an
adaptive filter for tracking temporal locality and offers the
advantage of both recency and frequency. Its implementation
is similar to LRU but outperforms LRU tremendously and is
scan-resistant in nature [11].

Clock with adaptive replacement (CAR): By adopting
the features of ARC and CLOCK, this caching technique
achieves high performance with low overheads [12].

While the list of standard replacement policies and their
variants is extensive, the algorithms described above provide
a solid overview for understanding and evaluating machine
learning-based cache replacement techniques.

III. ML BASED CACHE REPLACEMENT POLICIES

Commonly used machine learning techniques to enhance
cache replacement are reinforcement learning (RL) [13] and
recurrent neural networks (RNNs), particularly long short -
term memory (LSTMs) [14]. RL can be viewed as a typical
cache replacement solution where a sequence of actions that
serves past cache access are assessed and learnt to generate a
new policy. In any intermediate state, no action is regarded
as the best; an action is deemed to be good if it leads to a
good policy. LSTMs are neural networks that learn

sequential data in order to predict the output at the next time
step. In the context of cache replacement, the history of
cache accesses forms the sequential data. One way of
classifying ML-based cache replacement policies are PC-
based (program counter), non PC-based and models trained
using traditional static heuristics as experts. Some of these
techniques are discussed below:

A. LeCAR

LeCAR is an ML based cache replacement algorithm
designed for small cache sizes (relative to the workload) that
exploits the benefits offered by the well-known static
heuristics, LRU and LFU [15]. Every cache miss is served
by either of the policies based on the probability distribution
of weights of LRU and LFU. LeCAR framework is modelled
as a reinforcement learning problem with regret
minimization. The fundamental principle of regret
minimization is “sometimes regretting is a good way to

improve”. Regret refers to the course of action that should

have been adopted.
LeCAR maintains a FIFO queue that holds the recent

evictions (history) from the cache. Every entry in the queue
is labelled by the policy that led to its eviction i.e, LRU or
LFU. If a reference made is found in the queue/history, the
regret associated with the policy is increased and the weights
of the other policy is updated indicating that a better
decision could have been made. It’s an online model where

the model learns after every miss to minimize regret. When
evaluated against ARC, LeCAR consumes 3x the amount of
space yet outperforms it by 18 times with a cache size of
(1/1000)th the working set.

B. CACHEUS

CACHEUS is the adaptive version of LeCAR that
adopted a gradient-based stochastic hill climbing approach
to compute the learning rate. While LeCAR proved to be
efficient for only certain types of workloads (LRU and LFU
friendly), CACHEUS was designed to accommodate other
working sets, scan and churn [16]. Scan refers to a set of
cache entries that are accessed only once. Churn refers to a
set of cache entries that are accessed repeatedly with equal
probability. CACHEUS first used state-of-the-art caching
algorithms LFU, LIRS, and ARC as experts, similar to how
LeCAR picked two policies, LRU and LFU, to make the
eviction decision. However, the performance across a wide
range of workloads were enhanced with the design of a
novel adaptive scan resistant LRU (SR-LRU) and churn
resistant LFU (CR-LFU).

When tested for webmail workloads, cache hit rates of
ARC, LIRS, LeCAR were 30.08%, 40.71% and 42.08%,
while CACHEUS with SR-LRU and CR-LFU as experts
showed a cache hit rate of 43.95% and proved to be the most
consistent algorithm [16].

C. Hawkeye

Hawkeye formulates cache replacement as a binary
classification problem where the cache line is classified as
cache-friendly or cache-averse [17].

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-6, August 2021

19

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29070810621
DOI:10.35940/ijeat.F2907.0810621
Journal Website: www.ijeat.org

Hawkeye consists of 3 main components namely
OPTgen, Hawkeye predictor and a sampler. OPTgen can be
viewed as a simulator which effectively emulates Belady's
algorithm to generate inputs. Inputs basically represent the
history of memory accesses. If OPTgen identifies a
particular line as a cache hit, then any PC that access those
lines are considered as positive examples, and otherwise
negative. These examples are used to train the Hawkeye
predictor/binary classifier based on Belady’s optimal policy.

If the classifier computes cache-friendly, the lines are
marked as high priority while cache-averse lines are flagged
as eviction/replacement candidates. The most difficult aspect
of this method was in constructing OPTgen which was
addressed using a novel approach called liveness intervals.
Another challenge imposed by OPTgen was the long history
requirement to compute optimal decisions which was
resolved using the Set Dueling sampler by sampling a subset
of cache lines that was sufficient to mirror optimal cache and
reduce storage requirements. For SPEC 2006 CPU
benchmarks, Hawkeye reduces miss rates over LRU by 8.4%
with 2MB LLC and by 15% for four core systems with 8MB
LLC [17].

D. Glider

Glider cache replacement policy is built on Hawkeye and
significantly improves prediction accuracy. Glider is
modelled as a sequence labelling problem where each
memory access in a sequence is assigned a binary label [18].
The input sequence is a series of loads represented by their
program counters (PC). The objective of the learning model
is to predict whether a particular PC accesses cache lines
that are cache-friendly or cache-averse.

Three step approach - offline caching model, offline
analysis and an online model is employed. Offline model is
based on LSTM with attention mechanisms to predict the
important program counters in the input sequence. The
weights are then analyzed and input feature is encoded
compactly as caching decisions does not depend on the long
history of input sequences but only on a few memory
accesses. These insights are used to train a SVM based
online model to predict important PCs and the accuracy was
comparable to the offline LSTM model. The reason to build
an SVM model on encoded input features was that the
LSTM was large and slow and could not be trained or
deployed on hardware predictors. For SPEC 2006 and 2017
programs, Glider reduces the miss rate by 8.9% over LRU in
a single core configuration, whereas Hawkeye only reduces
it by 6.5 percent. Glider reduces the miss rate over LRU by
14.7 percent in a multicore scenario, whereas Hawkeye
reduces it by 13.6 percent [18].

E. Reinforcement Learning Replacement (RLR)

While Hawkeye and Glider are two of the most effective
PC-based predictors, it is critical to have cost-effective
replacement strategies with little overhead and hardware
upgrades. In RLR, initially, a set of target features were
derived by training a reinforcement learning (RL) agent and
hill climbing analysis [19]. The features preuse distance, line
last access type, line hits since insertion and line recency
were selected based on the neural network weights. The
process of feature selection was completely automated and
allowed the RL agent to be adaptive to dynamic changes in

access patterns. A replacement policy was then designed
using these limited features by assigning priority levels to
cache lines. PC was intentionally excluded from the feature
set as it adds to hardware complexity as well as
communication overhead incurred in transmitting PC data to
LLC. RLR outperformed the existing non-PC based
predictor DRRIP. With negligible overhead, RLR enhances
single-core and four-core system performance by 3.25
percent and 4.86 percent, respectively, over LRU [19].

F. PARROT

PARROT is the first method to construct an end -to-end
cache replacement policy using imitation learning that
approximates Belady’s [20]. The algorithm begins by

converting the input i.e, cache accesses (embedded memory
address and embedded PC) into states. To minimize
compounding errors caused by the difference in state
distribution during train and test periods, the conversion
adopts the DAgger approach. The states are sampled and
initialised as hidden states in the LSTM model, which is
subsequently trained using the BPTT algorithm. Applying
the initialised replacement policy to the remaining states
yields the loss function. Loss function is given by the sum of
rank loss and loss incurred while predicting the reuse
distance. The weight parameters are updated based on this
loss function, allowing the replacement strategy to be
learned. For PARROT, the number of previous accesses to
be considered to accurately approach Belady's was
discovered to be 80, after which the improvement saturates.
PARROT improves cache hit rates by 61 percent over a
traditional LRU policy for the web search benchmark.
Unfortunately, the practical application of this model is
limited due to its large size and high latency.

IV. CONCLUSION

Cache replacement policies are constantly evolving with
the aim to approach theoretical results defined by Belady's
algorithm. The trend is towards applying ML/DL to solve
cache replacement problems. The goal while designing any
cache replacement policy must be to build cost-effective
solutions with little hardware modifications, reduce off-chip
bandwidth needs and minimize overheads. The algorithms
must also strive towards reducing the model size and low
latency so that the benefits offered by the policies are not
obscured which would eventually enable practical
deployment.

The paper starts with a discussion on some of the
conventional cache replacement algorithms to facilitate easy
interpretation of the machine learning based techniques. A
survey on numerous ML based cache replacement
algorithms showed significant enhancement over
conventional methods but each policy is optimized to cater
to only certain types of workloads. Designing a well
generalized policy that works for all workloads still remains
a challenging task. Furthermore, most of these techniques
are developed for only single level caches leaving the
development of hierarchical level cache replacement policies
as the hot research topic in ML.

Machine Learning-Based Cache Replacement Policies: A Survey

22

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.F29070810621
DOI:10.35940/ijeat.F2907.0810621
Journal Website: www.ijeat.org

REFERENCES

1. Swadhesh Kumar, P K Singh, “An overview of modern cache memory
and performance analysis of replacement policies”, IEEE International
Conference on Engineering and Technology (ICETECH), Coimbatore,
India, Mar 2016, pp. 210-214

2. Sheena Angra, Sachin Ahuja, “Machine learning and its applications:
A review”, International Conference on Big Data Analytics and
Computational Intelligence (ICBDAC), Chirala, Andhra Pradesh,
India, Mar 2017, pp. 57-60

3. Nan Wu, Yuan Xie, “A Survey of Machine Learning for Computer

Architecture and Systems”, arXiv preprint arXiv: 2102.07952 , Feb
2021.

4. Rashidah F. Olanrewaju, Asifa Baba, Burhan Ul Islam
Khan, Mashkuri Yaacob, Amelia Wong Azman, Mohammad Shuaib
Mir, “A study on performance evaluation of conventional cache
replacement algorithms: A review”, 4th International Conference on
Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India,
Dec 2016, pp. 550-556

5. Qaisar Javaid, Ayesha Zafar, Muhammad Awais, Munam Shah,
“Cache Memory: An Analysis on Replacement Algorithms and

Optimization Techniques”, Mehran University Research Journal of

Engineering & Technology, vol. 36, no. 4, pp. 831-840, Oct 2017
6. Wang, Q., “WLRU CPU Cache Replacement Algorithm”, Doctoral

Dissertation, The University of Western Ontario London, 2006
7. Bhattacharjee, A., and Debnath, B.K., “A New Web Cache

Replacement Algorithm”, Proceedings of IEEE Conference on Pacific
Rim Conference on Communications, Computers and Signal
Processing, pp. 420-423, 2005.

8. Ahmed, M.W, Shah, M.A., “Cache Memory: An Analysis on

Optimization Techniques”, International Journal of Computer and IT,

vol. 4, no. 2, pp. 414-418, 2015
9. Gao, H, Wilkerson C, “A Dueling Segmented LRU Replacement

Algorithm with Adaptive Bypassing”, 1st JILP Worshop on Computer
Architecture Competitions: Cache Replacement Championship, 2010

10. Andhi Janapsatya, Aleksandar Ignjatović, Jorgen Peddersen, Sri
Parameswaran, “Dueling CLOCK: Adaptive cache replacement policy

based on the CLOCK algorithm”, Design, Automation & Test in
Europe Conference & Exhibition (DATE 2010), Dresden, Germany,
Apr 2010, pp. 920-925.

11. Nimrod Megiddo, Dharmendra S. Modha, “ARC: A self-tuning, low
overhead replacement cache”, in Proc. 2nd USENIX Conference on

File and Storage Technologies, San Francisco, USA, Mar 2003, pp.
115-130.

12. Sorav Bansal, Dharmendra S. Modha, “CAR: Clock with Adaptive

Replacement”, in Proc. 3rd USENIX Conference on File and Storage
Technologies, San Francisco, USA, Mar 2004

13. Wang Qiang, Zhan Zhongli, “Reinforcement learning model,
algorithms and its application”, International Conference on
Mechatronic Science, Electric Engineering and Computer (MEC),
Jilin, China, Aug 2011, pp. 1143 – 1146

14. Alex Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN)

and Long Short-Term Memory (LSTM) Network”, arXiv preprint

arXiv: 1808.03314v9 , Aug 2018.
15. Giuseppe Vietri, Liana V. Rodriguez , Wendy A. Martinez, Steven

Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, Giri Narasimhan,
“Driving Cache Replacement with ML-based LeCaR”, in Proc. 10th
USENIX Conference on Hot Topics in Storage and File Systems,
Berkeley, CA, United States, Jul 2018

16. Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju
Rangaswami, and Jason Liu, Ming Zhao, Giri Narasimhan, “Learning

Cache Replacement with Cacheus”, in Proc. 19th USENIX Conference

on File and Storage Technologies, Santa Clara, USA, Feb 2021, pp.
341-354

17. Akanksha Jain, Calvin Lin, “Leveraging Belady's Algorithm for

Improved Cache Replacement”, in Proc. ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), Seoul,
Korea, Jun 2016, pp. 78-89

18. Zhan Shi, Xiangru Huang, Akanksha Jain, Calvin Lin, “Applying
Deep Learning to the Cache Replacement Problem”, in Proc. 52nd
Annual IEEE/ACM International Symposium on
Microarchitecture, Columbus, USA, Oct 2019, pp. 413–425

19. Subhash Sethumurugan, Jieming Yin, John Sartori,” Designing a Cost-
Effective Cache Replacement Policy using Machine Learning”, in

Proc. IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Seoul, Korea, Apr 2021, pp. 291-303

20. Evan Zheran Liu, Milad Hashemi, Kevin Swersky, Parthasarathy
Ranganathan, Junwhan Ahn, “An Imitation Learning Approach for

Cache Replacement”, arXiv preprint arXiv:2006.16239, Jul 2020.

AUTHORS PROFILE

Pratheeksha P, is a data science enthusiast with a strong
desire to solve complex system architecture challenges in
critical applications with a real-world impact. She is
currently pursuing her BE in Computer Science from RV
College of Engineering. Bangalore. Her technical
interests include Deep Learning, Cloud Computing and
Big Data Analytics and has worked on multiple projects,

Email: pratheekshap.cs17@rvce.edu.in

Revathi S A, has over 8 years of teaching and research
experience. Presently, she is an Assistant Professor at
RV College of Engineering, Bangalore and is focused
in educating her students about cutting-edge
technology through an application-oriented approach
while simultaneously emphasizing moral development.
She has guided multiple UG projects and publications

in national and international conferences. Her research interests include
Machine Learning, Digital Image Processing, Medical Imaging and
Computer Networks, Email: revathisa@rvce.edu.in

https://ieeexplore.ieee.org/author/37085831148
https://ieeexplore.ieee.org/author/37061478100
https://ieeexplore.ieee.org/xpl/conhome/7562814/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7562814/proceeding
https://ieeexplore.ieee.org/author/37086243085
https://ieeexplore.ieee.org/author/37085837891
https://ieeexplore.ieee.org/xpl/conhome/8053868/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8053868/proceeding
https://arxiv.org/search/cs?searchtype=author&query=Wu%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Xie%2C+Y
https://arxiv.org/abs/2006.16239
https://arxiv.org/abs/2006.16239
https://ieeexplore.ieee.org/author/37547465700
https://ieeexplore.ieee.org/author/37086068147
https://ieeexplore.ieee.org/author/37085775261
https://ieeexplore.ieee.org/author/37086071758
https://ieeexplore.ieee.org/author/37086072581
https://ieeexplore.ieee.org/author/37086072581
https://ieeexplore.ieee.org/xpl/conhome/7907562/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7907562/proceeding
https://www.researchgate.net/scientific-contributions/Andhi-Janapsatya-28362625
https://www.researchgate.net/profile/Jorgen-Peddersen
https://www.researchgate.net/profile/Sri-Parameswaran
https://www.researchgate.net/profile/Sri-Parameswaran
https://ieeexplore.ieee.org/xpl/conhome/5450668/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5450668/proceeding
https://ieeexplore.ieee.org/author/37544026500
https://ieeexplore.ieee.org/author/37547103300
https://ieeexplore.ieee.org/xpl/conhome/6020827/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6020827/proceeding
https://arxiv.org/search/cs?searchtype=author&query=Sherstinsky%2C+A
https://arxiv.org/abs/2006.16239
https://arxiv.org/abs/2006.16239
https://dl.acm.org/doi/proceedings/10.5555/3277332
https://dl.acm.org/doi/proceedings/10.5555/3277332
https://ieeexplore.ieee.org/xpl/conhome/7551325/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7551325/proceeding
https://dl.acm.org/doi/proceedings/10.1145/3352460
https://dl.acm.org/doi/proceedings/10.1145/3352460
https://dl.acm.org/doi/proceedings/10.1145/3352460
https://d.docs.live.net/9cc7f0141243438f/Documents/pratheekshap.cs17@rvce.edu.in
https://d.docs.live.net/9cc7f0141243438f/Documents/revathisa@rvce.edu.in

