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Bioinformatic analysis of shotgun metagenomic sequences 

 

A. Description 
 

This protocol is for the analysis of DNA sequence data from the shotgun sequencing 

of soil, water, manure and faeces samples from the FED-AMR consortium. This 

protocol does not cover microbiome analysis of 16S rRNA gene sequencing. The 

protocols assume that the sequencing will be carried out using Illumina sequencing 

technologies (HiSeq, NovaSeq) and it is applicable to samples sequenced with or 

without gene enrichment. When performed gene enrichment will be carried out by an 

external Company using ARESdb (1). 

 

B. Computing resources requirements 
 

The large number of samples will require very large storage capacity, large memories 

and processors speeds: storage: > 10 TB; memory: 128 GB RAM; processors: at 

least 24 threads.  

 

C. Linking metadata with sequence data 
 

Sequence data files should be linked to all metadata collected (location, GPS 

coordinates, date, qPCR data, heavy metal and other contaminants data). This 

should be done through a spreadsheet in which DNA sequence file names are linked 

to identifiers and the relevant sample metadata.  

 

D. Processing FastQ files (raw Illumina sequence data) 
 

Prior to processing, Illumina adaptors will be removed using appropriate tools e.g. 

Cutadapt (2). Individual reads with phred score ≤ 20 and length ≤ 70 will be removed 

using tools such as NGS QC Toolkit and/or Sickle (3). Overlapping paired end reads 

will be merged using SeqPrep or similar tools. Sequences with more than 10% 

undetermined nucleotides will be removed using Trimmomatic (4). 
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E. Determining abundance of AMR genes in metagenomes 
 

1. Standard shotgun metagenomic pipeline 

i. Metagenome co-assembly 

The merged and trimmed sequences will be assembled using sequences from all 

samples with MEGAHITassembler (5) with a minimum contig length of 1000 bp. 

Metagenome assemblies will be assessed with MetaQUAST(6). Metagenome co-

assembly will generate longer contigs and possibly Metagenome-Assembled 

Genomes (MAGs).  The longer contigs/MAGs will allow characterisation of AMR 

gene flanking regions, which may shed light on the molecular basis of AMR spread, 

i.e. possible role of different types of mobile elements in the horizontal gene transfer 

via exDNA.   

 

ii. Coding sequence (CDS) and Open Reading Frame (ORF) 

detection and annotation 

Gene prediction will be carried out using Prodigal (7) using default parameters for 

metagenomic analyses. Predicted genes will be compared against AMR gene 

databases, and sequences with strong matches to AMR genes (e value of 10−100, 

80% coverage and 95% identity match to reference gene) will be considered as 

matches to AMR genes. The remaining (non-AMR gene) predicted coding sequences 

will be translated to proteins, and these will be characterised by searches against 

InterPro and Gene Ontology (GO) databases using blastp.  

 

iii. Quantification of AMR genes in shotgun metagenomes 

Abundance of AMR or other genes of interest will be determined by mapping 

individual reads to contigs as determined above. Mapping of reads against the 

contigs will be carried out using the bwt tool from the Resistant Gene Identified (RGI) 

package (https://github.com/arpcard/rgi). The abundance of AMR sequence reads in 

each sample will be determined using the "featureCount" algorithm of the Subread 

package (8). AMR reads with ambiguous mapping (i.e., reads that map to more than 

one contig) will be discarded from the count.  

 

2. AMR gene abundance and diversity determination by gene allele 

network analysis 
 

Metagenomic datasets can contain a large number of ambiguous reads (i.e. 

sequence reads that match more than one reference gene). In order to circumvent 

this issue, AMR genes can also be analysed using a gene allele network as outlined 

by Lanza et al (2018).  
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i. Mapping genes to allele network 

Individual high-quality merged reads will be mapped against AMR gene databases 

using Bowtie2 (9) or similar tools. The outputs from Bowtie2 will be used to generate 

the following indices: 1) the number of reads per gene mapped to an AMR gene 

(RPG, or gene depth coverage); 2) the number of reads per kb of gene (“RPK”); 3) 

the number of reads mapped unequivocally to a given AMR gene (unique matches); 

4) the percentage of coverage of the gene sequence. The RPG, RPK and “unique” 

indices will be normalised against the total number of reads in each sample to 

generate RPGM (reads per gene per million reads), RPKM (reads per kb of gene per 

million reads) and “unique” gene reads per million reads. This normalisation step is 

introduced in order to evaluate the proportion of AMR genes among samples per unit 

of sample DNA (i.e. total number of reads). 

ii. Quantitative analysis 

Following the bioinformatic pipeline outlined previously (10), a gene allele network 

will be generated in order to allow quantitative analysis of AMR gene abundances in 

each sample. The gene allele network is represented by the nodes (AMR genes) and 

the network edges (the number of reads mapping to two or more genes). Clusters of 

nodes in the allele network will form the “mapping gene clusters” (MGC), which will 

be used to determine the changes in abundance of each AMR gene among different 

samples. The abundance of each AMR gene/allele in each sample will be set as the 

highest value observed by a node in each MGC. The allele abundance value will then 

be used to perform differential abundance analysis using DESeq2 (11). 

 

F. Taxonomic analysis of metagenomic reads 
 

The taxonomic affiliation of AMR and non-AMR genes will be determined by aligning 

reads to the NCBI RefSeq database (12), using tools such as Diamond (13), LAST 

(14) and FASTLSA (15).  Alignment results will be analysed using the Lowest 

Common Ancestor (LCA) algorithm of the MEGAN6 software package (Huson et al., 

2007), using a minimum score of 50 and maximum e-value of 0.001.  
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