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ABSTRACT 
 
In this paper we research the problem of acoustics in porous media in three separated 
subdomains. In each region assumes different physical properties:  geometry of the pore, viscosity 
of fluid places in the middle of the two elastic domains. In this task, we first consider the solution 
of differential equations. A mathematical model of these physical phenomena described by the 
initial boundary-value problems for complex systems of differential equations in partial 
derivatives. Then these equations were solved using two numerical methods: finite element 
method (FEM) and the traditional finite difference method (FDM). Solutions allows to analyse 
wave propagation phenomena in porous media. The polynomial functions were used as the 
interpolation basis-test functions in order to get weak solution for the finite element method.  The 
numerical results of our simulation illustrate the method is obviously effective, especially if we 
want research physical problems with complex domains in 2D and 3D spaces. 
Keywords:   Numerical Simulation, Wave Propagation , Pours Media, Finite Method
 
1. INTRODUCTION 
 
Let  a  half-space  Ω = {𝑥 ∈ 𝑅|𝑥 > 0}   consist  
of  three  finite  layers Ωଵ =
{𝑥 ∈ 𝑅|0 < 𝑥 < 𝐻ଵ}, Ωଶ =
{𝑥 ∈ 𝑅|𝐻ଵ < 𝑥 < 𝐻ଶ}, Ωଷ =
{𝑥 ∈ 𝑅|𝐻ଶ < 𝑥 < 𝐻ଷ} and  a  semi-infinite  
layer  Ωସ = {𝑥 ∈ 𝑅|𝑥 > 𝐻ଷ}.    The  domains  
Ω1  and  Ω4 are elastic media without any 
pore structure, while the domains Ω2 and Ω3 
are elastic porous media with porosity m2 and 
m3 respectively.  The pores of the layer Ω2  are 
filled with liquid 2 (oil) and the pores of the 
layer Ω3  are filled with 3 (water). We assume 
that the solid skeleton of the domains Ω2 and 
Ω3 consists of the same material as the 
domains Ω1 and Ω4  [1, 2].  Of all the 
characteristics of a continuous medium, we 
will take into account only the density ρs and 
speed of sound cs (dimensionless) of the elastic 
medium, the density ρ2  and c2  speed of sound 
of the first fluid, and the density ρ3 and speed 
of sound c3 of the second fluid [3]. According 
to [4, 5, 6, 7], the pressure of medium satisfies 
the acoustics equation in Ω if 𝑡 >  0 [8]  

 
ଵ

మ(௫)

డమ

డ௧మ = 𝑑𝑖𝑣 ቀ
ଵ

ఘ(௫)
∇𝑝ቁ                                                                       

(1) 
 
Where 
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𝜌(𝑥) = 𝜌௦ℎଵ(𝑥) + ℎଶ(𝑥)(𝜌௦(1 − 𝑚ଶ) + 𝜌ଶ𝑚ଶ)

+ ℎଷ(𝑥)(𝜌௦(1 − 𝑚ଷ) + 𝜌ଷ𝑚ଷ)
+ 𝜌௦ℎସ(𝑥) 

 
ℎ(𝑥), 𝑖 = 1,2,3,4   - the characteristic 
functions of the domains Ω , i.e.,ℎ(𝑥) =
1 , 𝑥 ∈ Ω  and ℎ(𝑥) = 0 if  𝑥 ∉ Ω . 

At the boundary Г = {𝑥|𝑥 = 0}  we set 
the normal displacement of the medium, 
which, by virtue of the motion equation [4] 
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𝜌
𝜕ଶ𝑊ሬሬሬ⃗ ଶ

𝜕𝑡ଶ
= −∇𝑝

means to set the derivative 
 
ଵ

ఘ
∇𝑝𝑛ሬ⃗ = 𝑢ଵ(𝑡), 𝑥 = 0, 𝑡 > 0                        (2) 

 
Γ boundary additional condition: 
 
𝑝 = 𝑢(𝑡), 𝑥 = 0, 𝑡 > 0                                                
(3) 

 
Problem (1) - (3) is closed by setting the 
initial conditions [9, 10, 11] 
 

𝑝(𝑥, 0) = 0,
డ

డ௧
(𝑥, 0) = 0  𝑥 > 0, 𝑡 > 0                                                

(4)

First, changing the variables we write the 
problem in a more convenient form. Namely, 

we introduce a new spatial variable by the 
formula

 

𝑦 =
𝑥

𝐻ଵ

                                             0 < 𝑥

< 𝐻ଵ     (in Ωଵ ) 

𝑦 = 1 +
𝑥 − 𝐻ଵ

𝐻ଶ − 𝐻ଵ

                              𝐻ଵ < 𝑥

< 𝐻ଶ     (in Ωଶ ) 

𝑦 = 2 +
𝑥 − 𝐻ଶ

𝐻ଷ − 𝐻ଶ

                              𝐻ଶ < 𝑥

< 𝐻ଷ     (in Ωଷ ) 
𝑦 = 3 + (𝑥 − 𝐻ଷ)                                        𝑥

> 𝐻ଷ     (in Ωସ ) 

Thus, the Ω  domains will transform to 𝐺,
𝑖 = 1,2,3,4  domains where 
 

𝐺ଵ = {𝑦 ∈ 𝑅|0 < 𝑦 < 1} 
𝐺ଶ = {𝑦 ∈ 𝑅|1 < 𝑦 < 2} 
𝐺ଷ = {𝑦 ∈ 𝑅|2 < 𝑦 < 3} 

𝐺ସ = {𝑦 ∈ 𝑅|𝑦 > 3} 
and equation (1) for the function  𝑢(𝑦, 𝑡) =
𝑝(𝑥, 𝑡) 
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𝜌(𝑥) = 𝜌௦𝐻ଵ𝜒ଵ(𝑦)
+ 𝐻ଶ𝜒ଶ(𝑦)(𝜌௦(1 − 𝑚ଶ)
+ 𝜌ଶ𝑚ଶ)
+ 𝐻ଷ𝜒ଷ(𝑦)(𝜌௦(1 − 𝑚ଷ)
+ 𝜌ଷ𝑚ଷ) + 𝜌௦𝜒ସ(𝑦) 

𝜒(𝑦)- characteristic functions of domains 𝐺,

𝑖 = 1,2,3,4. 
When 𝑦 = 0, 𝑡 > 0 
 
𝑢(0, 𝑡) =  𝑢(𝑡)                                                               
(6)

                                                                       𝜌௦
డ௨

డ௬
(0, 𝑡) = 𝑢ଵ(𝑡)                                                      (7) At the 

                                                                          𝑢(0, 𝑡) =
డ௨

డ௬
(0, 𝑡) = 0                                                      (8) 

 

 
Basic assumptions 

1. 𝑢(𝑡)   and  𝑢ଵ(𝑡) - smooth bounded 
functions 

2. 0 ≤ 𝐻ଵ ≤ 𝐻ଶ ≤ 𝐻ଷ ≤ 𝐻∗- specified values 
3. 0 ≤ 𝑐ଵ, 𝑐ଶ, 𝑐ଷ ≤ 𝑐∗ - specified values 
4. 0 < 𝜌∗ ≤ 𝜌ଵ, 𝜌ଶ, 𝜌ଷ ≤ 𝜌∗- specified values. 

 
𝑢(𝑡) = 101325,   𝑢ଵ(𝑡) = 0 , 𝐻ଵ =
1000 , 𝐻ଶ = 2000, 𝐻ଷ = 3000. 
 
For the 1st layer (limestone): 
 

𝑐௦ = 3000, 𝑐 = 0, 𝜌௦ = 2700. 
 
For the 2nd layer (sand with oil): 
 
𝑐௦ = 2500, 𝑐 = 1330, 𝜌௦ = 2250 ,

𝜌 = 850. 
 
For the 3rd layer (clay with water) 
 
𝑐௦ = 2000, 𝑐 = 1400, 𝜌௦ = 1600 ,

𝜌 = 1000. 
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2. QUALITY FUNCTIONAL 
 
In  order  to  find  the  vector  𝑉ሬ⃗ =
(𝐻ଵ, 𝐻ଶ, 𝐻ଷ, 𝜌௦, 𝜌ଵ, 𝜌ଶ, 𝑚ଶ, 𝑚ଷ) ∈ 𝑅ଵଵ  we  
consider problem (5), (7), (8) with given 

�̃�൫𝑦, 𝑉෨൯, 𝜌൫𝑦, 𝑉෨൯  functions where 𝑉෨ ∈ 𝐾 and 
compact 𝐾⸦𝑅ଵଵ is determined by 
conditions (2) - (4). To meet a condition 
(6) we consider the functional

𝐼൫𝑉ሬ⃗ ൯ = ∫ |𝑢(𝑡) − 𝑢(0, 𝑡)ଶ|𝑑𝑡
்


                                                             (9)

Where 𝑢(0, 𝑡) = 𝐴(𝑉ሬ⃗ )  -  nonlinear  operator  
defined  by  problem  (5),  (7),  (8)  for         𝑉෨ ∈ 𝐾. 
It  is  possible  to  achieve  that  functional  𝐼൫𝑉ሬ⃗ ൯  

could  reach  its  minimum value  𝐼∗ = 𝐼(𝑉∗
ሬሬሬ⃗ ) for  

some  𝑉∗
෩ ∈ 𝐾  by  varying  𝑉෨ ∈ 𝐾.    The  value  

𝑉∗
෩  that determines the structure of the domain 
Ω will be called the solution to problem (1) - 
(4) [12, 13]. 

3. MINIMIZATION OF 
FUNCTIONAL 

Specify  functional  𝐼൫𝑉ሬ⃗ ൯ ≥ 0 . The  

numerical  set  𝑀 = ൛𝑧ห𝑧 = 𝐼൫𝑉ሬ⃗ ൯, 𝑉ሬ⃗ ∈ 𝐾  ൟ  is 
bounded below and has an exact lower bound 
𝐼∗ : 

𝐼൫𝑉ሬ⃗ ൯ ≥ 0  ∀𝑉ሬ⃗ ∈ 𝐾                                                       (10) 

According to the definition of the 
exact lower bound of a set, the sequence 
൛𝑉
ሬሬሬ⃗ ൟ , 𝑉

ሬሬሬ⃗ ∈ 𝐾  is found, that is 

𝐼൫𝑉
ሬሬሬ⃗ ൯ → 𝐼∗, 𝑛 → ∞                                                                     

(11) 
But the set 𝐾 is compact in 𝑹𝟏1 (as 

a closed bounded set). Therefore we can 
assume (passing to the sequence if 

necessary) that 
𝑉
ሬሬሬ⃗ → 𝑉ሬ⃗∗, 𝑛 → ∞                                                                       
(12) 
in the norm of 𝑹𝟏1  space. We have to show 
that 
𝐼൫𝑉

ሬሬሬ⃗ ൯ → 𝐼൫𝑉∗
ሬሬሬ⃗ ൯, 𝑛 → ∞                                                                 

(13) 

 
4. GENERALIZED SOLUTION TO 

THE PROBLEM (5), (7), (10) 
First of all, we should determine what is the 
solution of problem (5), (7), (8) for fixed 
𝑉ሬ⃗ ∈ 𝐾  .  Namely, we should find a generalized 
solution to problem (5),(7),(8) [6], which 
satisfies the integral identity 

∫ ∫ ቄ
ଵ

̃మ(௬,௩)

డ௨

డ௧

డఝ

డ௧
−

ଵ

ఘ(௬,௩)

డ௨

డ௬

డఝ

డ௬
ቅ



ିஶ

்


                                                 

(14) 

 For an arbitrary smooth function 𝜑(𝑦, 𝜓) 
finite in domain Ω. 
Theorem  1.  For  arbitrary 𝑉ሬ⃗ ∈ 𝐾,  there  
exists  a  unique  generalized  solution to 
problem (5), (7), (8) such that 

max
௧

∫ ൜ቀ
డ௨

డ௧
ቁ

ଶ

+ ቀ
డ௨

డ௬
ቁ

ଶ

ൠ


ିஶ
𝑑𝑦 ≤ 𝑀                                                   

(15) 
 where M depends only on the constants in 
conditions (2) - (4)

Proof. 1.  Reduce the Cauchy problem to an 
initial-boundary value problem in the domain 
 Ω∗ = {𝑦 ∈ 𝑅|0 < 𝑦 < 𝐻∗}  where 𝐻∗, taken 

from conditions (2) –(4), may be considered 
more than

√𝛼𝑇  and 
𝛼 = max

௩∈
𝜌(𝑦, 𝑣), �̃�ଶ(𝑦, 𝑣)                                                       

(16) 
 

2. Solve the problem with the boundary 
condition 𝑢(𝐻∗, 𝑡) = 0 using the  Galerkin 
method in Ω∗ × (0, T). 

3. Show that in the 
domain.
൛(𝑦, 𝑡)ห|𝑦 − 𝑦| ≤ √𝛼(𝑡 − 𝑡)ൟ  𝑢(𝑦, 𝑡) ≡ 0. 
for  every (𝑡, 𝑦) 0 < 𝑡 < 𝑇, 0 < 𝑦 <
𝐻∗.  
The last proves the boundary condition 
𝑢(𝐻∗, 𝑡) ≡ 0.                                                       

 
5. FUNCTIONAL  CONTINUITY  

𝑰(𝑽ሬሬ⃗
 
) 

Let 𝑢(𝑦, 𝑡) ≡ 0 be  the  solution  
(generalized)  of  problem  (5),  (7),  (8),  
corresponding   to   the   set   of   parameters   
𝑣 𝜖 𝑘, 𝑐෦(𝑦) =  𝑐෦(𝑦, 𝑣෦), 𝜌෦(𝑦) =

𝜌෦(𝑦, 𝑣෦),  𝑣෦ → 𝑣∗  for  𝑛 → ∞ easy to show that 
 
                                                                                    𝑐෦(𝑦) →
𝑐∗ (𝑦) = �̃�(𝑦, 𝑣∗ ) , 
                                                                                    𝜌෦(𝑦) →
𝜌∗ (𝑦) = 𝜌(𝑦, 𝑣∗ )                    𝑛 → ∞

Recall that, we consider the initial- boundary value problem equivalent to the 
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Cauchy problem in a domain Ω∗ × (0, T) 
with the additional condition 
𝑢(𝐻∗, 𝑡) ≡ 0                                                                  
(17) 
The estimate (15) suggests that the 
sequence {𝑢} is weakly compact in space 

𝜔
ଵ

ଶ
(Ω∗ × (0, T)), which means that 

subsequences {𝑢}, ቄ
డ௨ೖ

డ௧
ቅ , ቄ

డ௨ೖ

డ௬
ቅ  weakly  

convergent  in  𝐿ଶ(Ω∗ × (0, T)൯   could be  
distinguished  from  sequences 

{𝑢}, ቄ
డ௨

డ௧
ቅ , ቄ

డ௨

డ௬
ቅ.  

                                    
𝑢 → 𝑢∗

డ௨ೖ

డ௧
→

డ௨∗

డ௧
డ௨ೖ

డ௬
→

డ௨∗

డ௬

ൢ        weak in           𝐿ଶ(Ω∗ ×

(0, T)൯ 𝑛 → ∞    
or 

න න 𝑢 ∙ 𝜑𝑑𝑦𝑑𝑡

Ω∗

→

்



න න 𝑢∗ ∙ 𝜑𝑑𝑦𝑑𝑡

Ω∗

்



 

න න
𝜕𝑢

𝜕𝑡
∙ 𝜑𝑑𝑦𝑑𝑡

Ω∗

→

்



න න
𝜕𝑢∗

𝜕𝑡
∙ 𝜑𝑑𝑦𝑑𝑡

Ω∗

்



 

න න
𝜕𝑢

𝜕𝑦
∙ 𝜑𝑑𝑦𝑑𝑡

Ω∗

→

்



න න
𝜕𝑢∗

𝜕𝑦
∙ 𝜑𝑑𝑦𝑑𝑡

Ω∗

்



where 𝑛 → ∞ for any 𝜑 𝜖 𝐿ଶ(Ω∗ × (0, T)൯ 
taking into account the convergence of the 
coefficients and passing to the limit where 
𝑛 → ∞ in identity (14), we obtain the 

identity 
 
 

∫ ∫
ଵ

∗෦మ

డ௨∗

డ௬

డఝ

డ௧
− 𝜌∗෦

డ௨∗

డ௬

డఝ

డ௧
𝑑𝑦𝑑𝑡

Ω∗

்


=

− ∫ 𝜑(0, 𝑡)
்


𝑢ଵ(𝑡)𝑑𝑦𝑑𝑡                     (18)  

 
Further we use the theorem from [8] 
𝑊ଶ

ଵ൫Ω∗ × (0, T)൯ →  𝐿ଶ(0, T) (on the 
boundary 𝑦 =  0), which states that every 
weakly convergent sequence {𝑢} in 
converges strongly in [14] 𝑊ଶ

ଵ൫Ω∗ ×

(0, T)൯ →  𝐿ଶ(0, T) (on the boundary 𝑦 =

 0). That is, the sequence {𝐿ଶ(0, T)} 

                                      ∫ |𝑢(0, 𝑡) −
்



𝑢∗(0, 𝑡)|ଶ 𝑑𝑡 → 0,        𝑛 → ∞               
This means functional continuity ൫𝑉ሬ⃗ ൯ :  

𝐼൫𝑉
ሬሬሬሬሬሬ⃗ ൯ = ∫ |𝑢(0, 𝑡) − 𝑢∗(𝑡)|ଶ்


𝑑𝑡 →

∫ |𝑢∗(0, 𝑡) − 𝑢∗(𝑡)|ଶ𝑑𝑡
்


,           𝑛 → ∞ 

𝐼൫𝑉∗
ሬሬሬ⃗ ൯ = 𝐼∗ 

which completes the proof of the theorem. 

 
6. MATHEMATICAL MODEL 

DISCRETIZATION BY THE 
FINITE ELEMENT METHOD 

6.1 Weak formulation 
 
We derive an equivalent formulation for the 
one-dimensional wave equation,using [15, 
16]. 

Let the  function  𝜈(𝑥)  be  differentiable  
and  𝜈(0)   =   𝜈(1)   =   0,  therefore  it is 
equal to zero at the boundaries of our domain 
[17]. We multiply our wave equation by this 
function, integrate over the interval, and use 
integration by parts to obtain the following 

 

0 = ∫ ቆ
డమ௨

డ௧మ
(𝑥, 𝑡) −

మ

ఘ

డమ௨

డ௫మ
(𝑥, 𝑡)ቇ

ଵ


𝑣(𝑥)𝑑𝑥. 

 

0 = ∫
డమ௨

డ௧మ
(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥 −

ଵ



మ

ఘ
 ൬ቂ

డ௨

డ௫
(𝑥, 𝑡)𝑣(𝑥)ቃ



ଵ

− ∫
డ௨

డ௫
(𝑥, 𝑡)

ଵ



డ௩

డ௫
(𝑥, 𝑡)𝑑𝑥൰ =

 ∫
డమ௨

డ௧మ
(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥

ଵ


+

మ

ఘ
∫

డ௨

డ௫
(𝑥, 𝑡)

ଵ



డ௩

డ௫
(𝑥, 𝑡)𝑑𝑥 = 𝑎(u(x, t), v(x)                                  

(19)  
where 

𝑎(𝑢(𝑥, 𝑡), 𝜈(𝑥))  = ∫
డమ௨

డ௧మ
(𝑥, 𝑡)𝑣(𝑥)𝑑𝑥

ଵ


+

మ

ఘ
∫

డ௨

డ௫
(𝑥, 𝑡)

ଵ



డ௩

డ௫
(𝑥, 𝑡)𝑑𝑥               (20) 

𝑎൫𝑢(𝑥, 𝑡), 𝜈(𝑥)൯ =  0                                                
(21) 

This is called a weak formulation, since 
the function 𝑢(𝑥, 𝑡) should keep condition (21) 
towards some functions ν(x), called test 
functions. 

 
6.2 Nodes and Elements 
 
We divide our interval [0,1] into N 

elements and distribute it into an equal 
number of nodes. The  
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size of each element ℎ =  
ଵ

ே
 , thus the nodes 

are given by 
 
𝑥  =  (𝑖 −  1)ℎ   𝑖 =  1, . . . , 𝑁 +  1.                                        
(22) 
The elements as an interval 
 
𝐸  =  [𝑥, 𝑥ାଵ]    𝑖 =  1, . . . , 𝑁.                                                   
(23) 
 

Nodes and elements are shown in Figure 1. 
 

 
 
Fig 1. Partitioning our interval [0,1] into 
elements and nodes [13]. 

 
6.3 Basis functions 
Let the set be given where the functions 𝜈(𝑥) 
are defined. These functions are represented as 
a linear combination of basis functions and are 
equal to zero at the boundaries [18]. Let’s take 
𝑁 +  1 of basis functions, one for each node, 
and denote them 𝜑(𝑥), 𝑖 =  1, . . . , 𝑁 +  1. 

Then 
 
𝑣(𝑥) = ∑ 𝑣𝜑(𝑥)ேାଵ

ୀଵ , with 𝑣𝜖𝑅 
𝑣(0) = 𝑣(1) = 0.                                                           
(24)

The basis functions for receiving 
piecewise smooth linear functions for ele- 
ments are defined as follows: for 𝑗 =  2, . . . , 𝑁 
we define basis functions that are equal to zero 

everywhere, except for the elements 𝐸ିଵ 
and 𝐸, for which they are linear. Basic 
functions can be written as 

𝜑(𝑥) =

൞

௫ି௫ೕషభ


                             𝑥ିଵ ≤ 𝑥 ≤ 𝑥

௫ೕశభି௫


                             𝑥 ≤ 𝑥 ≤ 𝑥ାଵ

0                                                               

,     for 𝑗 =

2, … , 𝑁.             (25) 
We define the basis functions for 𝑗 =
 1, 𝑁 +  1 which lie on the boundaries of the 
interval so  that  they  are  not  equal  to  zero  
for  the  elements 𝐸ଵ and 𝐸ே accordingly and 
are equal to zero for the rest. These functions 
can be represented as 
 
𝜑ଵ(𝑥) =

ቊ
௫మି௫


         𝑥ଵ ≤ 𝑥 ≤ 𝑥ଶ 

0                                          
,   𝜑ேାଵ(𝑥) =

ቊ
௫ି௫ಿ


          𝑥ே ≤ 𝑥 ≤ 𝑥ேାଵ 

0                                           
      (26) 

The basis functions are shown in Figure 2. 
 
 
 
 

 
 

Fig 2. Piecewise smooth linear basis 
functions 𝜑ଵ, 𝜑 , 𝜑ାଵ [13]. 

 
An important property of these basis 

functions is that the value of the function 
𝜑(𝑥) must be equal to 1 on the node xi and 
to zero on the other nodes. Therefore 

 

𝜑൫𝑥൯ = ൜
1,     𝑖 = 𝑗
0,      𝑖 ≠ 𝑗

                                                    

(27) 
Then the property is preserved that 
𝜈(𝑥)  =  𝜈, 𝑖 =  1, . . . , 𝑁 +  1. 
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− 

6.4 Solution by finite elements 
Using the just derived basis functions, we 
determine the solution by finite elements and 
test functions of finite elements: 
𝑈(𝑥, 𝑡) = ∑ 𝑈(𝑥)𝜑(𝑥)ேାଵ

ୀଵ , 
𝑉(𝑥) = ∑ 𝑉𝜑(𝑥)ேାଵ

ୀଵ .                                                      
(28) 
 
The statement of finite elements can be 
written as follows 
𝑎(𝑈 (𝑥, 𝑡), 𝑉 (𝑥))  =  0,                                                     
(29) 

as a scalar product of a solution by finite 
elements and test functions keeping the initial 
and boundary conditions. To find a solution by 
finite elements, it is enough to test only with 
basis functions. This follows from the 
linearity of the second variable 𝑎(𝑢, 𝜈) and 
therefore follows 
0 = 𝑎൫𝑈 (𝑥, 𝑡), 𝑉 (𝑥)൯ =

𝑎(𝑈 (𝑥, 𝑡), ∑ 𝑉𝜑(𝑥)ேାଵ
ୀଵ ) =

∑ 𝑉𝑎൫𝑈 (𝑥, 𝑡), 𝜑(𝑥)൯ேାଵ
ୀଵ .       (30)  

 

Thus, if (30) is preserved for all basis 
functions 𝜑 , then it is preserved for all 

functions 𝑉(𝑥).  

For each basis function𝜑(𝑥) that is not 
on the boundary for  =  2, . . . , 𝑁 , we can 
write as 

 
 
 
 
 

0 = 𝑎 ቀ𝑈 (𝑥, 𝑡), 𝜑 (𝑥)ቁ = 

= න ൭ 
𝜕ଶ

𝜕𝑡ଶ
𝑈(𝑡)𝜑 (𝑥)𝜑 (𝑥)

ேାଵ

ୀଵ

൱ 𝑑𝑥

ଵ



+
𝑐ଶ

𝜌
න ൭  𝑈(𝑡)

𝜕

𝜕𝑥
𝜑 (𝑥)

𝜕

𝜕𝑥
𝜑 (𝑥)

ேାଵ

ୀଵ

൱ 𝑑𝑥

ଵ



= 

=  
𝜕ଶ

𝜕𝑡ଶ
𝑈(𝑡)

ேାଵ

ୀଵ

න 𝜑 (𝑥)𝜑 (𝑥)𝑑𝑥

ଵ



+
𝑐ଶ

𝜌
 𝑈(𝑡)

ேାଵ

ୀଵ

න
𝜕

𝜕𝑥
𝜑 (𝑥)

𝜕

𝜕𝑥
𝜑 (𝑥)𝑑𝑥 = 

ଵ



 

= ∑
డమ

డ௧మ 𝑈ప
̈ (𝑡)𝑇,

ேାଵ
ୀଵ +

మ

ఘ
∑ 𝑈(𝑡)ேାଵ

ୀଵ 𝑆,                                                    

(31)
 
where 
 

𝑇, = න 𝜑 (𝑥)𝜑 (𝑥)𝑑𝑥

ଵ



 

𝑆, = න
𝜕

𝜕𝑥
𝜑 (𝑥)

𝜕

𝜕𝑥
𝜑 (𝑥)𝑑𝑥  

ଵ



 

 

As a result, we get 𝑁 −  1 linear ordinary 
differential equations. For two basis functions 
that remain unaffected, we use additional 
equations (32) to preserve the boundary 
conditions. 
 
�̈�ଵ(𝑡) = 0        �̈�ேାଵ(𝑡) = 0              (32) 

For these 𝑁 +  1 linear differential 
equations, we define a vector  𝑈 (𝑡)   =
 (𝑈ଵ(𝑡), . . . , 𝑈ேାଵ(𝑡)) and write differential 

equation (31) with coefficients T and S, 
except the first and last rows derived in 
(32). 

𝑇�̈�(𝑡) +
మ

ఘ
 𝑆𝑈(𝑡) = 0                                                       

(33) 
 The values 𝑇, and 𝑆, could be easily 

calculated by dividing their integrals into all 
elements. 

∫ 𝑓(𝑥)𝑑𝑥 =
ଵ


∑ 𝑓(𝑥)𝑑𝑥ேାଵ

ୀଵ .                                               
(34) 

Since the basis functions have two 
elements maximally that are not equal to zero, 
the values 𝑇, and 𝑆, could be calculated by 
several elements integration where both basis 
functions are not equal to zero. This allows to 
calculate the following coefficients: 

 

𝑇, = ∫ 𝜑 (𝑥)ଶ𝑑𝑥 + ∫  𝜑 (𝑥)ଶ𝑑𝑥
௫శభ

௫

௫

௫షభ
=

ଶ

ଷ
ℎ, 

 

𝑇,ିଵ = ∫ 𝜑(𝑥) 𝜑ିଵ(𝑥)𝑑𝑥
௫

௫షభ
=

ଵ


ℎ, 

 

𝑆, = ∫ ቀ
డఝ(௫)

డ௫
ቁ

ଶ

𝑑𝑥  
௫

௫షభ
+

∫ ቀ
డఝ(௫)

డ௫
ቁ

ଶ

𝑑𝑥  
௫శభ

௫
=

ଶ


, 
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𝑆,ିଵ = ∫
డఝ(௫)

డ௫

డఝషభ(௫)

డ௫
𝑑𝑥  

௫

௫షభ
= −

ଵ


.                                           (35)

For all other values of the basis functions, 
in order not to overlap nonzero elements, their 
multiplication is zero. 

The result is a second-order linear 
differential equation with constant coef- 

ficients (33). The solution of this equation 
can be used as a numerical solution of the 
one-dimensional wave equation with finite 
elements. 

 
6.5 Time approximation 
Let consider two numerical methods for 
solving differential equation (33). For the first 
method, we use the second-order 
approximation for the second time derivative 
 

�̈�(𝑡) ≈
(௧ାௗ௧)ିଶ(௧)ା(௧ିௗ௧)

ௗ௧మ                                                             

(36)  
substituting (36) into the differential equation 
(33), we obtain 
 
 

𝑇 ቀ
(௧ାௗ௧)ିଶ(௧)ା(௧ିௗ௧)

ௗ௧మ ቁ +
మ

ఘ
 𝑆𝑈(𝑡) =

0                                        (37)  
After some algebraic transformations, 

this equation can be rewritten as 

𝑈(𝑡 + 𝑑𝑡) = −
మ

ఘ
𝑑𝑡ଶ𝑇ିଵ 𝑆𝑈(𝑡) +

2𝑈(𝑡) − 𝑈(𝑡 − 𝑑𝑡)                           
 (38) 

 
The initial values 𝑈 (0) and 𝑈 ̇ (0) 

can be used for the initial step of the first 
order approximation 
𝑈 (𝑑𝑡)  =  𝑈 (0)  +  𝑑𝑡�̇�(0),                                               
(39) 
and use equation (38) for subsequent 
iterations. 

For (38), an inverse sparse matrix T is 
required, but the inverse matrix generally is 
not sparse. For a more efficient calculation, 
we use 

 

𝑇 ቀ
(௧ାௗ௧)ିଶ(௧)ା(௧ିௗ௧)

ௗ௧మ ቁ = − 
మ

ఘ
 𝑆𝑈(𝑡)                                           

(40)

 
First, we  calculate the  right-hand  side  and  

get  a  linear  system  to  solve 

(௧ାௗ௧)ିଶ(௧)ା(௧ିௗ௧)

ௗ௧మ  from  which  we  could  

calculate  𝑈 (𝑡 +  𝑑𝑡).   Using this method, 
the inverse matrix calculation is not required, 

but the system of linear algebraic equations at 
each iteration is required, which is more 
accurate than the inverse matrix calculation.

The second method for solving 
equation (33) is to rewrite it as a first-order 
linear differential equation. Then we solve 

(33) in two steps. 
 

൝
𝑇 ቀ

̇(௧ାௗ௧)ି̇(௧)

ௗ௧
ቁ = − 

మ

ఘ
 𝑆𝑈(𝑡) ,

𝑈(𝑡 + 𝑑𝑡) = 𝑈(𝑡) + 𝑑𝑡�̇�(𝑡)
                                               

(41) 

In the first equation, we solve a system of 
linear equations to find �̇�(𝑡 + 𝑑𝑡) and the 

second equation can be solved explicitly. 

 
7. NUMERICAL RESULTS 
OBTAINING BY THE FINITE DIF 
FERENCE METHOD 
7.1 Mathematical Model 

Discretization 
7.2 Scheme 

Using Taylor series we expand our 
mathematical model by [19, 18, 20]. 


ೕశభ

ିଶ
ೕ

ା
ೕషభ

∆௧మ =  
మ

ఘ

శభ
ೕ

ିଶ
ೕ

ାషభ
ೕ

∆௬మ                                             
(42) 

𝑈
ାଵ

=
మ∆௧మ

ఘ

శభ
ೕ

ିଶ
ೕ

ାషభ
ೕ

∆௬మ  + 2𝑈


− 𝑈
ିଵ                                       

(43)                        
Initial conditions: 
𝑈

 = 0       𝑖 = 0, … , 𝑁௬                                   

(44) 
𝑈

ଵ = 𝑈
      𝑖 = 0, … , 𝑁௬                                   

(45) 

Boundary conditions: 

𝑈


= 𝑢൫𝑡൯       𝑗 = 0, … , 𝑁௧                                   
(44) 

 

𝜌
భ

ೕ
ିబ

ೕ

∆௬
= 𝑢ଵ൫𝑡൯       𝑗 = 0, … , 𝑁௧                                   
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(45) 
 
 
8. NUMERICAL RESULTS 
 
Solution of our problem is shown down 
below, check other experiments in [21, 22, 23, 
24]. 
 

 
 
 
 

Fig 3. Acoustic wave propagation into three domains using the finite difference method (T - time 
(s), Y - depth (m)). 

 

Fig 4. Acoustic wave propagation graph in one domain using the finite ele ment method (T - time 
(s), Y - depth (m)).

 
9. CONCLUSION 

Using both the finite difference method 
and the finite element method, a numerical 
solution of the one-dimensional poroelastic 
wave equation in a mixed domain was found. 
Their graphical propagations are shown also. 

When comparing the numerical results, it 
can be noted that the finite element method 
with increasing time becomes unstable. 

In this regard, to obtain further 
propagation of the wave and its reflection in 
other domains becomes impossible. 

Also, the graph of finite differences did 

not show the condition of a semi- infinite 
layer. 

This work was done in order to further 
complicate the domain and to transit to two- 
and three-dimensional space. 

For this reason, the finite-element method 
in the one-dimensional domain is not 
considered at the given moment. Further 
research is required. 
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[21] Santill án A., Bozhevolnyi S.I. 
Demonstration of slow sound propaga- tion 
and acoustic transparency with a series of 

detuned resonators. // Phys. Rev., 2014. 
[22] Malinouskaya I., Mourzenko V.V., 

Thovert J.F., Adler P.M. Wave 
propagation through saturated porous 
media. // Phys. Rev., 2008.  

[23] Hamzehpour H., Kasani F.H., Sahimi M., 
Sepehrinia R. Wave prop- agation in 
disordered fractured porous media. // 
Phys. Rev., 2014. 

[24] Tournat V., Pagneux V., Lafarge D., 
Jaouen L. Multiple scattering of acoustic 
waves and porous absorbing media. // 
Phys. Rev., 2004. 

[25] Baishemirov Zh., Tang J.-G., 
Imomnazarov K., Mamatqulov M. 
Solving the problem of two viscous 
incompressible fluid media in the case of 
constant phase saturations. // Open 
Engineering, 2016, 6(1), pp. 742-745. 

[26] Nurtas M., Baishemirov Zh., Ydyrys A., 



Journal of Theoretical and Applied Information Technology 
31st August 2021. Vol.99. No 16 

© 2021 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4172 

  

Altaibek A. 2-D finite element method 
using escript for acoustic wave 
propagation // ACM International 
Conference Proceeding Series, 2020, 
3410774 

[27] Panfilov M, Baishemirov Zh., Berdyshev 
A. Macroscopic model of two-phase 
compressible flow in double porosity 
Media // Fluid Dynamics, 2020, 55(7), pp. 
936-951. 

[28] Bekbauov B., Berdyshev A., Baishemirov 
Zh. Numerical simulation of chemical 
enchanced oil recovery processes // CEUR 
Workshop Proceeding, 2016, 1623, pp. 
664-676.   

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 


