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Abstract

The description of the selected benchmark cases provide two main elements: (i) A document with a short step-
by-step description of the selected benchmark cases to ease the verification, validation and reproduction of its
input/output data. (ii) A GitHub repository associated with the selected benchmark cases. Both elements, which
include datasets, sources files, implementation requirements and any other supplementary software information,
should guarantee that a potential practitioner can run easily and reproduce accurately the provided numerical
test cases in relevant real-life engineering and applied science scenarios. These selected benchmarks play
an essential role in the development and validation of novel numerical methodologies analysed among the
ROMSOC partners, since they ensure the numerical reproducibility of the reported numerical methods and
guarantee the sustainability of its computer implementation much beyond the span and the lifetime of the
consortium. All the GitHub respositories are available at https://github.com/ROMSOC.
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Part I.
Benchmark for high-performance algorithms in adaptive
optics control
Bernadett Stadler, Ronny Ramlau

Abstract

The new generation of ground-based extremely large telescopes requires highly efficient algorithms to achieve
an excellent image quality in a large field of view. These systems rely on adaptive optics (AO), where one aims
to compensate the rapidly changing optical distortions in the atmosphere in real-time. Many of these systems
require the reconstruction of the turbulence layers, which is called atmospheric tomography. Mathematically,
this problem is ill-posed, due to the small angle of separation. The dimension of the problem depends on the
telescope size and has increased in the last years. Altogether, efficient solution methods are of great interest.
Within this benchmark case we will use the standard, however, not most efficient method, called Matrix Vector
Multiplication, to deal with the problem of atmospheric tomography. As a test example we will consider a
reduced problem size, in order to be able to run the benchmark case on an off-the-shelf CPU.
Keywords: Adaptive optics, atmospheric tomography, benchmark, MVM.
Latest release: https://doi.org/10.5281/zenodo.5171804
GitHub repository: https://github.com/ROMSOC/benchmark-adaptive-optics

1.1. Introduction

The new generation of planned earthbound Extremely Large Telescopes (ELT) require highly efficient
algorithms to achieve an excellent image quality in a large field of view. These systems rely on a technique
called Adaptive Optics (AO) with the task to compensate in real-time the rapidly changing optical distortions
caused by atmospheric turbulences. To achieve such a correction, the deformations of optical wavefronts
emitted by natural or artificial guide stars are measured via wavefront sensors and, subsequently, corrected
using deformable mirrors.

Many of those systems require the reconstruction of the turbulence profile in the atmosphere, which is called
atmospheric tomography. Mathematically, this problem is ill-posed, i.e., there is an unstable relation between
measurement data and the solution. Hence, regularization techniques must be applied. A common way of
dealing with this problem is the Bayesian formulation, where the statistical information regarding the turbu-
lence model and sensor noise can be incorporated. The dimension of the atmospheric tomography problem
depends on the number of subapertures of the used wavefront sensors and on the number of degrees of freedom
of the correcting mirrors, which are in general higher for bigger telescopes. Moreover, the solution has to
be computed in real-time. Altogether, efficient solution methods are of great interest for these kind of problems.

So far, the standard method for atmospheric tomography is the matrix-vector-multiplication (MVM). The
computational cost of the MVM scales atO(n2), where n is the dimension of the AO system. This dimension is
increasing drastically in the next generation of ground-based telescopes, as e.g., the Extremely Large Telescope.

Within this report, the MVM method will serve as benchmark algorithm. We will not consider an ELT-sized
problem, but a reduced one. In fact, we will drastically reduce the telescope diameter, the number of subaper-
tures of the wavefront sensors, the number of actuators of the deformable mirror and the number of atmospheric
layers. This enables us to still be able to run the benchmark case on an off-the-shelf CPU. This report consists
of a description of the input and output data in Section 1.2 and Section 1.4, respectively. Moreover, we provide
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1.2. Description of input data

a detailed step-by-step description on how to run the benchmark test in Section 1.3.

1.2. Description of input data

The parameters for the test configuration of the benchmark case are summarized in Table 1. Note that we
drastically reduce the dimension of the problem compared to the ELT. For a detailed description of the
parameter in the table below we refer to [1]. The telescope diameter is only 5 m. We use a reduced number
of wavefront sensors and guide stars. If we would define the benchmark case for an ELT-sized problem,
the matrices involved in the computation of MVM method would require about 50 GB of memory. Solving
such a demanding problem on an off-the-shelf CPU is not feasible. However, to understand the step-by-step
procedure to solve the atmospheric tomography this small benchmark case is sufficient.

Description Value

Operating mode LTAO

Telescope diameter D 5 m

Type of WFS Shack-Hartmann

Number of WFS 4

Number of layers L 2

Layer heights h` [0, 5000]

Layer strength c2
n [0.65, 0.35]

Discretization spacing on layer δ` [1, 1]

Number of subapertures ns 10× 10

Number of actuators na 11× 11

Number of photons nphotons 500

Number of LGS GLGS 3

LGS positions (3.75, 0), (3.75/2, 3.75 ·
√

3/2), (−3.75/2, 3.75 ·
√

3/2)

LGS wavelength λLGS 589 nm

LGS FWHM 11.4 km

LGS height H 90 km

Laser launch positions (xLLi , xLLj ) (16.26,−16.26), (16.26, 16.26), (−16.26, 16.26)

Number of NGS GNGS 1

NGS positions (−5, 0)

NGS wavelength λNGS 500 nm

FWHM of non-elongated spot f 1.1

Outer scale L0 25 m

Fine-tuning parameter αη 0.4

Fried parameter r0 0.129

Table 1: Test configuration of benchmark case.

Based on these input parameters the matrices involved in the computation of the MVM algorithm can be
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1.3. Step-by-step procedure

calculated. These matrices are

• the Shack Hartmann operator Γ,
• the bilinear interpolation operator P ,
• the turbulence covariance matrix C−1

φ ,

• the noise covariance matrix C−1
η ,

• and the mirror fitting operator F .

All these matrices are stored in the directory benchmark in the GitHub repository. For details on how to
compute them we refer to the software based representation of the benchmark cases in [1]. Note that all
matrices except the turbulence covariance matrix Cφ have a sparse structure and are stored as triplet format
(row, col, value) in the respective txt file. For the dense matrix Cφ we store the entire matrix. Besides these
matrices the vector of sensor measurements s is required as input for the MVM method. This vector is also
contained within the benchmark directory.

1.3. Step-by-step procedure

The GitHub repository contains the shell script run test.sh (see Listing 1), which compiles and runs the
benchmark case. In particular, it executes the CMakeLists.txt (see Listing 2) in the benchmark directory,
compiles the source files and executes the created file. The executable file reads the input matrices from the
directory benchmark, performs the MVM algorithm and stores the output again to the benchmark directory.
In order to be able to successfully run the shell script a C++ compiler, which supports the C++ 14 standard,
and a CMake version greater than 3.6 is required. The only library needed for the benchmark case is Eigen,
which is included into the repository.

echo "Run MVM benchmark test"
cd source
cmake .
make release
benchmark

Code Listing 1: run test.txt

cmake_minimum_required(VERSION 3.6)
project(benchmarks)
set(CMAKE_CXX_STANDARD 14)
include_directories(Eigen)
add_executable(benchmarks main.cpp)

Code Listing 2: CMakeLists.txt

The MVM algorithm programmed in the main.cpp source file starts with reading the input matrices and
the measurement vector from the benchmark directory. Afterwards, the reconstruction matrix R and the
right-hand side b are computed via matrix-matrix and matrix-vector multiplications

R = (ΓP )TC−1
η (ΓP ) + C−1

φ

b = (ΓP )TC−1
η s.

Note that all matrices involved in the computation above have a sparse representation except Cφ.

Deliverable D5.3
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1.4. Description of output data

Then we can set-up the problem of atmospheric tomography and reconstruct the turbulence layers φ from the
sensor measurements s by solving the system

Rφ = b.

For more details on the atmospheric tomography problem we refer again to [1].

The inversion is performed in two steps. First, we calculate the Householder rank-revealing QR decomposition
of the matrix R via colPivHouseholderQr provided by Eigen library. Afterwards, we use the Eigen
function solve to obtain the desired solution φ. Finally, the turbulence layers are fitted to actuator com-
mands by applying the matrix F . The output vector is stored in the file out.txt in the benchmark directory.

This benchmark case, which has a significant lower dimension than the ELT, already shows the drawbacks of the
matrix-based MVM algorithm. The dense input matrix Cφ for this toy example requires more than 300 MB of
memory. Hence, using matrix-free methods, such as the Finite Element Wavelet Hybrid Algorithm (FEWHA),
provide significant advantages here. For details about FEWHA and related topics we refer to [2, 3, 4, 5].

1.4. Description of output data

The output of the MVM algorithm are the actuator commands, with which the deformable mirror can be ad-
justed such that atmospheric distortions are corrected. For our specific benchmark case the resulting DM com-
mands are a vector of size 100. This vector is stored in the file out.txt, which is contained in the directory
benchmark.
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Part II.
A benchmark for coupled models for acoustic propagation
through multilayer systems for particle-velocity sensors
Ashwin Nayak, Andrés Prieto, Daniel Fernández

Abstract

Some benchmark cases are described in detail focused on the acoustic scattering simulation of a rigid exterior
domain enclosed in a porous layer. Details of the mathematical model used are highlighted alongside numerical
procedures implemented in obtaining an approximate solution. An elaborate end-to-end strategy using open-
source software tools to compute the solution is also provided. The provided benchmarks involves not only
academic test involving simplified geometries (such as spherical computational domains) but also realistic
CAD geometries based on engineering PU probes designs.
Keywords: Scattering, aeroacoustics, porous materials.
Latest release: https://doi.org/10.5281/zenodo.5171815
GitHub repository: https://github.com/ROMSOC/benchmarks-acoustic-propagation

2.1. Introduction

This benchmark repository contains scripts for generating the relevant meshes and computing the scattering of
a plane wave by the Microflown PU Regular Probe and other simple geometries such as a three-dimensional
spheres. More precisely, the GitHub repository includes all the data and Python scripts to run from scratch the
following three coupled problems:

• A three-dimensional coupled fluid-PML acoustic scattering problem with an spherical obstacle.
• A three-dimensional coupled fluid-porous-PML acoustic scattering problem with an spherical obstacle

coated with a spherical porous layer.
• A three-dimensional coupled fluid-porous-PML acoustic scattering problem, where the obstacle is a re-

alistic design of a PU probe coated with a cylindrical porous layer.
These three benchmarks share a common mathematical modelling and an analogous variational formulation.
All of them have been discretized with the same kind of finite element method. In what follows, the mathemat-
ical formulation and a detailed description of its discretization is provided.

2.2. Mathematical Formulation

The implementation considered is one of the benchmark stages of the project i.e. to solve for the acoustic
scattering effect of a rigid object represented by the external domain ΩS, enclosed entirely by a porous layer ΩP.
The setup is placed in an acoustic field represented by the unbounded domain ΩF, as shown in the schematic
Fig.2.1a. To be more generic with possible configurations - a fluid-filled gap is considered between the structure
and the porous enclosure. An acoustic wave of a certain kind (plane wave, spherical etc.) is assumed to be
incident on the setup and a model is sought to compute the scattering of the incident wave due to the object.
The problem can be mathematically formulated in various physically-relevant variables e.g scalar fields like
pressure, displacement potential or velocity potential; or vector fields like displacement or velocity, the choice
often being the vector fields for coupled systems [6]. In this particular implementation, the acoustic oscillations
are chosen to be represented by the displacement vector field.
A series of assumptions are considered to arrive at a feasible mathematical model for the problem. The acoustic
fluid is assumed to be homogeneous, non-viscous, compressible, isotropic and isentropic. Also, the porous
layer is considered to be made of homogeneous, isotropic and isothermal material. The acoustic fields are
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2.2. Mathematical Formulation

(a) (b)

ΩS

ΩF

ΩP

ΩPML

Figure 2.1: Schematic of the original problem configuration on unbounded domain (a),
and the model configuration with perfectly matched layers (b).

assumed to be time-harmonic. The problem configuration is also posed in an unbounded domain which ensures
a complete dissipation of all outgoing waves. Pragmatically, this is mimicked by a model configuration with
a finite truncation of the domain and an artificial boundary enclosing it with absorbing properties, known in
literature as the perfectly matched layers (PML) technique [7, 8]. It is represented by the Cartesian box ΩPML

in Fig.2.1b.
The mathematical formulation for the coupled problem may be surmised as the following system of equations:
for a particular frequency, ω,

−∇(ρFc
2
F divuF)− ρFω

2uF = fF in ΩF, (2.1)

−∇(KP(ω) divuP)− ρP(ω)ω2uP = fP in ΩP,

−div(ρFc
2
FC̃(∇uPML))− ρFω

2M̃uPML = fPML in ΩPML, (2.2)

uF · n = g on ΓS, (2.3)

uF · n− uP · n = 0 on ΓC, (2.4)

ρFc
2
F divuF −KP(ω) divuP = 0 on ΓC,

uF · n− uPML · n = 0 on ΓPML,

divuF − divuP = 0 on ΓPML. (2.5)

Here, uF, uP and uPML are the displacement vector fields in the fluid, porous and PML domains respectively.
ΓS, ΓC and ΓPML represent the boundaries making up the interfaces between structure-fluid, fluid-porous and
fluid-PML domains with outward facing normals, n. The model includes material properties like fluid mass
density ρF, sound speed in the fluid cF, the dynamic porous mass density ρP and the dynamic porous bulk
modulus KP. Equations (2.1)-(2.2) represent the Helmholtz-like equations in each of the domains. Equation
(2.3) is a boundary condition at the object boundary and (2.4)-(2.5) represent the pressure and displacement
continuity conditions on the interfaces. The source-terms fF, fP, fPML and function g appear according to
initial sources of disturbances and are explained later in this document.
The porous material properties are determined either through experiments conducted apriori or through suitable
models. A wide range of porous material models provide the material response along a range of frequencies e.g
the Zwikker-Kosten model, Miki model, Johnson-Champoux-Allard-Lafarge Model, the Johnson-Champoux-
Allard-Pride-Lafarge model among others [8, 9]. The fairly detailed six-parameter Johnson-Champoux-Allard-
Lafarge (JCAL) model is chosen in the current article to obtain the dynamic porous mass density and bulk
modulus, given by equations,

ρP(ω) =
ρF

φ
α∞

(
1− i

σφ

ωρFα∞

√
1 + i

4α2
∞ηρFω

σ2Λ2φ2

)
,
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2.2. Mathematical Formulation

KP(ω) =
γPF/φ

γ − (γ − 1)

1− i
ηφ

ρFk′0ωPr

√
1 + i

4k′0
2ρFωPr

ηΛ′2φ2

−1 .

The JCAL model is reliable for porous materials with arbitrarily shaped pores. The parameters in the model:
porosity φ, flow resistivity σ, tortuosityα∞, viscous characteristic length Λ, thermal characteristic length Λ′ and
static thermal permeability k0

′; effectively capture the macroscopic thermal, viscous and inertial characteristics
of the porous material. The model also requires the fluid state properties like density ρF, specific heat ratio γ,
Prandtl Number Pr, and equilibrium fluid pressure PF.
The Helmholtz-like PML governing Equation (2.2) ensures absorption of outgoing waves. This is achieved by
a complex stretching of spatial variables[10] by the fourth-order tensor C̃ and the second-order tensor M̃ given
by,

C̃(∇w) =

 3∑
j=1

1

γj

∂wj
∂xj

 I

and M̃ =
3∑
j=1

γjej ⊗ ej ,

where, I is the fourth-order identity tensor and ej’s are the unit vectors along the spatial directions. The
optimally-tuned functions provided by Bermudez et al.[11] are chosen among the various choices for the com-
plex stretching functions γj’s, giving,

γj(xj) =

1 |xj | ≤ Lj ,
1 + i

cF

ω(L∞j − |xj |)
Lj ≤ |xj | ≤ L∞j .

Here, Lj and L∞j are respectively the lengths of the Cartesian box of the truncated fluid domain and the PML
domain, along the direction xj from the origin. The definition of γj as a piece-wise function ensures the
absorption of waves only along the outward direction of propagation. Consequently, the tensors C̃ and M̃ are
piece-wise and needs to be considered with care during the implementation.
The model described in Equations (2.1)-(2.5) explain the propagation of a generic acoustic field and needs
adaptation for our initial problem of computing the acoustic scattering of an incident wave. The total normal
displacement at the object boundary are zero (g = 0) since the structure is assumed rigid. The principle of
superposition may then be utilized to split the total field into the incident field and scattered field components.
The equations are then rewritten in terms of the scattered part of the field to obtain right-hand-sides, some of
which are non-null.
Considering that the displacement vector fields, uF, uP and uPML, are defined in exclusive domains albeit with
different smoothing requirements, it may be unified to be a member of a functional space V introduced as,

V =
{
v ∈ [L2(Ω)]3 : v|ΩF

∈ H(div,ΩF), v|ΩP
∈ H(div,ΩP), M̃v|ΩPML

∈ [L2(ΩPML)]3,

3∑
j=1

1

γj

∂vj
∂xj

∣∣∣
v∈ΩPML

∈ L2(ΩPML),v · n = 0 on Γ∞

}
,

which also ensures the necessary continuity and differentiable properties at the interfaces. The variational form
can then be deduced from Equations (2.1)-(2.2) by multiplying a test function v ∈ V and utilizing the Green’s
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theorem : Find u ∈ V such that,∫
ΩF

ρFc
2(divu)(div v) dV −

∫
ΩF

ρFω
2u · v dV

+

∫
ΩP

KP(ω)(divu)(div v) dV −
∫

ΩP

ρP(ω)ω2u · v dV

+

∫
ΩPML

ρFc
2C̃(∇u) : ∇v dV −

∫
ΩPML

ρFω
2M̃u · v dV =

∫
ΩF

fF · v dV +

∫
ΩP

fP · v dV

+

∫
ΩPML

fPML · v dV (2.6)

holds for all v ∈ V and also, v = 0 at ΓS. The Equation (2.6) maybe more conveniently expressed in the
general form of a linear variational problem with A and L being the sesquilinear and linear functionals as,

A(u,v) = L(v). (2.7)

A practical implementation of this model would require the approximation of an infinite dimensional functional
space V, with a discrete n-dimensional space Vh with a finite set of basis functions ψh, h = 1, 2, ..., n. This
reforms Equation (2.7) as,

n∑
r=1

A(ψr, ψs)µr = L(ψs) for s = 1, 2..., n;

with the µr’s as coefficients of the basis functions. A solution may then be obtained by solving this system of
equations. The following sections details the implementation of this model along with a specific example of
acoustic transmission across a porous layer around a vibrating sphere.

2.3. Implementation

The implementation follows the requirements of the model and may be divided into three main stages viz.,
mesh generation, solving equations and visualizing solutions. The different stages of the implementation and
the overall workflow is illustrated in Fig.2.2. The mesh generation stage requires the user inputs on geometrical
configuration of the setup. This includes the exact dimensions of the structure, porous layer, fluid domain
and PML. Considering that the variational form includes integrals which differ in sub-domains, it is necessary
to mark the mesh cells according to region requiring conformality of the mesh with the geometry of sub-
domains. Furthermore, user inputs may be needed to suggest local refining of the mesh in a particular region
or surface to capture the geometry accurately. The generated mesh also needs to be adapted to the file format
compatible with the solver. The solver imports the mesh data and categorizes cells according the sub-domain
regions. It is responsible for implementing the finite-element method - defining the discrete functional space
with chosen basis functions and assembling the system of equations before solving them. The solution obtained
may also include processing for analysis before being saved in a memory-efficient storage format. Finally, the
visualization tool reads the simulated solution from the disk to provide graphical representations aiding the
user in deriving information and performing analysis. The following sections explain the usage of each of the
stages and the related tools in detail. The software tools used in the implementation of the project require a
minimal UNIX system with at least 1GB of memory and about 500MB of disk space (swap) for execution. It is
recommended to have some higher configuration would ease the workflow and be capable of handling problems
of larger order.
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Figure 2.2: Workflow representing implementation stages and their interfaces.

2.3.1. Geometry and Meshing

The digital representation of the setup is first done by modeling the geometry and then discretizing it to form a
mesh. While several tools and techniques are available for this, the open-source modules offered by SALOME
are used in this article, which provides capabilities for interfacing with various numerical simulation tools. It
has a flexible cross-platform architecture made of reusable components allowing for customized integration and
handling of complex geometrical objects. It allows for creation of geometry and meshes using either (or both)
the graphical user interface (GUI) and a text user interface (TUI). The following sections explains the usage
of creating geometries and meshes using the TUI, a powerful Python-based scripting interface. The same may
also be achieved either in part or entirety by using the GUI which allows for exporting the equivalent state in a
TUI script.
It allows for creating basic objects and primitives in 1D, 2D, 3D; perform boolean operations like fuse, com-
mon, cut and section operations; execute extrusion, rotation and other linear operations; create higher order
topological objects like solids and compounds grouped from primitives; and implement an advanced partition
or gluing between geometrical structures, among others (see the SALOME documentation [12] for further
details).
The GitHub repository contains three different scripts to build the meshes (in folder source/00 meshes),
which corresponds to the three different benchmarks included in the repository:

$ salome -t microflown_pu_probe.py # Mesh for coupled PU probe
$ salome -t sphere_PML.py # Mesh for coupled fluid-PML
$ salome -t sphere_porous_PML.py # Mesh for coupled fluid-porous-PML
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2.3.2. Solver

The solver of choice is FEniCS, a widely used open-source finite-element library for solving partial differential
equations (PDEs). It offers a rich interface with data-structures and optimized algorithms for finite-element
code which makes it easy to write PDEs. The library is optimized and parallel by design and it is easy to deploy
and scale the code into high-performance computing clusters. With its Python and C++ interfaces, FEniCS
offers powerful capabilities to integrate into workflows.
The FEniCS library offers a number of component modules and the interfacing is done mainly through its
DOLFIN and UFL modules. DOLFIN is the highly optimized computational back-end written in C++ respon-
sible for finite-element machinery. It provides abstract data-structures similar to mathematical terms such as
mesh, finite element, function spaces and functions. It also includes compute-intensive algorithms such as
finite-element assembly and mesh refinement, and, interfaces to various linear algebra solvers and libraries like
PETSc. UFL, on the other hand, provides an abstract mathematical language to express variational problems
which are interpreted automatically and connected to DOLFIN classes.
The powerful feature of the solver is its ability to interpret the variational form in an easily readable UFL
framework. The Python module also allows for finer control through a detailed interface to the underlying
C++ code enabling sub-classing and base class overloading. Among others, it provides an Expression class
which can be used for user-defined expressions specified by C++ code and compiled during execution by a
just-in-time (JIT) compiler for efficiency.
A detailed documentation along with numerous examples are offered by Langtangen et al.[13] and at the official
FEniCS documentation webpage[14]. It is to be noted that the library is limited by its inability to handle
complex numbers and needs additional care to ensure that the real and imaginary parts of the equations and
function spaces are represented separately.
The Python scripts related with the three benchmarks in the GitHub repository are structured in two folders:

• Folder source/02 scattering sphere/: it contains the planewave scattering benchmarks involv-
ing spherical geometries. This directory contains scripts to develop and analyze FEM method to solve
for scattering by a sphere of an incident plane/radial wave. Since the exact solutions can be obtained for
this scenario it is ideal to perform analysis of the FEM method and also validate the solver. This folder
contains the first two benchmarks regarding spherical geometries:

– Subfolder source/02 scattering sphere/planewave scattering/: it contains the
planewave scattering benchmark involving only rigid sphere surrounded by fluid. In this bench-
mark, an incident plane wave is impinged on a rigid sphere, and these scripts computes the scat-
tered field utilizing a classical quadratic PML absorption boundary condition. The variational form
is written in terms of the scattered field. Exact solution is known and the errors can be computed to
validate the solver. The absorption coeffients for the quadratic PML functions are estimated using
the monopole test case and used here. Exact solution is provided by C++ scripts provided in the
exact folder which are compiled during runtime by the FEniCS provided JIT compiler. FE Errors
can be computed and convergence behaviour can be investigated using these scripts. To run the
numerical simulation, just type the Python script:

# Solver for the coupled fluid-PML
$ python3 scattering_sphere_classical_PML.py

– Subolder source/02 scattering sphere/radialwave scattering porous coupling/:
it contains the radial wave scattering by a rigid sphere with a spherical porous layer. A radial
wave is incident on a rigid sphere which is surrounded by a spherical porous layer. The solver
computes the resulting field using the Johnson-Champoux-Allard-Lafarge (JCAL) model for a
few typical parameter values, and compares them against the exact solution. The exact solution
requires an inverse method to compute radial wave amplitudes within the subdomains (see a
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detailed description of this benchmark in [15, Chapter 2]). To run the numerical simulation, the
following Python script must be used:

# Solver for thex coupled fluid-porous-PML
$ python3 scattering_sphere_porous.py

• Folder source/03 scattering pu probe/: it contains the planewave scattering benchmark in-
volving a Microflown PU Probe. In this benchmark, an incident plane wave is scattered by the Mi-
croflown PU Probe which may contain a steel mesh (treated as acoustically equivalent to micro-perforated
panels (MPP)) and a porous windscreens. Dah-You-Maa’s model is used for the MPP and JCAL model
for the porous layer. Optimal PML model is used to replicate the non-reflecting boundaries. The ensem-
ble is coupled with interface conditions and solved using the displacement formulation of the Helmholtz-
like equations using the FEM method. Notice that rhe parameters for these models needs to be obtained
from experimental data. To run the solver, a Python script should be executed:

# Solver for the PU probe
$ python3 scattering.py

2.3.3. Post-processing and Visualization

Visualization of generated simulation data is critical in understanding the physical process. Implementing and
representing this data in a simple and effective manner is extremely useful for deriving information, presenting
results, and also in testing and debugging. The post-processing operations on the solution is dependent on
the study undertaken by the user. In this specific use case, some routine cases of analysis include validation
of the solver for a test case, measure of a field at a particular point in space and directivity patterns of fields
around the object amongst many others. The implementation of these could either be included in the solver
phase or during the visualization phase. Within the solver phase, these could just be operations on the solution
data done using Python and plotted using some common user preferred graphing libraries like Matplotlib[16].
The approach quickly gets overwhelming while dealing with 3D datasets and it is useful to use a dedicated
visualization tool like ParaView. It is a widely used open-source visualization tool for plotting and viewing
solutions and graphs. It offers a powerful and an intuitive 3D visualization interface allowing for heavy in-situ
customization and processing of simulation data. Furthermore, it also provides a Python scripting interface to
automate visualization for batch processing.
ParaView uses a three-stage procedure for visualization of data: reading, filtering and rendering, all done
using the user interface. The simulation data from the solver is read into memory through many supported
file formats. The dataset being typically large, the XDMF (eXtensible Data Model and Format) file format is
used for storage, which is able to manage extremely large datasets and is scalable for parallel systems. Filters
provide the ability to extract or analyze this data into information. There are a wide range of filters available for
analysis and visualization including plotting graphs, contours, surface plots, vector field plots etc. In addition,
it is also possible to define user-defined filters to perform customized operations. The rendering stage deals
with generating images or interactive plots from the filtered information. ParaView provides a user guide[17]
and many tutorials[18] highlighting the usage and relevance of each of the stages along with the available
functionalities to fully exploit its potential.
The three benchmarks provided in this GitHub repository save the output results using XDMF files, which are
directly compatible and can be easily visualized using ParaView. The user interface is very intuitive and once
the file is opened is allows the user to select the solution fields to import from the dataset into memory. Once
the datasets are imported, it renders the volumetric data on the viewer. The toolbar offers some commonly used
filters and are also accessible from the menu options. Initially, the dataset is bifurcated into truncated fluid
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domain and the PML. This can be achieved using the ExtractCellsByRegion filter used with its ’box’
configuration scaled appropriately to omit the cells in the PML. To obtain cross-sections of the volumetric data,
as shown in Fig. 2.3, the filter Clip or Slice is used and the specifications of the cutting plane is provided.
It is also possible to compute from the saved fields on the interface directly by using the filter Calculator.

Figure 2.3: Cross-sectional contour views of the magnitude of the real part (left)
and the magnitude of the imaginary part (right) of the computed displacement field in the fluid-porous-PML

benchmark.

This filter allows the user to define an expression using the fields in memory and compute a derived field. It is
useful in computing the total displacement field putting together the real and imaginary portions.

2.4. Conclusion

A detailed step-by-step procedure has been described to run three different benchmarks involving coupling
problems in acoustic. The simulation methodology is entirely based on open-source software. The scripting
interface interlace with the graphical interface for mesh generation provided by SALOME is useful in meshing
complex geometry and automating the procedure either entirely or partly. The solver stage with the intricate
finite element machinery is handled by the FEniCS library offering ease-of-use to the user while focusing their
attention towards the development and prototyping of the model. The visualization tool, ParaVIEW is feature-
rich providing access to many post-processing algorithms along with an intuitive interface. The entire toolchain
can also be controlled on Python scripts allowing for easier development and future customization.
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Part III.
Acceleration of Sinkhorn Algorithm using ε scaling with
applications to the Reflector Problem
Jean-David Benamou, Chazareix Guillaume, Wilbert IJzerman, Giorgi Rukhaia

Abstract

FreeForm Optics is the branch of Optics concerned with the design of non-conventional asymmetric refractive
and reflective optical elements or systems of such elements. This research is important to improve the energy
efficiency of lighting devices and reduce light pollution (for example of street lighting). A classic application
of FreeForm Optics (amongst many) is the irradiance tailoring problem: design an optical system transferring
a given light source emittance (e.g a car headlight bulb) to a prescribed irregular target irradiance (e.g. the
angular far-field distribution of projected light). At the industrial level, FreeForm Optics design has remained
so far largely heuristic.
On the academic side, two classes (collimated or point source illuminance) of idealized tailoring irradiance
problems can be exactly modeled and solved using Optimal Transport theory. Optimal Transport defines a
unique map or a coupling between prescribed distributions representing given illuminance and irradiance. This
map can then be used to construct the optical element shape. Recent advances in Optimal Transport numerical
solvers allow tackling systems described by millions of degrees of freedom. This offers a sound mathematical
and numerical background to FreeForm Optics.
There are several different approaches for finding numerical solutions of Optimal Trasport problems, varying in
efficiency, accuracy, and complexity. This work concentrates on the Sinkhorn algorithm. The main advantages
of the Sinkhorn algorithm are its simple structure of implementation, involving only simple basic linear algebra
operations, and it’s fastness both from the mathematical foundation and from a wide selection of fast linear
algebra libraries. Also, this algorithm can be drastically speeded up using model hierarchy techniques such as
discretization and regularization parameter scaling.
Keywords: Reflector Problem, FreeForm Optics, Optimal Transport, Entropic Regularization, Sinkhorn Algo-
rithm.
Latest release: https://doi.org/10.5281/zenodo.5171811
GitHub repository: https://github.com/ROMSOC/benchmarks-PS-reflector

3.1. Introduction

A light source, also called “illuminance”, is sufficiently small compared to the reflecting surface so that it
can be regarded as a point in space. It can therefore be modelled as a probability distribution on the sphere,
it will be denoted µ in this paper. The light hits a perfect mirror and we are also given a desired target light
distribution, the “illumination” in the far field. From the far field the reflecting surface can be regarded as a
point and the illumination again modelled as a probability distribution, denoted ν, on the sphere. Total light
conservation is assumed. The reflector problem is to determine the shape of the mirror which produces the
specular reflection from the source to the target distribution. This can be interpreted as the inverse problem of
generating some illumination given an illuminance and a reflector (see figure 3.1).

3.1.1. Optimal Transport model

This problem has an elegant mathematical modelization and solution based on the optimal transportation (OT)
theory due to [19] and [20]. We briefly recall the main result as presented in [20]. In its Kantorovich primal
and dual form (see [21]) :
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Figure 3.1: Reflector problem from Point source O to Far Field.

Theorem 1 (Kantorovich duality). Given two compact manifoldX and Y endowed with a continuous, bounded
from below cost function c : X ×X → R and two borel probability measures (µ, ν) ∈ P(X)× P(Y ). Then,
Kantorovich problem in primal and dual forms (1) has solutions.

OT (µ, ν) := min
γ∈Π(µ,ν)

〈c, γ〉X×Y = max
f,g∈C

〈f, µ〉X + 〈g, ν〉Y

with respectively primal :

Π(µ, ν) := {γ ∈ P(X × Y ), 〈1X , γ〉Y = ν 〈1Y , γ〉X = µ},

and dual :
C = {(f, g) ∈ C(X)× C(Y ), f ⊕ g ≤ c},

constraints sets

The notation 〈f, α〉Ω stands for the duality product
∫

Ω f dα between bounded continuous functions f ∈ C(Ω)
and probability measures α ∈ P(Ω), {f ⊕ g}(x, y) = f(x) + g(y) is the direct sum and µ⊗ ν ∈ P(X × Y )
the tensor product. Finally 1Ω is the characteristic function, i.e. a constant 1 on Ω.

Under suitable hypothesis on c (as they are technical and satisfied for the costs in this paper, we skip this part),
the OT problem is well posed and the the optimal transference plan γ is concentrated on a graph of the OT map
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y = T (x) implicitely defined by the saturation of the dual constraint :

f(x) + g(T (x)) = c(x, T (x)), µ a.e.

The pair (f, g) are called the Kantorovich potentials and is unique up to an additive constant .

By construction T is a measure preserving map characterizing the transport. The measure preserving property
is usually denoted ν = T#µ (T pushes forward µ to ν). The pushforward of µ is the measure defined as

ν(A) = T#µ(A) = µ(T−1(A)) for all ν measurable subset A

Remark 1 (Lp Wasserstein metric). For complete separable metric space X and Lp costs c := 1/p dp(x, y),
this OT problems defines a separable metric on the set of probability measures with finite second moments: the
“Wasserstein” distance, which is given by W p

p (µ, ν) := OT (µ, ν).

This metric metrizes weak convergence of measures and is a fundamential tool in image processing (see [22]).

In [20], Wang shows that the point source reflector model can be translated to an OT problem. More precisely,
he proved the following theorem :

Theorem 2. Let S0 ∈ Sd−1 and S∞ ∈ Sd−1 be connected domains in northern and southern hemispheres
respectively, µ and ν which represent the given illuminance and illumination probability distributions. Then
theorem 1 applies to the cost function

c(x, y) = − log(1− x · y).

A transport map T satisfying (3.1.1) exists and the solution of the corresponding OT problem can be used to
build the desired reflector.

The construction of the reflector can be summarized as follows : Taking the exponential of the dual constraints
and the saturation property (3.1.1) we get

e−g(T (x))

1− x · T (x)
= ef(x) ≤ e−g(y)

1− x · y
, µ⊗ ν a.e.

We now define in Rd a family of parabolic reflectors with axis y ∈ S∞ : x ∈ S0 → Py(x) :=
e−g(y)

1− x · y
. And

directly infer that the reflector shape parameterized over the directions in S0 and given as :

R = {xef(x)|x ∈ S0}.

Under this choice the map x→ T (x) can be interpreted as the specular reflection of an optical ray atR(x) onto
a parabola of axis T (x) while the illumination and illuminance constraints are enforced by (3.1.1).

3.1.2. Entropic Regularization of Optimal Transport

Entropic regularization has been introduced for OT computations in [23] (see [22] for a comprehensive re-
view). The entropic regularization of the Kantorovich problem (1) is based on the following KullBack-Leibler
divergence or “relative entropy” (KL) penalization :

OTε(µ, ν) := minγε∈Π(µ,ν)〈c, γε〉X×Y + ε KL(γε |µ⊗ ν) =

maxfε,gε〈fε, µ〉X + 〈gε, ν〉Y − ε 〈exp(1
ε (fε ⊕ gε − c))− 1, µ⊗ ν〉X×Y
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where ε > 0 is a small “temperature” parameter (see [24] for a Statistical Physics interpretation of this problem
due to Schroedinger) and

KL(γ |µ⊗ ν) :=

∫
X×Y

log(
dγ

dµ⊗ dν
) dγ if γ is absolutely continuous w.r.t to µ⊗ ν and +∞ else.

The primal-dual optimality condition is given by

γε = exp(
1

ε
(fε ⊕ gε − c))µ⊗ ν.

The optimal entropic plan is therefore the scaling by the Kantorovich potentials of a fixed Kernel exp(−1
ε c).

Remark 2. Of course, altering the desired target functional (1) results in altered solution and thereof γε is not
the exact transport plan that we are looking for. It is diffuse, i.e. not concentrated on a map, and ε can be
interpreted as a bandwidth under which the transport is blurred.

Although, this entropic plan γε converges to γ, the minimizer of (1), when ε goes to 0.(see [22])

3.1.3. Sinkhorn Algorithm for Regularized Optimal Transport

Numerical solutions are produced using the discretization of this problem, i.e. replacing (X, Y , c , µ, ν) by
(XN , YN , cN , µN νN ) in the following way:

µN =

N∑
i=1

piδxi , νN =

N∑
j=1

qjδyj , where

N∑
i=1

pi =

N∑
j=1

qj = 1.

Of course the number of discrete points for µ and ν may differ, we keepN for both to simplify the presentation.
This discretisation provides a natural discretization of the OT problem (1). Settting XN = {xi}i=1..N , YN =
{yj}j=1..N , cN = {c(xi, yj)}i,j=1..N , q = {qj}j=1..N and p = {pi}i=1..N . we can again use the 〈., .〉.
notation :

OTN (p, q) := min
γN∈Π(p,q)

〈cN , γN 〉XN⊗YN

where
Π(p, q) :=

{
γN ∈ RN×N+ |〈1XN , γN 〉YN = p, 〈1YN , γN 〉XN = q

}
Similarly, discretization of regularized problem (3.1.2) gives

OTε,N := max
fε,gε
〈fε, µN 〉XN + 〈gε, νN 〉YN − ε 〈exp(

1

ε
(fε ⊕ gε − cN ))− 1, µN ⊗ νN 〉XN×YN .

where we use the same notation (fε, gε) for discrete vectors in RN .
We solve (3.1.3) with Sinkhorn algorithm. It corresponds to a block coordinate (fε and gε) ascent : Initialize
with g0

ε = 0Y and then iterate (in k) :

fk+1
ε = −ε log(〈exp(1

ε (g
k
ε − cN )), νN 〉YN )

gk+1
ε = −ε log(〈exp(1

ε (f
k+1
ε − cN )), µN 〉XN )

As discussed in [22](Remark 4.13), for sufficiently regular data (for example when exact map T is guaranteed
to be smooth) following estimate holds for sufficiently large number of iterations k in (3.1.3):

sup
XN

|fε(x)− fkε (x)| = O(1− ε)k
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Where fε is an exact regularized potential of (3.1.3).

3.1.4. Benchmark Cases

The following benchmark cases are being discussed in this chapter:

• Computing a reflector for the problem where the Source is a uniform distribution with support on a set,
which is the inverse stereographic projection of unit square centered at the origin and the desired light
distribution is a uniform distribution with support on a set, which is an inverse stereographic projection
of circle centered at the origin and Diameter 1.

• Computing a reflector for the problem where the Source is a uniform distribution with support on a set,
which is an inverse stereographic projection of unit square centered at the origin and the desired light dis-
tribution is a sum of two gauss distributions which are the centered respectively at inverse stereographic
projection of points (0.25,-0.25),(0.25,0.25).

3.2. Hierarchical approach to Sinkhorn Algorithm

3.2.1. ε scaling

As mentioned in remark (2), decreasing ε would result in a more accurate solution for (1). On the other hand,
estimate (3.1.3) suggests that smaller ε we take, higher number of iterations will be required for Sinkhorn
algorithm to converge. Also, taking ε too small, would result into numerical overflows due to the exponential
terms of order e

1
ε in (3.1.3)

As discussed in [25], problem of numerical stability can be tackled by working with the increments of the
potentials rather then full potentials during the iterative steps.
That is, if we look at the updates fk+1

ε and gk+1
ε in (3.1.3) as fk+1

ε = fkε + f̂k+1
ε and gk+1

ε = gkε + ĝk+1
ε , then

by moving previous approximations to the right hand side, we will get the following new iterative scheme for
the increments:

f̂k+1
ε = −ε log(〈exp(1

ε (g
k
ε + fkε − cN )), νN 〉YN )

fk+1
ε = fkε + f̂k+1

ε

ĝk+1
ε = −ε log(〈exp(1

ε (f
k+1
ε + gkε − cN )), µN 〉XN )

gk+1
ε = gkε + ĝk+1

ε

Those iterations will be more stable due to the saturation property of the optimizing potentials (3.1.1). This
property tells us that quantity f(xi) + g(yj) − c(xi, yj) is zero for exact potentials and optimal pairs (xi, yj)

while being strictly negative for non-optimal pairs. Thereof, when the iterates fkε and gkε are close to the true
potentials, new updating steps would not cause a numerical overflow.
Although, this approach alone would not help at the first steps of the algorithm, since we have no guarantees
that initial approximations would be close to the exact potentials, and for small ε we would get an overflow at
the first step of the iterations. In order to avoid this, possible approach would be to start with higher values of ε
and gradually decrease it to the desired final value εfinal (see [25] [26]).
More formally, one can define a sequence of regularization parameters εk → εfinal and use εk at k-th iteration
in (3.2.1). A common choice is to start with ε0 = 1. We use a scaling parameter λ ∈ (0, 1) and define
εk := max{εfinal, λkε0}.

Remark 3. It has been empirially established (see [25] and references therein), that above discussed approach
of gradually increasing εk at each iteration, not only provides more numerically stable scheme, but also in-
creases the convergence speed. In other words, a smaller number of iterations is required for achieving a given
error threshold with decreasing εk at each iteration, then while using fixed εfinal for all iterations.
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3.2. Hierarchical approach to Sinkhorn Algorithm

3.2.2. Discretization scaling

In [25] (see also [27]), it is discussed that the entropic regularization with ε acts as a smoothing filter on the data,
which smoothers out any details that are on the finer scale then ε. This means that using Sinkhorn iterations
with discretizations such that mini,j d(xi, xj) << ε does not provide any valuable improvement over working
with discretizations that are on the scale of ε.
Thereof, it would be more efficient to also use a sequence of discretizations (XNk , YNk , cNk , µNk , νNk) where
Nk = O( 1

εk
)d (where d is the dimension of the problem). In order to implement this approach, one would need

to find a way to interpolate approximations fkε , gkε on the discretization XNk+1
, YNk+1

respectively, while they
are computed on the grids XNk , YNk .
Luckily, Sinkhorn algorithm provides a canonical way of computing such interpolations, even for the full spaces
X and Y . If we expand the definition of scalar product in (3.1.3) and replace cN = cN (xi, yj) by c(x, yj) and
c(xi, y) respectively, we obtain following continuous extensions for given approximations fkεk and gkεk :

f̃kεk(x) :=− εk log(
∑

j=1..Nk

exp(
1

εk
(gkεk(yj)− c(x, yj)))νNk(yj)), ∀x ∈ X.

g̃kεk(y) :=− εk log(
∑

i=1..Nk

exp(
1

εk
(fkεk(xi)− c(xi, y)))µNk(xi)), ∀y ∈ Y.

Thereof, at k-th iteration, we can take k − 1-th approximations to be restrictions of f̃k−1
ε (x) and f̃k−1

ε (x) on
the spaces XNk and YNk respectively.
Putting it all together, we obtain the following iterative procedure in k:

fk−1
εk

= f̃k−1
εk−1
|XNk gk−1

εk
= g̃k−1

εk−1
|YNk

f̂kεk = −εk log(〈exp( 1
εk

(gk+1
εk−1

+ fk−1
εk−1
− cNk)), νNk〉YNk )

fkεk = fk−1
εk

+ f̂kεk

ĝkεk = −εk log(〈exp( 1
εk

(fkεk + gk−1
εk
− cNk)), µNk〉XNk )

gkεk = gk−1
εk

+ ĝkεk

In this setting, taking εfinal to 0 means also refining the discretization. To the best of our knowledge the joint
convergence in N and ε has only be studied in [27]:

Theorem 3 (Berman joint convergence - corollary 1.3 [27] ). We assume µ and ν are in C2,α and positive, and
that N and ε are dependent parameters : N = (1/ε)d where d is the dimension of the problem. A technical
condition on the sequence of discretization (XN , YN , cN , µN νN ) called “density propery” (see remark 5
below) is also necessary. Then there exists a positive constant A0 such that for any A > A0 the folowing
holds : setting mε = [−A log(ε)/ε] the continuous interpolation provided by f̃mεε , built using the cannonical
extension (3.2.2) from the discrete Sinkhorn iterate at k = mε, satisfies the estimate

sup
X
|f̃mεε − f | ≤ −Cε log(ε)

for some constant C (depending on A) and f an optimal potential for (1).

Remark 4. Assumptions of Theorem 3 holds on the sphere for the reflector cost (see section 6.3.3 [27] ).
However, while estimating the necessary number of iterations mε, this theorem does not take into account the
improved effect on the convergence, coming from the ε-scaling.
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3.3. Entropic Bias

Remark 5 ( Density property Lemma 3.1 [27] ). For any given open set U intersecting the support X of µ
(same for Y and ν)

lim inf
ε→0

ε log(µN (U)) = 0

For the flat space X ⊂ Rd, this condition is enough. For curved surfaces, a technical generalization is
required. But in both cases, this density property ensures the discretization of X and µ (3.1.3) is such that, for
U the sequence of approximations µN (U) never converges faster to 0 than ε (remember that N = (1/ε)d).

For the sphere this can be achieved by either the Quasi Monte-Carlo discretizations that are sampled uniformly
with respect to the surface element of the sphere (see [28]), or by adjusting the weights of the discretization
points according to the deviation from the surface element (e.g. for the orthogonal grids projected from a plane
to the sphere).

3.3. Entropic Bias

3.3.1. Entropic Bias and Sinkhorn Divergences

The rate of convergence, both in estimate (3.1.3) and in theorem 3, have infinite slope at ε = 0. Because of
this, it is a known issue, that even with above-discussed modifications, using computationally feasible values
of ε will leave certain ”entropic bias” in the approximate potentials.
This problem is discussed in depth in [29] where it is proposed, that in order to correct the bias, to add “diagonal
terms” to correct the entropic cost :

Sε(µ, ν) = OTε(µ, ν)− 1

2
(OTε(µ, µ) +OTε(ν, ν)).

Quite remarkably, the authors show that this quantity, called Sinkhorn divergence, remains positive and is
convex. It also obviously vanishes for µ = ν wich is not the case for OTε. Thanks to the symmetry, there is
only one dual potential for each of diagonal problems. We denote them fµOTε and fνOTε . They can be computed
using the independent Sinkhorn iterations :

fµ,k+1
OTε

= −ε log(〈exp(1
ε (f

µ,k
OTε
− cN )), µ〉X)

fν,k+1
OTε

= −ε log(〈exp(1
ε (f

ν,k
OTε
− cN )), ν〉Y )

The µ gradient of Sε, denoted fSε may be formed by a simple substraction.

fSε = fε − f
µ
OTε

Numerical simulations of gradient flows in [29] indicate that fSε is a better approximation of exact potential f .
For more comperhensive review of entropic bias and it’s effect on the reflector problem see [30].

3.4. Implementation

Although theoretically it is more efficient to conduct the iterations on the appropriate discretization at every
iteration as in (3.2.2), in practice, altering memory and memory containers at every iteration is not feasible due
to hardware properties.
It is a common knowledge in software engineering, that arranging computations in a way that memory is
accessed in a continuous way, so that processor doesn’t have to wait for the delivery of necessary memory
components, produces better practical computational time even when theoretical count of operations is far
larger.
With this in mind, depending on the desired εfinal and Nεfinal , we define two discretization levels : Nsmall =
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O(Nfinal)
1
2d and Nlarge = O(Nfinal). Similarly, 2 different intermediate values of ε are chosen: εsmall =

ε
1
2
final, εlarge = εfinal.

The sequence εk is initialized by ε0 = 1 and for k > 0 εk =

(
ε−1
k−1 + ε

− 1
3

current

)−1

where εcurrent is either
εsmall or εlarge.
With this choice, outline of hierarchical sinkhorn algorithm for reflector problem would be following:

Data: Source and target distributions µ, ν
Result: Approximations of Kantorovich potentials fεfinal , gεfinal

1 Initialization: k = 0, N = Nsmall, εcurrent = εsmall, f0 ≡ 0, g0 ≡ 0 ;
2 while εk < εfinal do
3 f̂k+1

ε = −εk log(〈exp( 1
εk

(gkε + fkε − cN )), νN 〉YN ) ;

4 fk+1
ε = fkε + f̂k+1

ε ;
5 ĝk+1

ε = −εk log(〈exp( 1
εk

(fk+1
ε + gkε − cN )), µN 〉XN ) ;

6 gk+1
ε = gkε + ĝk+1

ε ;
7 k=k+1
8 if εk > εcurrent then
9 if εcurrent = εfinal then

10 Stop;
11 else
12 N = Nfinal, εcurrent = εfinal ;
13 fkε = f̃kεk |XN , gkε = g̃kεk |YN ;

14 fεfinal = fkεk − f
µ
OTε

;
15 gεfinal = gkεk − f

ν
OTε

;

Here de-biasing terms fµOTε and fνOTε coming from (3.3.1) are computed using the diagonalized versions of
above algorithm:

Data: Source or target distribution µ and corresponding space X
Result: Approximation of Kantorovich potential fµεfinal

1 Initialization: k = 0, N = Nsmall, εcurrent = εsmall, f0 ≡ 0;
2 while εk < εfinal do
3 f̂k+1,µ

ε = −εk log(〈exp( 1
εk

(fk+1,µ
ε + fk+1,µ

ε − cN )), µN 〉XN ) ;

4 fk+1,µ
ε = fk,µε + 1

2 f̂
k+1,µ
ε ;

5 k=k+1;
6 if εk > εcurrent then
7 if εcurrent = εfinal then
8 Stop;
9 else

10 N = Nfinal, εcurrent = εfinal ;
11 fk,µε = f̃k,µεk |XN ;

12 fµεfinal = fk,µεk ;
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3.5. Computer Requirements

The software is written in C++, but most of the computational data structures are C-style fixed-size Arrays and
most of the computational work is done either by basic operations available in C as well, or by Intel’s Math
Kernel Library. No manually written classes are used and C++ standard library functions are used for secondary
tasks, such as data filling, data sorting or time counting.
Intel’s Math Kernel Library (MKL) is a library of optimized math routines. It includes BLAS, LAPACK,
ScaLAPACK, sparse solvers, fast Fourier transforms, and vector math. The routines in MKL are hand-
optimized specifically for Intel processors. In this software, only BLAS and vector math functions are used.
The library is available free of charge under the terms of Intel Simplified Software License which al-
lows redistribution. Commercial support is available when purchased as standalone software or as part
of Intel Parallel Studio XE or Intel System Studio. It can be downloaded from Intel’s official web-page
https://software.intel.com/mkl where installation instructions are also provided.
Due to high importance of good memory management, and software’s primary purpose for now being the
development of the method, code doesn’t follow standard suggestions for C++ code development.
C++ compiler with version 11 or higher is required, as code uses timing functions and arithmetic of ”inf” and
”nan” values introduced in this version.
The code is OS independent as long as appropriate compiler and ability to link with MKL library are available,
except, for convenience of output handling, system command is called to create and move folders. Right now
code uses Linux commands ”mkdir ” and ”mv ”. For other operating systems one could just change those
commands in the main function.
Due to the use of Intel’s MKL library, the software will be much more efficient when running on the Intel
processor, compared to other processors of the same power. Other then the capability of installing Intel’s MKL
Library, there is no other definitive hardware requirement, but for computational stability, it is desirable for
double-precision floating-point variable to hold numbers up to 16 digit precision, so it is recommended that
hardware is capable of handling such precision.

3.5.1. Runing Manual

How to compile files that use MKL libraries, can be found on the Intel’s official webpage:
https://software.intel.com/
The software includes a Makefile file, which can be used on linux environment to compile the code, if the
cmake package is present. Although it is important to verify the location of the MKL library on the system, and
adjust the file accordingly.
If the cmake package is absent, one can copy the line inside the Makefile into a terminal with workind directory
at the location of the code files (of course, after adjusting the MKL library location).
After the code is compiled, it can be run from a terminal by executing the compiled object.
In order to switch between the benchmark cases, one should edit the first line of main.cpp file, specifing the
address of the desired benchmark case, as instructed in the code.

3.6. Numerical Demonstration

Here we demonstrate that, for the benchmark cases, using ε-scaling speeds up the computation by decreasing
number of iterations required for achieving a given precision in Sinkhorn algorithm. Also, using discretization
scaling does not worsen total number of iterations, while achieving speedup by using cheaper iterations on the
first stage.
As stopping criteria for the native sinkhorn algorithm (3.2.1), we use the absolute value of the change f̃k+1

ε in
the first potential. In order to achieve a fair comparison with the ε-scaling algorithms, we also force ε-scaling
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3.6. Numerical Demonstration

algorithms to continue with native iterations after reaching final value of regularization parameter, until they
achieve same threshold.
Our input are the discretization of the analytical descriptions of the illumination/illuminance µ and ν described
below. All benchmark cases presented in this paper will have the same source and target domains X and Y .
The source domain X ⊂ S2 will be the inverse stereograpic projection in the northern hemisphere of the square
domain centered at the origin {(x1, x2) ∈ R2| − 0.6 ≤ x1 ≤ 0.6, −0.6 ≤ x2 ≤ 0.6}. Similarly, Y ⊂ S2 will
be the inverse stereographic projection in the southern hemisphere of same domain.
As discussed in remark 5 (see also [27]), we discretize those domains using Quasi Monte-Carlo discretizations
from [28]. We take N = 16488 ≈ 128 ∗ 128 points in each discretization. For discretization scaling, we use
Nsmall = 381. We compute each benchmark case with two different values for final ε, 1

4∗128 and 1
16∗128 . For

the second value, native sinkhorn algorithm is not applicable as we get an overflow on the very first iteration.

As according to convergence result from Theorem 3, for given ε = O(N)−
1
d we can expect only approximations

of order εlog(ε), we take f̃kε < 1.e − 5 as a stopping criteria, since when changes become smaller, each new
iteration adds less improvement, and approximation error becomes dominant.
Benchmark Case 1: Square To Circle. The source distribution µ will be the uniform distribution over the

set with a square stereographic projection StP (supp(µ)) = {(x1, x2) ∈ R2| − 0.5 ≤ x1 ≤ 0.5, −0.5 ≤ x2 ≤
0.5}. The target distribution ν will be an uniform distribution over the set with a disck (circle) stereographic
projection StP (supp(µ)) = {(x1, x2) ∈ R2|x2

1 +x2
2 ≤ 0.52}. Even though the densities are constant, mapping

from a non smooth support geometry of the square to the smooth geometry of a circle is not a trivial task.

εfinal Type of Algorithm Number of iterations

1
4∗128

Native 146
ε-scaling 116

Discretization scaling 121

1
16∗128

Native NA(Numeric Overflow)
ε-scaling 171

Discretization scaling 182

Benchmark Case 2: Square To Two Gaussians. The source distribution µ is the same as in the previ-
ous. The target distribution ν is a gaussian distribution with density on the projected domain ρ(x1, x2) =
e−16∗((x1−0.25)2+(x2−0.25)2) + e−16∗((x1−0.25)2+(x2+0.25)2) over whole target domain Y

εfinal Type of Algorithm Number of iterations

1
4∗128

Native NA (Slow convergence)
ε-scaling 202

Discretization scaling 175

1
16∗128

Native NA(Numeric overflow)
ε-scaling 502

Discretization scaling 184

An interesting phenomena occurs for this case. Since the target has very high steepness, convergence speed for
native algorithm, even for moderate value of ε, is extremely slow. Even after 1000 iterations, absolute value of
the incrementing term was of order 1.e − 3. On the other hand, scaling algorithm managed to converge with
comparable number of iterations as in previous case.

Deliverable D5.3
22



Part IV.
Reduced Order Multirate Simulation of Circuits
M.W.F.M. Bannenberg, A. Ciccazzo, M. Günther

Abstract

A benchmark case is presented for the application of reduced order multirate schemes in a MATLAB environ-
ment. Starting with the problem formulation and then a synopsis of the mathematical techniques applied in the
benchmark a test case is discussed. Then the numerical approach to the simulation implementation is outlined,
and finally a numerical experiment is shown verifying the validity of this benchmark case.
Keywords: Model Order Reduction, Multirate, Differential Algebraic Equations, Coupled Systems, Circuit
Simulation.
Latest release: https://doi.org/10.5281/zenodo.5171813
GitHub repository: https://github.com/ROMSOC/benchmarks-ROMR-schemes

4.1. Introduction

In integrated circuit design, there are a significant number of design possibilities under which the internal com-
ponents need to be guaranteed to work. This leads to a whole range of explorations to ensure sound functionality
of the design. These explorations are performed by numerical simulations of the circuits mathematical model.
Due to the ever increasing number of components, and thus the degrees of freedom in the model, the required
simulation times may become prohibitively large.
Besides the sheer number of components inside the integrated circuit, a large contribution to the complexity
of the mathematical model originates form the method of deriving these equations. As these models grow,
generating a state-space model with a minimal set of unknowns cannot be generated in an automatic way.
Therefore, the mathematical models have to be derived through use of algorithmic analysis. This automation
comes at a cost. The resulting system of differential-algebraic equations (DAE) is numerically harder to solve,
and may contain redundant network variables.
To decrease these ever increasing simulation costs a multitude of different approaches have been proposed in
the past decades. For instance, the redundancy originating from the network analysis can be exploited by using
model order reduction. This technique aims to solve a model of reduced size that still approximates the solution
of the original model. Furthermore, the large original system can be partitioned into subsystems which each
have their own characteristic rate of evolution through time. This property is capitalised upon by using multirate
(MR) time integration. This paper is specifically aimed at the combination of the two previously mentioned
techniques, and provides an overview from definition to implementation.

4.2. Problem Formulation

Consider the following coupled system of two semi explicit DAE systems, where the subscripts {F, S} indicate
a fast or slow time-scale, respectively, and independent transient sources have been omitted for notational
convenience:

d

dt
yF = fF(t, yF, zF, yS, zS), yF(t0) = yF0 , (4.1a)

0 = gF(t, yF, zF, yS, zS), zF(t0) = zF0 , (4.1b)
d

dt
yS = fS(t, yF, zF, yS, zS), yS(t0) = yS0 , (4.1c)

0 = gS(t, yF, zF, yS, zS), zS(t0) = zS0 , (4.1d)
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4.3. The Reduced Order Multirate Method

with the functions fA : R × Ra × Rb × Rc × Rd → Ra, with A ∈ {F, S}, where {a, b, c, d} ∈ N are
the respective dimensions, and equivalent definitions for gA. Consistent initial conditions are assumed, which
means that Equations (4.1b) and (4.1d) are satisfied at initial time t0. The quantities y{F,S} : I → R{a,b} and
z{F,S} : I → R{c,d} denote the differential and algebraic variables defined on the time interval [t0, t1] = I .
Both subsystems and the joint system are guaranteed to be index-1 by the assumption that the Jacobians

∂gF

∂zF
,
∂gS

∂zS
and

(
∂gF
∂zF

∂gF
∂zS

∂gS
∂zF

∂gS
∂zS

)
are invertible

in the neighbourhood of the solution of the system. From this assumption the algebraic variables z{F,S} can be
solved locally by using the implicit function theorem

zF = Gt,F (yF, zS , yS),

zS = Gt,S(yF, zF , yS),

where the second z subscript is the opposite of the first z subscript. The partition of the system into subsystems
can originate from different physical systems, such as temperature diffusion and electric currents. However,
differences in time scale can also be identified by different orders of time derivatives. Here the partition is
considered to be fixed during the time integration.

4.3. The Reduced Order Multirate Method

In this section a brief overview of the mathematical aspects of the reduced order multirate method is presented.
For a more in depth description see [31, 32, 33].

4.3.1. Maximum Entropy Snapshot Sampling

Letm and n be positive integers andm� n > 1. Define a finite sequenceX = (x1, x2, ..., xn) of numerically
obtained states xj ∈ Rm at time instances tj ∈ R, with j ∈ {1, 2, ..., n}, of a dynamical system governed by
either ODEs or DAEs. Provided a probability distribution p of the states of the system, the second-order Rényi
entropy of the sample X is

H(2)
p (X) = − log

n∑
j=1

p(xj)
2 = − logE(p(X)),

with E(p(X)) the expected value of the probability distribution p with respect to p itself. When n is large
enough, according to the law of large numbers, the average of p1, p2, ..., pn almost surely converges to their
expected value,

1

n

n∑
j=1

p(xj)→ E(p(X)) as n→∞,

thus each p(xj) can be approximated by the sample’s average sojourn time or relative frequency of occurrence.
To obtain this frequency of occurrence, consider a norm ‖ · ‖ on Rm. Then the notion of occurrence can be
translated into a proximity condition. In particular, for each xj ∈ Rm define the open ball that is centred at xj
and whose radius is ε > 0,

Bε(x) = {y ∈ Rm | ‖x− y‖ < ε},

and introduce the characteristic function with values

χi(x) =

{
1, if x ∈ Bε(xi),
0, if x /∈ Bε(xi).
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4.3. The Reduced Order Multirate Method

Under the aforementioned considerations, the entropy of X can be estimated by

Ĥ(2)
p (X) = − log

(
1

n2

n∑
i=1

n∑
j=1

χi(xj)

)
. (4.3)

Provided that the limit of the evolution of Ĥ(2)
p exists, for n large enough, and measures the sensitivity of the

evolution of the system itself [34, §6.6], a reduced sequence Xr = (x̄j1 , x̄j2 , . . . , x̄jr), with r ≤ n, is sampled
from X , by requiring that the entropy of Xr is a strictly increasing function of the index k ∈ {1, 2, . . . , r} [35].
The state vector x̄jk added to sampled snapshot space is the average value of all states in the selected ε-ball. A
reduced basis is then generated from Xr with any orthonormalization process.
The Estimation of ε: The open ball parameter ε, which is directly responsible for the degree of reduction within
the MESS framework, can be chosen arbitrarily, much like the number of selected basis vectors provided by a
POD approach. For a ballpark estimate of this parameter the following optimisation approach is provided. The
quantity within the logarithm in the entropy estimate (4.3) is often referred to as the sample’s correlation sum
and can be written as

Cε =
1

n2
‖Rε‖2F,

with Rε ∈ {0, 1}n×n being the recurrence matrix whose entries are unity, when ‖xi−xj‖ < ε, and ‖ · ‖2F being
the Frobenius norm. In terms of probability theory, Cε is a cumulative distribution function of ε, and hence,
its derivative dCε/dε is the associated probability density function of ε. A commonly justified hypothesis is
that the correlation sum scales as εD [36, Chapter 1], with D ≥ 0 being the so-called correlation dimension
of the manifold that is formed in Rm by the terms of X . Under this power law assumption, the maximum
likelihood estimate [37, Chapter 8] of the correlation dimension is estimated as follows. We find a sample {εi},
with εi ∈ [0, 1] for all i ∈ {1, 2, . . . , q}, of a random variable E that is sampled according to Cε. Then, the
probability of finding a sample in (εi, εi + dεi) in a trial is

q∏
i=1

DεD−1dεi.

To calculate the ε value for which this expression is maximized, we take the logarithm

q · lnD + (D − 1)

q∑
i=1

ln εi,

and note that the maximum of this expression is attained when

q

D
+

q∑
i=1

ln εi = 0.

This results in the most likely value D∗ = −1/〈lnE〉. The value for ε∗ is then estimated by choosing the ε
from the sample that produces a quotient that is closest to D∗. Thus ε can be estimated by

ε∗ = argmin(|D∗ − lnCε/ ln ε|).

4.3.2. The Gauß-Newton with approximated tensors method

Unfortunately, a direct application of MESS is not feasible in practice, [38, Section 7.6], therefore a simpli-
fied Gauß-Newton with Approximated Tensors (GNAT), equipped with a function-sampling-hyper-reduction
scheme is used. Firstly, a direct Galerkin projection may yield an unsolvable reduced system for DAEs. Sec-
ondly, the computational effort required to solve this reduced system and the full system is about the same in
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4.3. The Reduced Order Multirate Method

the nonlinear cases. This is due to the fact that the evaluation costs of the reduced system are not reduced at all
because the projection basis will be a dense matrix in general.
Considering a general DAE in the form

φ̇(t, u) + ψ(t, u) = 0,

where φ and ψ are functions of time t and some state vector u. In the discrete case, we assume that the numerical
scheme exactly solves the following nonlinear system for each time step ti,

R(u) = 0, (4.4)

where u ∈ RN , u0 the initial condition and the residual R : RN → RN . Note that for ease of notation, the
relevant time subscripts have been omitted, as this equation is solved for each individual time step. For the
reduction of the dimension of Equation (4.4), a projection is used to search the approximated solution in the
incremental affine trial subspace u0 + V ⊂ RN . Thus ũ is given by

ũ = u0 + Vuur, (4.5)

where Vu ∈ RN×nu is the nu-dimensional projection basis for V , and ur denotes the reduced incremental vector
of the state vector. Now deviating from the direct Galerkin projection process, Equation (4.5) is substituted into
Equation (4.4). This results in an overdetermined system of N equations and nu unknowns. Because Vu is a
matrix with full column rank, it is possible to solve this system by a minimisation in least-squares sense through

minũ∈u0+V ||R(ũ)||2.

This nonlinear least-squares problem is solved by the Gauß-Newton method, leading to the iterative process for
k = 1, ...,K, solving

sk = argmina∈Rnu ||JkVua+Rk||2,

and updating the search value wkr with
wk+1
r = wkr + sk,

where K is defined through a convergence criterion, initial guess w0
r , Rk ≡ R(u0 + Vuw

k
r ) and

Jk ≡ ∂R
∂u (u0, Vuu

k
r ). Here Jk is the full order Jacobian of the residual at each iteration step k. Since

the computation of this Jacobian scales with the original full dimension of Equation (4.4) this is a computa-
tional bottleneck. This bottleneck can be circumvented by the application of hyper reduction methods, for
which this paper utilises a gappy data reconstruction method.

Gappy Maximum Entropy Snapshot Sampling: The evaluation of the nonlinear function R(u0 + Vuw
k
r ) has a

computational complexity that is still dependent on the size of the full system. To reduce the complexity of this
evaluation the gappy MESS procedure, based on gappy POD, is applied. Like the gappy POD approach gappy
MESS uses a reduced basis to reconstruct gappy data. However, unlike the gappy POD approach the basis used
is now not obtained through POD but by MESS. Gappy MESS starts by defining a mask vector n for a solution
state u as

nj = 0 if uj is missing,

nj = 1 if uj is known,

where j denotes the j-th element of each vector. The mask vector n is applied point-wise to a vector by
(n, u)j = njuj . This sets all the unobserved values to 0. Then, the gappy inner product can be defined as
(x, y)n = ((n, x), (n, y)), which is the inner product of the each vector masked respectively. The induced
norm is then (||x||n)2 = (x, x)n. Considering the reduction basis obtained by MESS Vgap = {vi}ri=1, now we
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can construct an intermediate “repaired” full size vector g̃ from a reduced vector g with only r elements by

g̃ ≈
r∑
i=1

biv
i,

where the coefficients bi need to minimise an errorE between the original and repaired vector, which is defined
as

E = ||g − g̃||2n,

using the gappy norm so that only the original existing data elements in g are compared. This minimisation is
done by solving the linear system

Mb = f,

where
Mij = (vi, vj)n, and fi = (g, vi)n.

From this solution g̃ is constructed. Then the complete vector is reconstructed by mapping the reduced vectors
elements to their original indices and filling the rest with the reconstructed values.

4.3.3. The Reduced System

To incorporate the previous two sections into the partitioned DAE system (4.1a)-(4.1d), we first rewrite (4.1c)-
(4.1d) in a more general DAE form, to have the slow subsystem encapsulated into one equation.

d

dt
yF = fF(t, yF, zF, uS), yF(t0) = yF0 ,

0 = gF(t, yF, zF, uS), zF(t0) = zF0 ,

d

dt
φ(uS) = FS(t, yF, zF, uS), uS(t0) = (yS0 , zS0)>,

where FS : R × Ra × Rb × RmS → RmS and uS = (yS, zS)>. Into these equations we incorporate the back
projected reduced state ũSr = u0

S + VuuSr

d

dt
yFr = fF(t, yFr , zFr , ũSr),

0 = gF(t, yFr , zFr , ũSr),

d

dt
φ(ũSr) = FS(t, yFr , zFr , ũSr).

and then, with the Gappy MESS complexity reduction incorporated we obtain

d

dt
yFr = fF(t, yFr , zFr , ũSr),

0 = gF(t, yFr , zFr , ũSr),

d

dt
φ(ũSr) = FSr(t, ySr , zFr , ũSr).

Where FSr denotes the function FS solved by the reduced least squares approach. Note that the subscript r
denotes a reduction, and not the reduction factor.

4.4. Numerical integration

Since the set of equations used to describe the electrical circuits is constructed according to the topological
structure of the network. This often results in a coupled system of implicit differential and nonlinear equations,
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or more general a system of differential-algebraic equations (DAEs)

f(ẋ, x, t) = 0 with det
∂f

∂ẋ
≡ 0.

This system may represent ill-posed problems and is in general more difficult to solve numerically than the
more standard systems of ordinary differential equations (ODEs).

4.4.1. Backward Differentiation Formula

Starting from the consistent initial values, the time domain is discretised into time points t0, t1, ..., tN , and the
solution for each of these time points is approximated by an implicit linear numerical integration formula. A
direct approach, as proposed in [39], is by applying backward differentiation formula (BDF) method. This
multistep method is applied to a DAE system by using the ε-embedding method. Consider a semi-explicit
system with dynamical variables y and algebraic variables z,

ẏ = f(y, z),

εż = g(y, z).

then the multistep method gives

k∑
i=0

αiyn+i = h
k∑
i=0

βif(yn+i, zn+i),

ε
k∑
i=0

αizn+i = h
k∑
i=0

βig(yn+i, zn+i).

Then by putting ε = 0 we obtain

k∑
i=0

αiyn+i = h
k∑
i=0

βif(yn+i, zn+i),

0 =
k∑
i=0

βig(yn+i, zn+i).

which enables us to apply this method to a semi-explicit differential algebraic system. However, we want to
solve system, which can be an implicit differential algebraic system. Therefore, the multistep system for an
implicit DAE system, Mẋ = f(x), is given by

M

k∑
i=0

αixn+i = h

k∑
i=0

βif(xn+i) (4.9)

In general form, applying Equation (4.9) to an implicit nonlinear system of DAEs at time step tn yields

f(
1

h

k∑
i=0

αi
βi
xn−i, xn, tn) = 0.

This gives that the numerical solution of the system is thus reduced to the solution of the system of nonlinear
Equations 4.4.1. This system is solved iteratively for xn by applying Newton’s method.
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4.4.2. Multirate time-integration

The previously seen integration method is considered a singlerate time-integration method, as it integrates each
part of the equation with the same step-size. Opposed to this classical approach there are the multirate time-
integration methods, which use a different step-size, or even integration method, for parts of the equations with
different dynamical behaviour.
To apply multirate time-integration methods to DAEs it is required that all the subsystems in itself are stable,
which means that the DAE-index should be less than or equal to that of the full DAE. As we are partitioning
network equations of circuit models, it is known that they are composed of subcircuits or natural phenomena
in a hierarchical way. If we partition based on this hierarchy, we can check easily if the subsystems fulfil the
index requirements and obtain viable partitions.
As there are several different approaches available to implement multirate time-integration methods, we specify
in this subsection which approach is used. As has been shown in [32] and [31] a feasible method is given by the
Coupled-Slowest-First integration approach coupled with the implicit Euler method specified by a first order
BDF method. First, the full system is integrated one macro step, then by using interpolated values for the slow
system between tn and tn+1, the fast subsystem is integrated. This approach is chosen due to its stability using
constant interpolation on xS,n+1, and ease of implementation [40].

4.5. Verification and benchmark

The verification of the reduced order multirate method, utilising the discussed methods, and the netlist parser
to create the network equations is done through numerical experiments. For experiment an academic circuit
consisting of resistors, capacitors and diodes is considered. To benchmark the implementation of the reduced
order multirate method it is compared against the original BDF method and a multirate BDF method.

4.5.1. Academic experiment

The academic circuit shown in Figure 4.1 is a combination of a short diode chain and then a long ladder of
diodes and resistors. Similar to a standard diode chain model [41], this model contains sufficient redundancy to
make it eligible for model order reduction. Furthermore, increasing the resistance for each Ri with R < Ri <
Ri+1 makes that the ladder part of the circuits behaves on a slower timescale. This makes the circuit excellent
for a time integration with the reduced order multirate approach.

V

u1
D1

C R

u2
D2

C R

u3 u4 R1

un+2 Rn−1

un+3 Rn

Figure 4.1: The academic diode chain test model with redundancy.

4.6. Implementation and Results

The reduced order multirate simulation of circuits program is implemented using MATLAB R2019b. The main
file to run the benchmark is ROMSOC.m. This file can be run ’as is’ to replicate the results of this paper.
The file starts by including the sub-folders in which numerical methods and netlist parsing is encapsulated.
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4.7. Conclusion

For the reduced order multirate scheme benchmark the file multirate example long nonlin.cir is
used as netlist file. This file is parsed and then the resulting equations are used for the circuit simulation.
Should you desire to simulate other circuits, you can create your own netlist according to the syntax used in
the example netlists. Do notice that in the current version the indices for the fast and slow subsystems must be
partitioned manually. To create a longer diode chain for the academic diode chain test model, please use the
writeNetlist.m file and change the length of the second for-loop.
In the main file, first a reference solution is obtained by an integration with the MATLAB integrator ode15.
Then this reference solution is used to create the reduced order basis used in the model order reduction tech-
niques. These bases and parameters are stored in the mor object data structure and passed along each
integrator.
To benchmark the convergence of the reduced order multirate method the simulation is run for an increasing
number of time steps. The other simulation parameters are given in the box below.

Simulation parameters of the academic model
Starting time t0 0 s
Ending time tN 0.004 s
Number of steps N [100 200 400 800]
Multirate factor m 20
Newton tolerance tol 10−8

Original dimension n 3000
Reduced dimension r 2
Hyper-reduction factor g 23

Voltage source V 5 sin(40 · 2πt) V
Resistance R 1000 Ω
Resistance Ri i · 1000 Ω
Capacitance C 10 µF
Diode saturation current IS 10−12 A

Regarding the convergence of the reduced order multirate integration scheme, the left figure in Figure 4.2
illustrates the order 1 convergence rate. We see that the reduced order multirate accuracy is nearly identical
to that of the full order solutions. Furthermore, in the right figure of Figure 4.2 it shows that this accuracy
is achieved with a significant reduction in computational time. The computational effort is almost a order of
magnitude lower for the reduced schemes, while the precision is maintained. The positive effects of model
order reduction, multirate time integration and the combination of both is evident.

4.7. Conclusion

A clear definition of a benchmark case for the reduced order multirate method is presented. Along with the
source code distributed with this document a circuit simulation incorporating this new method can be run, and
the result are easily verified. The combination of multirate time integration and model order reduction into one
integration scheme shows a clear advantage for circuits with large redundancy. Higher order schemes are under
development and will be incorporated in the final deliverable.
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Figure 4.2: Convergence of the numerical schemes, where the error is plotted against the number of macro
steps (left). Computational effort of the numerical schemes, where the error is plotted against the computation
time in seconds (right). The error is defined as the absolute value between the computed voltage and reference

voltage for the output node. The MR error is omitted in the left figure as the difference introduced by the
reduction is negligible.
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Part V.
Model order reduction for parametric high dimensional
models in the analysis of financial risk
Andreas Binder, Onkar Jadhav, Volker Mehrmann

Abstract

It is essential to be aware of the financial risk associated with an invested product. The risk analysis of financial
instruments often requires the valuation of such instruments under a wide range of future market scenarios.
The market scenarios (e.g., interest rates) are then input parameters in a valuation function that delivers the
fair value of such financial instruments. These models are calibrated based on market scenarios that generate a
high-dimensional parameter space. In short, to perform the risk analysis, the financial model needs to be solved
for such a high dimensional parameter space, and this requires efficient algorithms. The first benchmark case
presents the yield curve simulation with parameter calibration. On the other hand, the second case gives the
model order reduction approach based on the proper orthogonal decomposition approach with greedy sampling
approaches for parameter sampling.
Keywords: Model order reduction, proper orthogonal decomposition, adaptive greedy sampling, financial risk
analysis, yield curve simulation
Latest release: https://doi.org/10.5281/zenodo.5171809
GitHub repository: https://github.com/ROMSOC/benchmarks-MOR-finance

5.1. Introduction

It is essential to be aware of the financial risk associated with an invested product. The risk analysis of financial
instruments often requires the valuation of such instruments under a wide range of future market scenarios.
The market scenarios (e.g., interest rates) are then input parameters in a valuation function that delivers the
fair value of such financial instruments. These models are calibrated based on market scenarios that generate a
high-dimensional parameter space. In short, to perform the risk analysis, the financial model needs to be solved
for such a high dimensional parameter space, and this requires efficient algorithms. These two benchmark
cases present the model order reduction approach based on the proper orthogonal decomposition approach with
greedy sampling approaches for parameter sampling.
The first case generates the 10000 simulated yield curves, which are then used to calibrate the financial model
parameters. The second case presents both the classical and adaptive greedy sampling approaches. The source
code for the yield curve simulation is given the file YieldCurveSimulation.m. The parameter calibration
based on these yield curves is given in file 1FHWcalibration.nb. The work provides a method to perform
such a computationally costly task as fast as possible but with a reliable outcome based on a model order
reduction approach.

5.2. Parametric Model Order Reduction Approach

We employ the projection based MOR technique to solve the full model (FM)

A(ρ(t))V n+1 = B(ρ(t))V n, V (0) = V0,

where the matrices A(ρ) ∈ RM×M , and B(ρ) ∈ RM×M are parameter dependent matrices. V ∈ RM is a high
dimensional state vector. t is the time variable t = [0, T ]. ρ is a group of model parameters. We need to solve
the system (5.2) for at least 10,000 parameter groups ρ generating a parameter space P of 10000 ×m, where
m is total number of tenor points of the yield curve. The idea is to project a high dimensional space onto a low
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5.3. Benchmark Case 1

dimensional subspace, Q as
V̄ n = QV n

d ,

where Q ∈ RM×d is a reduced order basis with d�M , Vd is a vector of reduced coordinates, and V̄ ∈ RM is
the solution obtained using the reduced order model. We get the reduced model as

QTA(ρ)QV n+1
d = QTB(ρ)QV n

d ,

Ad(ρ)V n+1
d = Bd(ρ)V n

d ,

where the matrices Ad(ρ) ∈ Rd×d and Bd(ρ) ∈ Rd×d are the parameter dependent reduced matrices. We now
solve this reduced model for the entire parameter space P .
We obtain the parametric reduced order model (5.2) based on a proper orthogonal decomposition method (POD)
[42, 43]. POD generates an optimal order orthonormal basis Q which serves as a low dimensional subspace
in the least square sense for a given set of computational data. The selection of a data set plays an important
role, and most prominently obtained by the method of snapshots [44]. In this method, the optimal basis is
computed based on a set of state solutions. These state solutions are known as snapshots and are calculated by
solving the HDM for some parameter values. The quality of the parametric reduced model mainly depends on
the selection of training parameters ρ1, ρ2, . . . , ρk for which the snapshots are computed. Thus, it necessitates
defining an efficient sampling technique for the high dimensional parameter space. We present a classical as
well as adaptive greedy sampling approach to select these training parameters. The greedy sampling method
introduced in [45] is proven to be an efficient method for sampling a high dimensional parameter space in the
framework of MOR for financial risk analysis.

5.2.1. Greedy Sampling Techniques

Greedy algorithms were first introduced as optimization techniques [46]. Their popularity increased in many
fields because, even though they do not necessarily find a globally optimal solution, they succeed in obtaining
local optima in a relatively short time. In the model order reduction, the greedy algorithm iteratively selects the
best possible parameter groups and constructs the reduced basis. The idea is to select the parameter groups at
which the error between the reduced model and the full model is maximal. At each greedy iteration, the method
seeks a parameter group where the reduced model solution is the worst for the existent reduced basis. Thus,
adding the full model solution for the worst parameter group to the snapshot matrix will ultimately improve the
quality of the reduced basis for the next iteration. Let εRM be the relative error between the full model and the
reduced model given as ‖εRM(., ρ)‖ = ‖V (., ρ)− V̄ (., ρ)‖/‖V (., ρ)‖. Since the computation of the relative
error requires the full model solution, the process becomes extremely computationally costly. Therefore, the
greedy sampling algorithm is generally trained on some randomly chosen pre-defined parameter subset P̂ ⊂ P ,
instead of the entire parameter space P . Also, the relative error is replaced by the error bounds or the relative
residual for the approximate solution V̄ .
For a high dimensional parameter space, it is not feasible to compute the error estimate for each parameter
vector. Thus, we run the greedy sampling algorithm for a pre-defined set of parameter vectors P̂ ⊆ P . The
selection of this subset could be random. However, the random selection of a parameter set may not contain
the parameter vector corresponding to the most significant error. Therefore, instead of selecting P̂ randomly,
we propose to select it adaptively. We construct a surrogate model ε̄ to approximate the error estimator ε over
the entire parameter space. Further, we use the surrogate model to locate the parameter vectors P̂ . The detailed
developed adaptive greedy approach is presented in [45].

5.3. Benchmark Case 1

The first proposed benchmark case is to validate the numerical methods implemented for the simulation of yield
curves and parameter calibration. The implemented numerical methods are following the guidelines provided
by the PRIIP regulations [47, 48].
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We perform a principal component analysis on the collected historical data to ensure that the simulation results
in a consistent curve. Further, using the principal components corresponding to their maximum energies, we
calculate the consistent interest rates and composed them into a matrix called as the matrix of returns. Finally,
we obtain the simulated yield curve by applying the bootstrapping procedure on the matrix of returns. To fulfill
the regulations demand, we perform the bootstrapping process for at least 10,000 times. The detailed procedure
can be found in the PRIIPs regulations. In this work, we implement the parameter calibration as described in
[49]. We use the inbuilt UnRisk functions for the parameter calibration. UnRisk PRICING ENGINE integrates
the pricing and calibration engines into Mathematica.

5.3.1. Description of Input Data

To perform yield curve simulation, we collect historical interest rate data. We construct a data matrix A ∈
Rn×m of the collected historical interest rates data, where each row of the matrix forms a yield curve, and the
column represents the m tenor points, which are the different contract lengths of an underlying instrument. For
example, we have collected the daily interest rate data at m ≈ 20 tenor points in time over the past five years,
and since a year has approximately 260 working days, we obtain n ≈ 1306 observation periods. This data
matrix is read as A in the MATLAB file YieldCurveSimulation.m.

5.3.2. Step-by-Step Procedure

5.3.2.1. Yield Curve Simulation

The yield curve simulation procedure is well described in [45]. The regulations demand to take the natural
logarithm of the ratio between the interest rate at each observation period and the interest rate at the preceding
period. To ensure that we can form the natural logarithm, we need that all elements of the data matrix A are
positive which is achieved by adding a correction term a as shown in the .m file corr A1 = A+a. Then we
calculate the log returns over each period and store them into a new matrix Â = Âij ∈ Rn×m as

Âij =
ln(Āij)

ln(Āi−1,j)
.

We calculate the arithmetic mean µj of each column of the matrix Â,

µj =
1

n

n∑
i=1

Âij ,

subtract µj from each element of the corresponding jth column of Â and store the obtained results in a matrix
¯̄A with entries ¯̄Aij = Âij − µj . This corrected returns are stored in the variable BarBarA in .m file. We then

compute the singular value decomposition of the matrix ¯̄A

[Vr, Fig1, Fig2] = PCA_YC(BarBarA, p);

AVr = BarBarA*Vr;

%% Matrix of Returns
VrT = transpose(Vr);
Matreturns = AVr * VrT;

to generate the matrix of returns stored in the variable Matreturns. The selection of singular vectors is based
on their energy levels. To do so, we plot the singular values of the data matrix A. MATLAB Figure(1) and
Figure(2) show these plots of monotonously decreasing singular values. We then select the first p right
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singular vectors corresponding to the p largest singular values. The regulations suggest selecting the first three
singular vectors.
We then perform bootstrapping, where large numbers of small samples of the same size are drawn repeatedly
from the original data set. According to the PRIIP regulations, for the yield curve simulation we have to
perform a bootstrapping procedure for at least 10 000 times. The standardized KID also has to include the
recommended holding period, i.e., the period between the acquisition of an asset and its sale. The time step
in the simulation of yield curves is typically one observation period. If H is the recommended holding period
in days, e.g., H ≈ 2600 days, then there are H observation periods in the recommended holding period.
The source code for the bootstrapping simulation is addressed in the subsection %% Simulations in the
YieldCurveSimulation.m file. For each such observation period, we select a random row from the
matrix of returns MR, i.e., altogether H random rows, and construct a matrix [χij ] ∈ RH×m from these
selected rows. In our benchmark example H = 10 years ≈ 2600 days. Then we sum over the selected rows of
the columns corresponding to the tenor point j, i.e.,

χ̄j =
h∑
i=1

χij , j = 1, · · · ,m.

In this way, we obtain a row vector χ̄ = [χ̄1 χ̄2 · · · χ̄m] ∈ R1×m. The final simulated yield rate yj at tenor
point j is then the rate d̄nj of the last observation period at the corresponding tenor point j, multiplied by the
exponential of χ̄j , adjusted for any shift γ used to ensure positive values for all tenor points, and adjusted for
the forward rate so that the expected mean matches current expectations.
The forward rate between time points tk and t` starting from a time point t0 is given as

rk,` =
R(t0, t`)(t` − t0)−R(t0, tk)(tk − t0)

t` − tk
,

where tk and t` are measured in years and R(t0, tk) and R(t0, t`) are the interest rates available from the data
matrix for the time periods (t0, tk) and (t0, t`), respectively. The forward rate calculation is presented in the
section %% Forward Rates in the .m file. Thus, the final simulated yield curve between time points tk and
t` is given by

y(t`) = d̄k,`exp(χ̄`)− γ + rk,l, ` = 1, · · · ,m,

and the simulated yield curve from the calculated simulated returns is given by

y = [y1 y2 · · · ym].

We then perform the bootstrapping procedure for at least s = 10 000 times and construct a simulated yield
curve matrix

Y =

y11 · · · y1m
...

...
...

ys1 · · · ysm

 ∈ Rs×m.

The simulated yield curves are stored in the variable Sim return and in percentage form
Sim returnPerc, which are then saved into excel file SimulatedYieldCurves.xlsx for the param-
eter calibration. These simulated yield curves can be plotted using the plot function of the MATLAB.

%% Plot output for simulated yield curves.
tic
figure(3)
X = [1 5 10 15 20 25 30 40 50]; % xticks
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T1 = TenorPoints; % tenor points of yield curves
plot(T1,Sim_returnPerc')
set(gca,'FontSize',14)
set(gcf, 'Position', [100, 100, 800, 500])
ax.FontSize = 14;
xticks(X);
xlabel('Terms in years','fontsize',18,'interpreter','latex');
ylabel('Simulated yield curves','fontsize',18,'interpreter','latex');
grid on
toc

5.3.2.2. Calibration of the Parameter a(t)

For a zero coupon bond B(t, T ) maturing at time T , based on the Hull-White model, one obtains a closed-form
solution, see [49], as

B(t, T ) = exp{−r(t)Γ(t, T )− Λ(t, T )},

where κ(t) =
∫ t

0 b(s)ds = bt, since b is assumed constant,

Γ(t, T ) =

∫ T

t
e−κ(t)dt,

Λ(t, T ) =

∫ T

t

[
eκ(v)a(v)

(∫ T

v
e−κ(z)dz

)
− 1

2
e2κ(v)σ2

(∫ T

v
e−κ(z)dz

)2]
dv.

Here we have again considered that σ is constant.
To perform the calibration, we use as input data i) the initial value of a(0) at t = 0, ii) the zero-coupon bond
prices, iii) the constant value of the volatility σ of the short-rate r(t), and iv) the constant value b each for all
maturities Tm, 0 ≤ Tm ≤ T , where Tm is the maturity at the mth tenor point. Then we compute κ(t) from
∂
∂T κ(T ) = ∂

∂T

∫ T
0 b(s)ds = b and use

∂

∂T
Γ(0, T ) = e−κ(T )

to compute Γ(t).
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Then, for 0 ≤ Tm ≤ T , we get

∂

∂T
Λ(0, T ) =

∫ T

0

[
eκ(v)a(v)e−κ(T )

− e2κ(v)σ2e−κ(T )

(∫ T

v
e−κ(z)dz

)]
dv,

eκ(T ) ∂

∂T
Λ(0, T ) =

∫ T

0

[
eκ(v)a(v)− e2κ(v)σ2

(∫ T

v
e−κ(z)dz

)]
dv,

∂

∂T

[
eκ(T ) ∂

∂T
Λ(0, T )

]
= eκ(T )a(T )−

∫ T

0
e2κ(v)σ2e−κ(T )dv,

eκ(T )

[
eκ(T ) ∂

∂T
Λ(0, T )

]
= e2κ(T )a(T )−

∫ T

0
e2κ(v)σ2dv,

∂

∂T

[
eκ(T )

[
eκ(T ) ∂

∂T
Λ(0, T )

]]
=
∂a(T )

∂T
e2κ(T ) + 2a(T )e2κ(T ) ∂

∂T
κ(T )− e2κ(T )σ2,

∂

∂T

[
eκ(T )

[
eκ(T ) ∂

∂T
Λ(0, T )

]]
=
∂a(T )

∂T
e2κ(T ) + 2a(T )e2κ(T )b(T )− e2κ(T )σ2.

The simulated yield y(T ) at the tenor point T is given by [50]

y(T ) = −lnB(0, T ),

and from (5.3.2.2) and (5.3.2.2) we obtain Λ(0, T ) = [y(T ) − r(0)Γ(t)]. In this way, for a(t) we get the
ordinary differential equation (ODE)

∂

∂t
a(t)e2κ(t) + 2a(t) · b · e2κ(t) − e2κ(t)σ2 =

∂

∂t

[
eκ(t)

[
eκ(t) ∂

∂t
(y(t)− r(0)Γ(0, t))

]]
,

which we solve numerically with the given initial conditions. If we approximate a(t) by a piecewise constant
function with values a(i) which change at the tenor point i, then we obtain a linear system

Lα = F,

for the vector α = [a(i)], where L is lower triangular matrix with non-zero diagonal elements. In [51] it is
noted that the integral equation Λ is of the first kind with L2 kernel and a small perturbation (noise) in the
market data that are used to obtain the yield curves leads to large changes in the model parameter a(t). This
means that the problem to compute a(t) from the data is an ill-posed problem and for this reason we determine
the vector α via Tikhonov regularization as

αδµ = argmin‖Lα− F δ‖2 + µ‖α‖2,

where αδµ is an approximation to α, µ is the regularization parameter, δ = ‖F − F δ‖ is the noise level, and
µ‖α‖2 is a regularization term. We then solve the optimization problem (5.3.2.2) to obtain an approximation of
the parameter a(t) via the commercial software UnRisk PRICING ENGINE [52] in Mathematica. The source
code for the calibration of the model parameter a(t) is in the file 1FHWcalibration.nb. This program takes
the simulated yield curves stored in the file SimulatedYieldCurves.xlsx as an input. The parameters
b = 0.015 and σ = 0.006 are kept constant. Note that this file demands a special license to the commercial soft-
ware UnRisk Pricing Engine, which is initiated by Needs["UnRisk UnRiskFrontEnd"]. The program
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returns the 10 000 deterministic drift rates a(t) for 10 000 simulated yield curves. For the floater example, we
need parameter values only until the 10Y tenor point (maturity of the floater). Henceforth, we consider the sim-
ulated yield curves with only the first 12 tenor points t = {0, 65, 260, 520, 780, 1040, 1300,
1560, 1820, 2080, 2340, 2600}. The parameter a(t) is stored in the variable DDF1FL after cali-
brating the Hull-White model using the command MakeGeneralHullWhiteModel. Then we export these
piecewise constant parameters into a file using the command Export["DD 1FHWModel 10000.xlsx",
DDF1FL]. By providing the simulated yield curve, the UnRisk pricing function returns the calibrated param-
eter a(t) for that yield curve. Based on s = 10 000 different simulated yield curves, we obtain s different
piecewise constant parameters a`(t), which change their values α`,i only at the m tenor points. We incorporate
these in a matrix

A =

α11 · · · α1m
...

...
...

αs1 · · · αsm

 .
5.4. Benchmark Case 2

The main task of this research is to implement a parametric model order reduction approach for financial risk
analysis. Second benchmark case is to verify the implemented MOR algorithm. We use a finite difference
method for simulating the convection-diffusion-reaction PDE. The projection-based MOR approach has been
implemented, and the reduced-order basis is obtained using the proper orthogonal decomposition approach with
the classical and adaptive greedy sampling methods.
The benchmark case addresses both the algorithms and presents MATLAB code for the same.

5.4.1. Description of Input Data

The classical greedy sampling and the adaptive greedy sampling have been used to locate the training pa-
rameters required to generate the reduced basis. The classical greedy sampling algorithm takes the pa-
rameter space P , maximum number of iterations Imax, maximum number of parameter groups c, and tol-
erance εtol as inputs. The variable a defines the matrix composed of parameter vectors a(t) in the sec-
tion %% Model Parameters in .m file. a takes the calibrated parameters stored in the excel file
DD 1FHWModel 10000.xlsx obtained in the benchmark case 1. The user can define the number of maxi-
mum parameter groups required to initiate the algorithm, the maximum number of iterations, and the tolerance
using the variables c, Imax, max tol, respectively. For example, in our sample code, the values are c = 20,
Imax = 10, max tol = 10−5.
The adaptive greedy sampling algorithm also takes the parameter space P , maximum number of iterations
Imax, maximum number of parameter groups c, and tolerance emaxtol as inputs. Along with other inputs, the user
needs to specify the number of adaptive candidates to complete the surrogate model loop. The user can define
these inputs using the variables c, Imax, max tol, and ck respectively. For example, in our sample code, the
values are c = 20, Imax = 10, ck = 10, and max tol = 10−8.

5.4.2. Step-by-Step Procedure

5.4.2.1. Classical Greedy Sampling

The algorithm is initiated by selecting a parameter group ρ1 from the parameter set P and computing a reduced
basis Q1. The first group of parameter is shown using variables a(1:1,:), b, sigma. It is necessary to
note that the choice of a parameter group to obtain the initial reduced basis Q1 does not affect the final result.
One can initiate the greedy sampling algorithm with any parameter group. Nonetheless, for the simplicity of
computations, we select the first parameter group ρ1 from the parameter space P to obtain Q1.
The greedy iteration are indexed with Niter and runs for Imax iterations. Furthermore, a pre-defined pa-
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rameter set P̂ of cardinality c has been chosen randomly from the set P and shown with variable NpSel in
MATLAB file. At each point of P̂ , the algorithm determines a reduced model with reduced basis Q1 and then
computes error estimator values, ε(ρj)cj=1. The parameter group in P̂ at which the error estimator is maximal
is then selected as the optimal parameter group ρI .
max function is used to locate this parameter group. The error estimator values obtained by solving the reduced
models are stored in Error. The following command locates the parameter group that maximizes the error
estimator

[max_Error(1,(Niter-1)),max_idErr(1,(Niter-1))] = max(Error(:))

It also gives the location of the parameter group within the pre-defined parameter set NpSel. Then the full
model is simulated for this parameter group and the snapshot matrix V̂ is updated. Finally, a new reduced
basis is obtained by computing a truncated singular value decomposition of the updated snapshot matrix. The
truncated SVD is based on the randomized algorithm, which is given by the function RandSVD

[U1,S1,V1] = RandSVD(SnapShots,RankS(1,Niter-1));

These steps are then repeated for Imax iterations or until the maximal value of the error estimator is lower than
the specified tolerance εtol.

if max_Error(1,(Niter-1)) < max_tol
Q = Q_Niter;
break

end

The truncated SVD computes only the first k columns of the matrix Φ. The optimal projection subspace Q then
consists of d left singular vectors φi known as POD modes. The dimension d of the subspace Q is chosen such
that we get a good approximation of the snapshot matrix. According to [53], large singular values correspond to
the main characteristics of the system, while small singular values give only small perturbations of the overall
dynamics. The relative importance of the ith POD mode of the matrix V̂ is determined by the relative energy
Ξi of that mode

Ξi =
Σi∑k
i=1 Σi

If the sum of the energies of the generated modes is 1, then these modes can be used to reconstruct a snap-
shot matrix completely [54]. In general, the number of modes required to generate the complete data set is
significantly less than the total number of POD modes [55]. Thus, a matrix V̂ can be accurately approximated
by using POD modes whose corresponding energies sum to almost all of the total energy. Thus, we choose
only d out of k POD modes to construct Q = [φ1 · · ·φd] which is a parameter independent projection space.
%% Selection of the reduced dimension describes the procedure to select the first d left singular
vectors based on their relative energies that generate the reduced basis Q d.

Eg = diag(S1)./sum(diag(S1));
%
for ii = 1:length(Eg)

SumEg = sum(Eg(1:ii,1))*100;
if SumEg > 99.99

d = ii;
break

end
end
%
Q_d = Q_Niter(:,1:d);
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The function CGPlots is used to plot the results obtained using the classical greedy sampling approach. The
progression of the maximal and average residuals with each iteration of the greedy algorithm is presented in
Figure(1). The projection error associated with the reduced basis is calculated using (5.4.2.1) is plotted in
Figure(3).

εCG
POD =

1

iT

iT∑
i=1

‖Vi(ρI)−
∑̀
iT=1

(Vi(ρI)φk)φk‖22 =

iT∑
`=d+1

Σ2
` .

5.4.2.2. Adaptive Greedy Sampling

To overcome drawbacks of the classical greedy sampling approach, we implement the adaptive sampling ap-
proach which selects the parameter groups adaptively at each iteration of the greedy procedure, using an op-
timized search based on surrogate modeling. The surrogate model constructs an approximate model for the
desired simulation output, i.e., in our case, the error estimator. Then the surrogate model is trained on some
error estimator values. This training data is obtained by solving the reduced model for some random parameter
groups. Subsequently, we can deploy this trained surrogate model to perform simulations instead of the original
model. Since the single evaluation of the surrogate model is faster than the original model, performing thousand
of evaluations for the given high dimensional parameter space is no longer a problem. In short, the surrogate
modeling methods make those expensive computations economical.
There are different choices to build a surrogate model: regression models [56], decision trees [57], machine
learning and artificial neural networks [56, 58], and kriging models [59]. In this work, we present two options
based on the principal component regression model (PCR) and the K-nearest neighbor (KNN) algorithm. The
PCR algorithm is presented in the function PCRSM, while the KNN algorithm is in the function KNN.
The adaptive greedy sampling algorithm utilizes the designed surrogate model to locate optimal parameter
groups adaptively at each greedy iteration i = 1, ..., Imax. The greedy iteration are indexed with i and runs
for Imax iterations. The first few steps of the algorithm resemble the classical greedy sampling approach.
First the parameter group ρ1 is selected from the parameter space P and the reduced basis Q1 is constructed.
Furthermore, the algorithm randomly selects c0 parameter groups (defined using c0 in .m file) and constructs
a temporary parameter set P̂0 = {ρ1, ..., ρc0} and shown with variable NpSel in MATLAB file. For each
parameter group in the parameter set P̂0, the algorithm determines a reduced order model and computes an
array of corresponding residual errors ε̂0 = {ε(ρ1), ..., ε(ρc0)}. Then a surrogate model for the error estimator
ε̄ is constructed based on the estimator values {ε(ρj)}c0j=1 using either PCRSM or KNN. The user can choose
the surrogate model as desired. The obtained surrogate model is then simulated for the entire parameter space
P . Furthermore, we locate ck parameter groups corresponding to the first ck maximal values of the surrogate
model. This selection is made using the maxk function as follows

[MAX_SM(jjj,:),MAX_SMid(jjj,:)] = maxk(SM,ck)

which determines the first ck values of the surrogate model SM and the corresponding parameter groups
a(MAX SMid’,:). We then construct a new parameter set P̂k = {ρ1, ..., ρk} composed of these ck parameter
groups as

NpSel2 = cat(1,NpSel,a(MAX_SMid',:)).

The algorithm determines a reduced model for each parameter group within the parameter set P̂k and obtains
an array of error estimator values ε̂k = {ε(ρ1), ..., ε(ρck)}. Furthermore, we concatenate the set P̂k and the
set P̂0 to form a new parameter set P̂ = P̂k ∪ P̂0. Let esg = {ε̂0 ∪ · · · ∪ ε̂k} be the set composed of all the
error estimator values available at the kth iteration. The algorithm then uses this error estimator set esg to build
a new surrogate model. The quality of the surrogate model increases with each iteration as we get more error
estimator values. This process is repeated until the cardinality of the set P̂ reaches c, giving

P̂ = P̂0 ∪ P̂1 ∪ P̂2 ∪ · · · ∪ P̂K .
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Finally, the optimal parameter group ρI which maximizes the error estimator is extracted from the parameter
set P̂ . The following command locates the parameter group that maximizes the error estimator

[max_Error(1,(Niter-1)),max_idErr(1,(Niter-1))] = max(Error2(:))

It also gives the location of the parameter group with the parameter set NpSel2.

5.4.2.2.1. Convergence of the Adaptive Greedy Sampling Algorithm In the classical greedy sam-
pling approach, we used the residual error to observe the convergence of the algorithm, which estimates the
relative error between the full model and the reduced model. However, in the adaptive greedy POD algorithm,
we use an approximate model ε̂RM (RE appx) for the relative error εRM (RE) as a function of the residual
error ε to monitor the convergence. This is more accurate than using only the residual error as a convergence
criterion.
At each greedy iteration, the algorithm solves one full model for the optimal parameter group ρI to update
the snapshot matrix and construct a new reduced basis. We can utilize this information for the construction
of an approximate relative error model. We solve two reduced models for the optimal parameter group, one
before and another after updating the reduced basis (Qbef , Qaft), and obtain respective error estimator values
εbef (ρI) and εaft(ρI) (resd b, resd a). Then we calculate the relative errors εbefRM, εaftRM (RE b, RE a)
between the full model and the two reduced models constructed before and after updating the reduced basis.
Here superscript bef and aft denote the before and after updating the reduced basis. In this way, we get a set
of error values Ep at each greedy iteration that we can use to construct an approximate model for the relative
error based on the error estimator.

Ep = {(εbefRM,1, ε
bef
1 ) ∪ (εaftRM,1, ε

aft
1 ), . . . , (εbefRM,i, ε

bef
i ) ∪ (εaftRM,i, ε

aft
i )}

The error set is generated as follows in the code

RE_U = cat(2,RE_b,RE_a);
resd_U = cat(2,resd_b,resd_a);
Ep = cat(RE_u, resd_U);

We then construct an approximate model for the relative error using the polyfit command based on the error
estimator as

log(ε̂RM,i) = γilog(ε) + logτ.

Setting Y = log(ε̂RM),X = log(ε) and τ̂ = log(τ) we get

Y = γeX + τ̂ ,

where γe is the slope of the linear model and τ̂ is the intercept with the logarithmic axis log(y).
Similar to the classical greedy sampling program, %% Selection of the reduced dimension de-
scribes the procedure to select the first d left singular vectors based on their relative energies that generate the
reduced basis Q d.

Eg = diag(S1)./sum(diag(S1));
%
for ii = 1:length(Eg)

SumEg = sum(Eg(1:ii,1))*100;
if SumEg > 99.99

d = ii;
break

end
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end
%
Q_d = Q_Niter(:,1:d);

The function AGPlots is used to plot the results obtained using the classical greedy sampling approach. The
progression of the maximal and average residuals with each iteration of the greedy algorithm is presented in
Figure(1). The projection error associated with the reduced basis is calculated using (5.4.2.1) is plotted in
Figure(3).

εAG
POD =

1

iT

iT∑
i=1

‖Vi(ρI)−
∑̀
iT=1

(Vi(ρI)φk)φk‖22 =
iT∑

`=d+1

Σ2
` .

After each greedy iteration, we get more data points in the error set Ep, which increases the accuracy of the
error model, provided that the linear model assumption is validated. Figure(4) illustrate with the obtained
results that this linear model assumption is sufficient to achieve an acceptable approximate relative error model.
We then use this error model in the adaptive greedy sampling to monitor the convergence of the algorithm.

5.5. Summary

The benchmark cases present the procedure for yield curve simulation along with the developed model order
reduction framework for a numerical example of a floater instrument with caps and floors. We solve this
instrument using the robust one-factor Hull-White model.
All computations are carried out on a PC with 4 cores and 8 logical processors at 2.90 GHz (Intel i7 7th
generation). We used MATLAB R2018a for the yield curve simulations, FDM, and the model reduction. The
numerical method for the yield curve simulations is tested with real market based historical data. Market
data are available from market data providers like Thomson Reuters, Bloomberg, and several others. We
obtained this data from MathConsult within their UnRisk Omega datasets [52]. The daily interest rate data
are collected at 21 tenor points in time over the past 5 years, where each year has 260 working days, so there
are 1300 observation periods. We have used the inbuilt UnRisk tool for the parameter calibration, which is well
integrated with Mathematica (version used: Mathematica 11.3). Further, we used calibrated parameters for the
construction of Hull-White models.

DISCLAIMER

In downloading this SOFTWARE you are deemed to have read and agreed to the following terms: This SOFT-
WARE has been designed with an exclusive focus on civil applications. It is not to be used for any illegal,
deceptive, misleading or unethical purpose or in any military applications. This includes ANY APPLICA-
TION WHERE THE USE OF THE SOFTWARE MAY RESULT IN DEATH, PERSONAL INJURY OR SEVERE
PHYSICAL OR ENVIRONMENTAL DAMAGE. Any redistribution of the software must retain this disclaimer.
BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU AGREE TO THE TERMS
ABOVE. IF YOU DO NOT AGREE TO THESE TERMS, DO NOT INSTALL OR USE THE SOFTWARE
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Part VI.
Model order reduction for parametric high dimensional
interest rate models in the analysis of financial risk
Andreas B’́armann, Alexander Martin, Jonasz Staszek

Abstract

The aim of this benchmark is to provide the basis for comparison of various solution algorithms and approaches
against a realistic dataset, reflecting the trains to be performed in February 2020, the available locomotives and
drivers, as well as information about its compatibility.
Keywords: discrete optimization, joint vehicle and staff assignment, integer model, joint vehicle and crew
scheduling.
Latest release: https://doi.org/10.5281/zenodo.5171817
GitHub repository: https://github.com/ROMSOC/benchmarks-mip-rail-scheduling

6.1. Introduction

DB Cargo Polska works with the Chair of Analytics and Mixed Integer Optimization at Friedrich-Alexander-
Universität Erlangen-Nürnberg to build a prototype of a new planning tool, which would come up with loco-
motive schedules and driver rosters simultaneously. As of today, the industry standard is to plan locomotives
and drivers separately. The reason for this is the fact that both the planning areas are challenging on their own,
and – without computational support – it would be impossible to consider both the areas at the same time. Such
fragmented approaches were criticised in the literature already in 1980s’ – see for example [60].
The purpose of the presented benchmarks is to present a set of instances, which we derived in collaboration with
the industrial partner, as well as the procedures required to come up with complete Binary Programming models
for these instances. In this work, we will only introduce the naive formulation of the mentioned binary models.
Formulation improvements, as well as the algorithms to efficiently solve these models will be introduced in
Deliverables D4.2 and D4.3.

6.1.1. A joint model for locomotive scheduling and driver rostering in rail freight transport

We model the joint locomotive scheduling and driver rostering problem as a combination of a set packing
problem with compatibility, conflict and multiple-choice constraints and a multicommodity flow problem. Our
objective is to maximize the number of trains performed, i.e. to maximize the number of trains for which both
a locomotive and a driver were found. The inputs to the model are: a set T of trains to be performed, a set of
locomotives L and a set of drivers D. To denote the sets of locomotives compatible with a driver d ∈ D or
a train t ∈ T d, we use L d and L t respectively. Let Dl and Dt represent a set of drivers compatible with a
locomotive l ∈ L or a train t ∈ T respectively. Finally, let T l and T d be a set of trains compatible with a
locomotive l ∈ L or a driver d ∈ D respectively.

6.1.1.0.1. Sets required for constraints construction We also introduce a number of sets required to
build the constraints of the model. Table 2 presents a summary of the sets required for constraint construction.
Their exact definitions can be found in the Appendix A.
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6.1. Introduction

Name Description

TB+
t,d Trains which cannot be assigned to a driver d if t is his last job in a working

day
T 35h
t,d Trains which cannot be assigned to a driver d if t is his last job before a weekly

35h break
TB−t,d Trains which cannot be assigned to a driver d if t is his first job in a working

day
Tweekw,d Trains which belong to a calculation week w
T sundayw,d Trains which belong to a Sunday falling on a week w
T shift beginningt,d Past trains which could have been assigned to driver d if he is assigned to a

job t.
T shift endt,d Future trains which can be assigned to driver d if he is assigned to a job t.
T timet,d Trains which are feasible for driver d and in time conflict with the train t
T after breakt,d Trains which could be the first jobs of the next shift after the 11h break fol-

lowing train t
T before breakt,d Trains which could have been the last job of the previous shift before the 11h

break preceding train t
Tnext lt,l Future trains which could be assigned to locomotive l if is assigned to a job t

Table 2: Descriptions of the sets required for constraint construction

6.1.1.1. Multi-commodity flow part of the model

We consider the set L = {l1, l2, l3, . . .} of locomotives to be modeled as commodities which need to be
”pushed” through a directed graph G = (V,A), which could be defined as V := T and

A := {(t1, t2) : t1 ∈ T l ∧ t2 ∈ Tnext lt,l ∀ l ∈ L }.

Let us also define Σ and Θ ∈ V as the source and sink nodes of the graph G, respectively. Additionally let us
assume that we have one item of each commodity. Further, let each arc a ∈ A have unit capacity i.e. it can host
at most one commodity. We also assume the limited compatibility of each arc with regard to commodities –
that means we may not be allowed to push every commodity through every arc.

6.1.1.2. Decision variables

In the model, we need to make sure that each train is staffed by exactly one suitable driver and one suitable
locomotive. These decisions are modelled with binary variables xtd (for drivers) and f t1,t2l (for locomotives).
To comply with the working time requirements, we need to distinguish between the first job in a shift, denoted
by a binary variable ytd, the last job in a shift before a short (11 hour) break, denoted by a binary variable vtd
and the last job in a shift before a long (35 hour) break, denoted by a binary variable ztd. We also need to know
whether a driver has worked on a given Sunday. This is denoted by a binary variable hwd .
Finally, for modelling purposes we also need to know which trains t are the first and the last job for drivers in
the planning period. We do that with the help of binary variables αtd and ωtd, which denote that the train t is
respectively the first or the last one in the planning period for a driver d ∈ D. All the variables are summarized
in Table 3.
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Name Description Type

fu,vl Trains u, v are served by a locomotive l binary
xtd Train t is served by a driver d binary
ytd Train t is the first job of a driver d in their shift binary
vtd Train t is the last job of a driver d before a 12h break binary
ztd Train t is the last job of a driver d before a 35h break binary
αtd Train t is the first train of driver d in the planning period binary
ωtd Train t is the last train of driver d in the planning period binary
hwd Driver d has worked on the Sunday of the week w binary

Table 3: Summary of decision variables used in the model

6.1.1.3. Model formulation

max
∑
t∈T

∑
d∈Dt

xtd (6.1)

s.t. xtd ≤
∑

l∈L d∩L t

u:(t,u)∈E

f t,ul (∀t ∈ T )(∀d ∈ Dt) (6.2)

∑
v:(t,v)∈E

f t,vl ≤
∑

d∈Dl∩Dt
xtd (∀t ∈ T \ {A}) (∀l ∈ L t)

(6.3)∑
d∈Dt

xtd ≤ 1 (∀t ∈ T ) (6.4)

∑
t∈T d

αtd ≤ 1 (∀d ∈ D) (6.5)

∑
t∈T d

ωtd ≤ 1 (∀d ∈ D) (6.6)

xtd + xt1d ≤ 1 (∀d ∈ D) (∀t ∈ T d) (∀t1 ∈ T timet,d )

(6.7)

ytd + xt1d ≤ 1 (∀d ∈ D) (∀t ∈ T d) (∀t1 ∈ TB−t,d )

(6.8)

vtd + xt1d ≤ 1 (∀d ∈ D) (∀t ∈ T d) (∀t1 ∈ TB+
t,d )

(6.9)

ztd + xt1d ≤ 1 (∀d ∈ D) (∀t ∈ T d) (∀t1 ∈ T 35h
t,d )

(6.10)

vtd ≤ ωtd +
∑

t1∈Tafter breakt,d

yt1d (∀d ∈ D) (∀t ∈ T d)(6.11)

ytd ≤ αtd +
∑

t1∈T before breakt,d

vt1d (∀d ∈ D) (∀t ∈ T d)(6.12)

xtd ≤
∑

t1∈T shift beginningt,d

yt1d (∀d ∈ D) (∀t ∈ T d)(6.13)
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xtd ≤
∑

t1∈T shift endt,d

vt1d (∀d ∈ D) (∀t ∈ T d)(6.14)

vtd ≤
∑

t1∈T shift beginningt,d

yt1d (∀d ∈ D) (∀t ∈ T d)(6.15)

xtd ≤
∑

t1∈Tweekt,d

zt1d (∀d ∈ D) (∀t ∈ T d)(6.16)

αtd ≤
∑
t1:t1≥t

ωt1d (∀d ∈ D) (∀t ∈ T d)(6.17)

xtd ≤ hwd (∀d ∈ D) (∀t ∈ T sundayw,d )

(6.18)∑
w∈T d

hwd ≤ 3 (∀d ∈ D) (6.19)

ytd ≤ xtd (∀d ∈ D) (6.20)

vtd ≤ xtd (∀d ∈ D) (6.21)

αtd ≤ xtd (∀d ∈ D) (6.22)

ωtd ≤ xtd (∀d ∈ D) (6.23)∑
v∈δin(t)∩ T l

fv,tl −
∑

w∈δout(t)∩ T l
f t,wl = 0 (∀t ∈ T ) (∀l ∈ L t)(6.24)

∑
l∈L t∩L t1

f t,t1l ≤ 1 (∀(t, t1) ∈ A) (6.25)

∑
l∈L t

∑
t0∈δin(t)∩T l

f t0,tl ≤ 1 (∀t ∈ T ) (6.26)

∑
t:(Σ,t)∈E∧t∈T l

fΣ,t
l ≤ 1 (∀l ∈ L ) (6.27)

∑
t1∈T l

fΣ,t1
l −

∑
t2∈T l

f t2,Θl = 0 (∀l ∈ L ) (6.28)

xtd ∈ F (∀t ∈ T ) (∀d ∈ Dt)(6.29)

ytd ∈ F (∀t ∈ T ) (∀d ∈ Dt)(6.30)

vtd ∈ F (∀t ∈ T ) (∀d ∈ Dt)(6.31)

ztd ∈ F (∀t ∈ T ) (∀d ∈ Dt)(6.32)

αtd ∈ F (∀t ∈ T ) (∀d ∈ Dt)(6.33)

ωtd ∈ F (∀t ∈ T ) (∀d ∈ Dt)(6.34)

f t1,t2l ∈ F (∀(t1, t2) ∈ E) (∀l ∈ L t1 ∩L t2)
(6.35)

With objective function (6.1), we maximize the number of trains running. Constraints (6.2) and (6.3) make
sure that either both a locomotive and a driver or none of them are assigned to the train; they also take care
that driver and locomotive are mutually compatible. With (6.4), we ensure that at most one driver is assigned
to a train. Constraints (6.5) and (6.6) ensure that there is no more than one schedule per driver in the plan.
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Using constraint (6.7), we ensure that no two trains which run simultaneously are assigned to the same driver.
With (6.8) and (6.9) we model that the minimal length of a short break amounting to 11 hours is not violated.
Additionally, with (6.10) we ensure the integrity of the long, 35-hour break. Using (6.11), we make sure that
each last job t in a shift is succeeded by a first job of the next shift, or that the job t is the last one assigned to
driver d in the plan. Similarly, with (6.12) we model that each first job t in a shift was predecessed by a last job
of the previous shift, or that the job t is the first one assigned to driver d in the plan. Constraints (6.13), (6.14)
and (6.15) ensure the integrity of drivers’ shifts and model the maximal length of a shift amounting to 12 hours.
Using (6.16) we make sure that at least one long break per week is assigned to each driver in every week falling
in the planning period. With the help of (6.17) we make sure that the last job of a driver in the plan is the
same or a later one as the first job in the plan. Using constraints (6.18) and (6.19) we make sure that a driver
works on at most three Sundays in a given planning period. Constraints (6.20), (6.21), (6.22) and (6.23) tie
each ”indicator” variable to the actual decision variable.
For the locomotive part of the model, (6.24) ensures that a locomotive that serves a train t arrives at its origin
station and in the due time, and similarly it later departs from train t’s arrival station. Using (6.25) we ensure
that at most one locomotive serves each train. With the use of (6.26), we make sure that an appropriate successor
and predecessor are chosen for a locomotive l ∈ L given it serves a train t ∈ T l. We use (6.27) to warrant
that at most one first train is chosen for each locomotive. Constraint (6.27) ensures that each locomotive has a
unique first and a unique last train in a plan. With the help of (6.28) we ensure the integrity of the locomotive
schedule. Finally, constraints (6.29) to (6.35) ensure that the decision variables are binary.

6.2. Input data description

Our industry partner provided us with a high-quality real-world data set for the problem. They represent the
trains the industrial partner planned to serve in February 2020, as well as the information about drivers and
locomotives which was up to date on February 14, 2020. It comprises six files – we will now describe each in
detail.

6.2.0.0.1. Order book It is a list of all the trains that need to be performed, including their origin and
destination stations, as well as departure and arrival times and assignment to calculation weeks. In the supplied
instance, there are four calculation weeks, starting on Saturday and lasting till next Friday. It is contained in
file trains.csv.

6.2.0.0.2. List of drivers This file comprises the list of all the drivers, including their licenses to locomo-
tive types, knowledge of routes and assignments to regions. It is included in file drivers.csv.

6.2.0.0.3. List of locomotives In this file, information about all the available locomotives is included. In
particular, it comprises their class, source of energy (electric / diesel) and power. For each train powered by a
locomotive which is not the property of the industrial partner, an artificial entry is made, stipulating only the
required locomotive class. All that information can be found in the file unique locos.csv.

6.2.0.0.4. Distances between stations This file includes estimated distances and travel times between
all the stations present in the order book. This information is required to be able to allow drivers to move
between various stations while not driving a train during their shift. These times were estimated using the API
of Google Maps. They were up to date as of February 14, 2020. These distances and travel times are included
in the file distance matrix.csv.

6.2.0.0.5. Assignment of stations to regions Here, each station present in the order book is assigned
to one of the driver regions. It is included in file station region mapping.csv.

6.2.0.0.6. Assignment of drivers to regions This is an auxiliary source of information about the as-
signment of drivers to planning regions. It It is included in file driver region mapping.csv.
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Based on the data we received, we have developed ten instances. Table 4 below presents a summary of param-
eters of each instance we develop.

instance # days # trains # drivers # locomotives

1M 29 2551 217 112
3W 1 21 1854 217 112
3W 2 21 1838 217 112
2W 1 14 1239 217 112
2W 2 14 1242 217 112
2W 3 14 1228 217 112
1W 1 7 629 217 112
1W 2 7 610 217 112
1W 3 7 615 217 112
1W 4 7 613 217 112

Table 4: Overview of instance parameters and model generation times

6.3. Step-by-step procedure

In this section, the requirements for the scripts to run will be given. We will also provide a step-by-step manual
for the usage of the benchmarks introduced.

6.3.1. Requirements

Our code is written in Python 3.7. Hence, the host machine needs to have a distribution of Python 3.7 or
newer installed. Apart from packages available in the Python Standard Library, we also used numpy (for some
numeric manipulations) and networkx (for the representation of graph objects and graph-related algorithms).
Our model was built with gurobipy, which is Python’s API to the routines of the Gurobi solver. We have
used Gurobi 9.1 in our work. Although Gurobi is a proprietary software, a free non-commercial license is
available to all the members of academic community.

6.3.2. Usage of the benchmarks

6.3.2.0.1. Step 0: Installation Provided a Python interpreter and the required packages are available on
your machine, you can simply clone from the ROMSOC Github repository:
git clone https://github.com/ROMSOC/benchmarks-mip-rail-scheduling

6.3.2.0.2. Step 1: Choice of instance Navigate to instances directory. From there, navigate to a
directory whose name matches the instance you would like to consider.

6.3.2.0.3. Step 2: Run model construction There are two keywords which need to be supplied when
running the scripts:

• {weekly,monthly} – determines the scope of the model. If you chose 1M as your instance, use
monthly, otherwise use weekly.

• {write,nowrite} – determines whether or not the resulting model will be written to an output file
model.lp.

For example, if you wish to consider the instance 1W 1 and to generate an output file, you need to type:
python main.py weekly write

If you wish to consider the instance 1M and not to generate an output file, you need to type:
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python main.py monthly nowrite

6.4. Description of output data

If the user wishes so, the benchmarks introduced may generate an model.lp file which contain a text de-
scription of the integer model. It presents the objective function, variables and constraints of each model. The
.lp files can be opened with any text editor (such as Notepad). We generally advise against storing models
for larger instances, since their size may easily grow to gigabytes, which will render them useless for manual
browsing.
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Part VII.
Benchmarks inverse heat transfer problem: Boundary heat
flux estimation in continuous casting mold
Patricia Barral, Federico Bianco, Riccardo Conte, Umberto E. Morelli, Peregrina

Quintela, Gianluigi Rozza, Giovanni Stabile

Abstract

The present document includes a detailed description of the computer implementation of a inverse heat transfer
benchmark case involving not only the required publically available data but also the used software packages,
libraries and any other relevant information, which guarantee a fully reproducibility of the reported numerical
results.
Keywords: Inverse problem, heat transfer, continuous casting mold, boundary flux estimation
Latest release: https://doi.org/10.5281/zenodo.5242918
GitHub repository: https://github.com/ROMSOC/benchmarks-inverse-heat-transfer

7.1. Introduction

Continuous casting of steel is presently the most used process to produce steel worldwide. Figure 7.1(a) pro-
vides a schematic of the process. These casters are complex machinery, the most critical part for the process
being the mold. Here the steel undergoes to its primary solidification. The mold extracts heat from the liquid
steel thanks to a liquid cooling system. This system is composed of drilled channels in which water flows at
high flow rate and pressure (see Figure 7.1(b)).

(a) Caster [61].

Cooling waterThermocouple

Mold

Steel

(b) Horizontal section of a mold.

Figure 7.1: Schematic of a continuous caster (a) and of a cross section of a mold (b).
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7.1. Introduction

For safety and quality reasons, it is important to control the heat extraction from the steel during the casting.
For example, if the heat extraction is too little the steel solid skin is thin at its exit can brake. For this and other
reasons, it is essential to know the real time behavior of the mold to properly control the casting process.
One way to compute this heat flux could be to simulate all the phenomena happening inside the mold: from the
tapping of the molten steel to the secondary cooling region (e.g. multiphase flow, heat transport, solidification,
thermodynamic reactions etc.). However, the resulting model would be quite complex and computationally
expensive to deal with, especially for real time applications. Then, this option was discarded.
Also the fully experimental approach is no feasible since it is not possible to make direct measurements in
the solidification region. The only measurements available are made by thermocouples that are buried inside
the mold plates. They provide temperature measurements few centimeters into the mold. Then, our approach
to study the real time behavior of continuous casting molds and the mold-slab heat flux is to solve an inverse
problem having as data the thermocouples measurements.

7.1.1. Physical Problem

The physical phenomena happening in the interior of the mold are extremely complex and tightly coupled.
Then, monitoring the casting by simulating all of them from the SEN to the secondary cooling region would be
extremely complex and computationally expensive to deal with, especially for real-time applications. However,
to monitor mold behaviour it is sufficient to know the mold-slab heat flux. Then, our approach is to solve an
inverse problem having as control data the temperature measurements made by thermocouples that are buried
inside the mold plates and the cooling water temperature measurements.
Using this approach, our domain is composed of the mold plates and the mold-slab heat flux is a Neumann BC
on a portion of its boundary. Then, we only have to model the heat transfer in the mold plates.
In modeling the thermal behavior of the mold, we consider the following well established assumptions[62] :

• The copper mold is assumed a homogeneous and isotropic solid material.
• The cooling water temperature is known.
• The thermal expansion of the mold and its mechanical distortion are negligible.
• The material properties are assumed constant.
• The boundaries in contact with air are assumed adiabatic.
• No boiling in the water is assumed.
• The heat transmitted by radiation is neglected.

The adiabaticity of the boundaries in contact with air is justified when considering the magnitude of the heat
extracted by the cooling water when compared to the one extracted by the still air around the mold. A simi-
lar justification, can be used for neglecting the mold radiation. Considering the thermal conductivity constant
comes also from a practical consideration. CC molds are generally made by copper and they work in a temper-
ature range in between 600 K and 800 K. In this range the thermal conductivity varies of about 2%. Thus, this
is the maximum error coming from this assumption.
Finally, since we want to have solution in real-time (e.g., at each second) and the casting speed is of few meters
per minute, we consider steady-state models. Moreover, we only consider 3D mold models because we are
interested in the heat flux in all the mold-slab interface.
As a final remark, the running parameters of the cooling system and its geometry ensure a fully developed
turbulent flow. In fact, these molds are equipped with a closed loop cooling system where the water is pumped
at a high pressure. The average velocity in each cooling channel is approximately 10 m/s, the diameter being
approx. 10 mm. Thus, the Reynolds number in the cooling system is around 105, which ensures a turbulent
flow.
Thanks to the high Reynolds number of the flow, we can further assume that the cooler and hotter water
molecules are well mixed. Consequently, the temperature in each section of the cooling channel is approxi-
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mately constant. Moreover the water is pumped in a closed circuit, so we can assume that the water flow rate is
constant. In turn, since the channels have constant section, the velocity of the fluid is also uniform and constant
(plug flow).
Then, we focus our attention on the following model:

1. The computational domain is only composed of the (solid) copper mold. We consider a steady-state
three-dimensional heat conduction model with a convective BC in the portion of the boundary in contact
with the cooling water. The water temperature is known at the inlet and outlet of the cooling system. The
water temperature is assumed to be linear.

As a final remark on the model used, we consider a Neumann BC at the mold-steel interface instead of a con-
vective BC because the perfect match between the strand and the mold is not ensured (air gaps are possible) and
the strand surface temperature is also not known. So, in a convective BC situation, we would have to estimate
the space varying heat transfer coefficient (that depends on the mold lubricant, the air gap, etc.) together with
the strand surface temperature (also not constant), making the problem hardly solvable. Since the objective is
to monitor the casting, estimating the heat flux provides to the CC operator all the information required for a
proper control of the process and a fast problem detection.
In the following, we provide the mathematical formulation of the mold model and its numerical solution. Then,
we formulate the respective inverse problem discussing the methodology for its solution. Finally, the core of
this document is a step-by-step guide to the numerical tutorial.

7.2. Mathematical Formulation

Here, we only provide a short overview referring to [63] for a detailed description.

7.2.1. Computational Domain, Notation and Direct Problem

Let the domain be Ω = (0, L)× (0,W )× (0, H) as in Figure 7.2 with positive real constants L,W and H . Let
Γ be boundary of Ω. Then, the different boundaries of the domain to be considered are

Γsf := {x ∈ Γ| x = (x,W, z)}, Γsin := {x ∈ Γ| x = (x, 0, z)},
ΓI := {x ∈ Γ| x = (x, y,H)}, ΓIII := {x ∈ Γ| x = (x, y, 0)},
ΓII := {x ∈ Γ| x = (L, y, z)}, ΓIV := {x ∈ Γ| x = (0, y, z)}.

We consider the following direct problem

Problem 1. Find T such that
−k∆T = 0, in Ω,

with BCs 
−k∇T · n = gan on Γsin ,

−k∇T · n = qL on ΓL, L ∈ {I, II, II, IV },
−k∇T · n = h(T − Tf ) on Γsf .

Let a, b, c be real constants. To have an analytical solution in Ω, we consider the following data as BCs for
Problem 1,

qI(x) = 2kaH, qIII(x) = 0,

qII(x) = −k(2aL+ by), qIV (x) = kby,

Tf (x) =
k(bx+ c)

h
+ ax2 + cy − az2 + bxW + c,
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L

Ω

x

Γin

Γsf

y

z

W

H

ΓI

ΓIV

ΓII

ΓIII

Figure 7.2: Schematic of the solid rectangular parallelepiped domain.

with
gan(x) = k(bx+ c),

k being the thermal conductivity, that is assumed constant. Then,

Tan(x) = ax2 + bxy + cy − az2 + c,

is the solution to Problem 1.

7.2.2. Inverse Problem

The inverse problem we want to solve is to estimate the heat flux g capable of reproducing the measured
temperatures at the thermocouples’ points. This can be stated as an optimal control problem with pointwise
observations.
We introduce the following notation. Let Ψ := {x1,x2, . . . ,xM} be a collection of points in Ω. We define
the application xi ∈ Ψ → T̂ (xi) ∈ R+, T̂ (xi) being the experimentally measured temperature at xi ∈ Ψ.
Moreover, let Gad be a bounded set in L2(Γsin).
Using a least square, deterministic approach, we state the inverse problem as

Problem 2. (Inverse) Given {T̂ (xi)}Mi=1, find the heat flux g ∈ Gad that minimizes the functional J1 :
L2(Γsin)→ R+,

J1[g] :=
1

2

M∑
i=1

[T [g](xi)− T̂ (xi)]
2,

where T [g](xi) is the solution of Problem 1 at points xi, for all i = 1, 2, . . . ,M .

For the solution of this problem, we use two different methods. These methods are described in the following
two subsections.

7.2.2.1. Alifanov’s Regularization

The Alifanov’s regularization method is a CGM applied on the adjoint equation.[64]
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We consider the following iterative procedure for the estimation of the function g that minimizes the functional
(2). Given an initial estimation g0 ∈ L2(Γsin), for n > 0 a new iterant is computed as:

gn+1 = gn − βnPn, n = 0, 1, 2, . . .

where n is the iteration counter, βn is the stepsize, also called correction factor, in the conjugate direction Pn

given by
P 0 = J ′1[g0], Pn+1 = J ′1[gn+1] + γn+1Pn for n ≥ 1,

γn+1 being the conjugate coefficient, and J ′1[g] the Gâteaux derivative of J1 given by

J ′1[g] = −λ[g] in L2(Γsin),

where λ is the solution of

Problem 3. (Adjoint) Find λ[g] such that

k∆λ[g] +
M∑
i=1

(T [g](x)− T̂ (x))δ(x− xi) = 0, in Ω,

with BCs {
k∇λ[g] · n = 0 on Γsin ∪ Γsex ,

k∇λ[g] · n + hλ[g] = 0 on Γsf ,

δ(x− xi) being the Dirac function centered at xi.
The stepsize βn in (7.2.2.1) is obtained by minimizing the functional J1[gn−βPn] with respect to β. Therefore,
βn is the solution of the critical point equation of the functional J1, restricted to a line passing through gn in
the direction defined by Pn, i.e. βn is the critical point of J1[gn − βPn] which then satisfies

J1[gn − βnPn] = min
β

{
1

2

M∑
i=1

[
T [gn − βPn](xi)− T̂ (xi)

]2
}
.

Stating the sensitivity problem

Problem 4. (Sensitivity) Find δT such that

−k∆δT [δg] = 0, in Ω,

with BCs 
−k∇δT [δg] · n = δg on Γsin ,

−k∇δT [δg] · n = 0 on Γsex ,

−k∇δT [δg] · n = h(δT [δg]) on Γsf ,

we can now write

J1[gn − βPn] =
1

2

M∑
i=1

[
T [gn − βPn](xi)− T̂ (xi)

]2
=

1

2

M∑
i=1

[
(T [gn]− βδT [Pn])(xi)− T̂ (xi)

]2
.
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Differentiating with respect to β, we obtain the critical point equation

dJ1[gn − βnPn]

dβ
=

M∑
i=1

[(T [gn]− βnδT [Pn])(xi)− T̂ (xi)](−δT [Pn](xi)) = 0.

Finally, we have

βn =

∑M
i=1

[
T [gn](xi)− T̂ (xi)

]
δT [Pn](xi)∑M

i=1(δT [Pn](xi))2
.

With respect to the conjugate coefficient, γ, its value is zero for the first iteration and for other iterations it can
be calculated using Fletcher-Reeves expression as follows[65]

γn =
‖J ′1[gn]‖2L2(Γsin )

‖J ′1[gn−1]‖2L2(Γsin )

.

Notice that, to use this iterative procedure, we have to compute at each iteration the Gâteaux derivative J ′1[g](x)
which is given by (7.2.2.1). Thus, we must solve the adjoint problem to compute it.
Alifanov’s regularization algorithm is summarized in Algorithm 1.

Algorithm 1: Alifanov’s regularization.

Set g0 and n = 0 while n < nmax do
Compute T [gn] by solving Problem 1

Compute J1[gn] by (2) if J1[gn] < J1tol then
Stop

Compute λ[gn] by solving Problem 3
Compute J ′1[gn] by (7.2.2.1) if n ≥ 1 then

Compute the conjugate coefficient, γn, by (7.2.2.1)
Compute the search direction, Pn, by (7.2.2.1) else

P 0 = J ′1[g0]
Compute δT [Pn] by solving Problem 4 with δg = Pn

Compute the stepsize in the search direction, βn, by (7.2.2.1)
Update heat flux gn by (7.2.2.1)
n = n+ 1
return gn

7.2.2.2. Parameterization of the Boundary Conditions

We now discuss the second method used for the solution of the inverse problem. We consider the parameteri-
zation of the boundary heat flux g. In the literature, the parameterization of g has already been proposed.[66]
However, we propose a novel approach both for the parameterization and for the solution of the resulting inverse
problem.
For the parameterization, we start considering that we want to parameterize an unknown function in L2(Γsin).
We then notice that in thin slab casting molds, the thermocouples are all located few millimeters inward from
Γsin . All together they form a uniform 2D grid. Then, to parameterize g, we use Radial Basis Functions (RBFs)
centered at the projections of the thermocouples’ points on Γsin .[67] Due to this choice we have as many basis
functions as thermocouples. In particular, we use Gaussian RBFs that are continuous functions with a global
support. However, the following discussion can be applied to other basis functions.
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The parameterization of the boundary heat flux reads (see Prando’s appendix[68])

g(x) ≈
M∑
j=1

wjφj(x),

where the φj(x) are M known base functions, and the wj are the respective unknown weights. Notice that by
doing the parameterization, we change the problem from estimating a function in an infinite dimensional space
to estimating a vector w = (w1, w2, . . . , wM )T in RM .
Let ξξξi, 1 ≤ i ≤M, be the projection of the measurement point xi ∈ Ψ on Γsin such that

ξξξi = argmin
ξξξ∈Γsin

‖xi − ξξξ‖2 , xi ∈ Ψ.

By centering the RBFs in these points, their expressions are

φj(x) = e−(η‖x−ξξξj‖2)
2

, for j = 1, 2, . . . ,M,

where η is the shape parameter of the Gaussian basis, increasing its values the radial decay of the basis slows
down.
Suppose to have the solutions of Problem 1, T [φj ], for j = 1, 2, . . . ,M . Denote by Tad the solution of

Problem 5. Find Tad such that
−k∆Tad = 0, in Ω,

with BCs { −k∇Tad · n = 0 on Γsin ∪ Γsex ,

−k∇Tad · n = h(Tad + Tf ) on Γsf .

As described in [63], the solution of the inverse problem is then obtained by solving the linear system

ΘTΘw = ΘT (T̂ + Tad).

This is generally called the normal equation.
We conclude our discussion of this method by noticing its most interesting feature for our investigation. In fact,
it is already suitable for real-time computation since we can divide it into an offline (expensive) phase and an
online (cheap) phase. In the offline phase, we compute T [φj ] for j = 1, 2, . . . ,M and Tad by solving Problem 1
with each base as boundary heat flux and Problem 5. Then in the online phase, we input the measurements T̂
and solve the linear system (7.2.2.2). For the choice made when selecting the basis functions, the linear system
has the dimensions of the number of thermocouples. Then, its solution can be easily done in real-time even
with limited computational power. This makes this method very promising for our real-time application.

7.3. Software Implementation

The proposed benchmark case has been implemented as a tutorial in ITHACA-FV[69, 70] which is a C++
library based on OpenFOAM[71] developed at the SISSA Mathlab. ITHACA-FV is freely available for the
download under the GNU LGPL, version 3, license at the dedicated GitHub page https://github.com/
mathLab/ITHACA-FV. At this link, an up to date installation and usage guide is provided together with the
prerequisites for the installation.
This benchmark case is implemented into ITHACA-FV as the tutorial IHTP01inverseLaplacian. It can
be found at the path ITHACA-FV/tutorials/inverseHeatTransfer.
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7.4. Input Data

We now discuss the physical parameters used in this benchmark case, the domain, its discretization and the
input available for the user.
Table 5 shows the default physical and geometrical parameters used in this tutorial. The thermal conduc-
tivity, k, and the heat transfer coefficient, h, can be selected by the user in the ITHACAdict that can
be found in the caseDir/system folder. The a, b, c and d parameters are defined at the beginning of
the IHTP01inverseLaplacian.C file. Finally, the domain and its discretization are controlled by the
blockMeshDict in the caseDir/system folder. We refer to the OpenFOAM User Guide [72] for details
on the usage of this dictionary.

Parameter Value
Thermal conductivity, k 3.0 W/(mK)
Heat transfer coefficient, h 5.0 W/(m2K)
a 5 K/m2

b 10 K/m2

c 15 K/m2

L 1 m
W 1 m
H 1 m

Table 5: Parameters used for the benchmark case.

As usual in OpenFOAM, the fvSchemes and fvSolutions dictionaries allows to control the equations
discretization schemes and the methods used for the solution of the related linear systems. Both these dictio-
naries are in the caseDir/system directory. Also in this case, we refer to the OpenFOAM User Guide [72]
for details.
Another input to the inverse problem must be the position of the thermocouples. The thermocouples’ locations
are defined in the thermocouplesDict in the caseDir/constant directory. The default values are as
in Figure 7.3.
To conclude in the ITHACAdict dictionary, in the caseDir/system directory, the user can select the pa-
rameters for the Alifanov’s regularization algorithm and the parameterization of the BC method. In particular,
he/she can select the maximum number of iterations, cgIterMax, the absolute, Jtolerance, and relative,
JrelativeTolerance, tolerance for the Alifanov’s regularization algorithm. While, for the parameter-
ization of the BC method, the user can select the shape parameter for the radial basis functions used for the
parameterization, rbfShapePar. Moreover, in this same dictionary, the user can which test to perform setting
to one the following flags:

• CGtest - Alifanov’s regularization test;
• parameterizedBCtest - Parameterization of the BC test;
• parameterizedBCtest RBFwidth - Test of the effects of different RBF shape parameter values

for the parameterization of the BC method;
• thermocouplesLocationTest CG - Test of the effects of moving the thermocouples plane dis-

tance from the mold hot face for the Alifanov’s regularization;
• thermocouplesLocationTest paramBC - Test of the effects of moving the thermocouples plane

distance from the mold hot face for the parameterization of the BC method;
• thermocouplesNumberTest CG - Test of the effects of changing the number of thermocouples in

the Alifanov’s regularization;
• thermocouplesNumberTest paramBC - Test of the effects of changing the number of thermocou-

ples in the parameterization of the BC method.
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Figure 7.3: Positions of the virtual thermocouples for the benchmark case.

7.5. Step-by-step procedure

To run this ITHACA-FV benchmark, the user must go into the caseDir directory. The first thing to do is to
run the OpenFOAM command blockMesh to create the mesh. Then, the used can select the tests to be run
in the ITHACAdict dictionary and run the tutorial by typing the command IHTP01inverseLaplacian.
The outputs are all saved into the directory caseDir/ITHACAoutputs in different subdirectories according
to the different tests.

7.6. Output Data

The output of the simulations are all saved into the caseDir/ITHACAoutputs folder. For the post process-
ing of the results, several python codes are available at the directory pythonPlots. To obtain the post pro-
cessing plot, the user must run the command python required-plots.py where required-plots
should be selected by the ones available in the folder, e.g. python CGconvergence.py to see the conver-
gence of the Alifanov’s regularization and the behaviour of the error with the iterations.

DISCLAIMER

In downloading this SOFTWARE you are deemed to have read and agreed to the following terms: This SOFT-
WARE has been designed with an exclusive focus on civil applications. It is not to be used for any illegal,
deceptive, misleading or unethical purpose or in any military applications. This includes ANY APPLICA-
TION WHERE THE USE OF THE SOFTWARE MAY RESULT IN DEATH, PERSONAL INJURY OR SEVERE
PHYSICAL OR ENVIRONMENTAL DAMAGE. Any redistribution of the software must retain this disclaimer.
BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU AGREE TO THE TERMS
ABOVE. IF YOU DO NOT AGREE TO THESE TERMS, DO NOT INSTALL OR USE THE SOFTWARE
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Part VIII.
Validation of Fluid-Structure Interaction Simulations in
Membrane-Based Blood Pumps
Marco Martinolli, Christian Vergara, Luc Polverelli

Abstract

The benchmark consists in the validation of a numerical model for the fluid-structure interaction arising in
membrane-based blood pumps against experimental data obtained by in vitro testings at CorWave Inc. The
goal is to numerically reproduce the pump system under the same working conditions of the documented
experimental sessions, in order to measure the pressure rise over the pump and the hydraulic power for different
inflow velocities and finally compare the results with the experimental PQ and HQ curves. The software for
the solution of the benchmark will be implemented in the C++ parallel library of finite elements LIFEV and
tackled using the Extended Finite Element Method. The report includes the plan for the Docker installation
of the LIFEV environment and the third-part packages, information on the future online availability of the
software, the licences of use of the main libraries and the computer requirements to run the benchmark. The
proposed benchmark can be used for training in the fields of mathematical modeling of a coupled system, model
testing and error estimation.
Keywords: Benchmark, Fluid-Structure Interaction, Blood Pumps, Model Validation, HQ curves
Latest release: https://doi.org/10.5281/zenodo.5171806
GitHub repository: https://github.com/ROMSOC/benchmark-validation-wmbp

8.1. Introduction

WMBP! (WMBP!) [73], developed at CorWave SA, may represent the new frontier of LVAD! (LVAD!).
The pumping technnology of WMBP is based on the wave undulations of an immersed elastic membrane that
propels the blood against an adverse pressure gradient, from the left ventricle into the ascending aorta. In Figure
8.1, left, we show the cross sectional view of the pump device.
The intertwined dynamics in WMBP are studied in the framework of Fluid-Structure Interaction (FSI) model-
ing and solved in the mathematical domain shown in Figure 8.1, right. Blood is modeled as a viscous incom-
pressible Newtonian fluid with density ρf and viscosity µf , by means of Navier-Stokes Equations. The wave
membrane Ωs

1 is considered a linear material at small deformations, according with previous publication [74],
with density ρ1

s and Lamé parameters λ1
s and µ1

s. The same holds for the magnet ring Ωs
2, with parameters

ρ2
s, λ

2
s and µ2

s. For sake of simplicity, we combine structure properties in unique space-dependante variables,
e.g. ρ̃s(x) = ρ1

s if x ∈ Ωs
1, and ρ̃s(x) = ρ2

s if x ∈ Ωs
2. Hence, the formulation of the problem is the follow-

ing: for each time t > 0, find fluid velocity and pressure (u(t), p(t)) in the fluid domain Ωf (t) and structures
displacement d̂(t) in the reference structure domain Ω̂s = Ωs(0) = Ωs

1(0) ∪ Ωs
2(0), such that:

ρf (∂tu + u · ∇u)−∇ · Tf (u, p) = 0 in Ωf (d),

∇ · u = 0 in Ωf (d),

ρ̃s∂ttd̂−∇ · T̂
s
(d̂) = 0 in Ω̂s,

u = ∂td on Σ(d), (8.1)

Tf (u, p) n = Ts(d) n on Σ(d). (8.2)

where Tf (u, p) = −pI + 2µfD(u), with D(u) = 1
2(∇u +∇uT ), is the fluid Cauchy stress tensor and T̂

s
(d̂) =
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8.1. Introduction

λ̃s (∇̂·d̂) I+2µ̃s D̂(d̂) is first Piola-Kirchhoff structure tensor. Notice that the fluid domain Ωf and the interface
Σ depend over time on structure displacement d (geometric coupling). Physical coupling conditions (8.1) and
(8.2) guarantee the continuity of velocity and of stresses at the fluid-structure interface Σ, respectively.

Figure 8.1: Left: Cross section of wave membrane blood pumps. The blood enters from the inlet channel, it
flows down along the sides of the central actuator body, it interacts with the wave silicon membrane and it is
finally ejected into the outlet channel. Membrane vibrations are triggered by the oscillations of the magnet

ring. Right: Representation of the mathematical domain.

The boundary conditions define the operating point of WMBP. For the fluid sub-problem, the hydraulic resis-
tance in the pump, that is the head pressue H , is prescribed by means of a pair of Neumann conditions at the
inlet Γin and at the outlet Γout; while non-slip wall conditions are imposed at boundary Γw:

Tf (u, p) nf = 0 on Γin,

Tf (u, p) nf = H nf on Γout,

u = 0 on Γw,

The progressive undulations in the membrane are caused by the oscillations of the magnet ring with boundary
Γs2; then, they are transmitted to the external edge of the membrane Γs1. Such oscillations are assumed to
be purely sinusoidal with frequency f and amplitude Φ. Thus, the oscillations are prescribed by means of a
Dirichlet condition on boundaries Γsi (i = 1, 2):

d (t) = Φ sin (2π f t) ez on Γs

The benchmark consists in the validation of a numerical method to solve the FSI problem in WMBP against
real hydraulic data provided by CorWave SA. Specifically, the goal is to predict the outflow volume rate Qsim

given a certain operating point of the pump (H, f,Φ) and compare the numerical result with the measured flow
data Qdata.

In this report, we will describe the steps to take to solve the FSI problem with our numerical strategy, based
on the Extended Finite Element Method (XFEM) [75, 76]. XFEM is an unfitted technique which has two
main advantages compared with other approaches for FSI problems: i) since the fluid mesh is kept fixed on
the background, it avoids the remeshing procedure normally occurring in case of element distortion; ii) the
accuracy of the solution is maintained at the interface, thanks to the local enrichment of the functional space of
the extended finite elements. However, since the structure mesh moves in the foreground cutting the underlying
fluid mesh, XFEM requires to compute the mesh intersections at each time istant to identify the fluid elements
that are cut in multiple subportions (called split elements), leading to a higher computational cost. For more
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8.2. Input data

Figure 8.2: Prospective visualization and section of the fluid mesh (gray), the membrane mesh (yellow) and
magnet mesh (red).

details on the numerical formulation of the XFEM with a DG mortaring at the interface, the reader can find an
exaustive explanation in the reference papers [77, 78].

8.2. Input data

Input data to run the benchmark consist of four different types of files:
1. meshes: a folder (available from the Docker container) that includes the fluid mesh, the membrane mesh

and the magnet mesh;
2. dataFile: it details the list of meshes, physical parameters, stability parameters, operating parameters,

time settings and other numerical parameters;
3. solverFile: it contains the parameters for the linear solver;
4. validation data: a csv datafile that collects the experimental data to be used to validate the numerical

results

8.2.1. Meshes

For this benchmark, we consider the flat membrane pump geometry, studied in [77]. The CAD geometry
files have been provided by the partner company CorWave SA. The meshes of tetrahedra, reported in Figure
8.2, have been created using GMESH [79]. The unfitted meshes selected for this benchmark showed positive
convergence results. Lengths are expressed in cm and may not correspond to the real pump design.

8.2.2. DataFile

The dataFile presents important information for the simulations, such as physical properties of the fluid and of
the structures, discretization parameters, Operating Point (OP) parameters, Continuous Interior Penalty (CIP)
stability parameters, and many others. The default values of all these data are reported in Table 6.
The experimental data for the validation are provided only for oscillation frequency of 120 Hz and amplitude
Φ of 0.053 cm. Hence they should not be changed. Also notice that pressure conditions can largely affect the
pump dynamics and consequently the stability requirements. For this reason, we suggest the user to set the
head pressure parameter H and the CIP penalty parameters according to Table 7. All parameters are expressed
in the unit system cgs.
Additional information in the DataFile include the strings of the mesh files (fluid: 1.2M elements, membrane:
300k elements, magnet: 50k elements) and of the solverFile (solverFile.xml is the default) and other precondi-
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Section Variable Value
Blood properties Density ρf 1 g

cm3

Viscosity µf 0.035 dyne
cm2

Membrane properties Density ρ1
s 1.125 g

cm3

Young Modulus E1
s 1.686 · 107 dyne

cm2

Poisson ration ν1
s 0.49

Magnet properties Density ρ2
s 7.85 g

cm3

Young Modulus E2
s 2.05 · 1012 dyne

cm2

Poisson ration ν2
s 0.28

OP parameters Head Pressure H (*) 50 mmHg
Frequency f 120 Hz
Amplitude Φ 0.053 mm

Stability CIP parameters Convection control γv1 (*) 0.05
Divergence control γv2 (*) 0.5

Inf-sup control γp (*) 0.05

Time settings Initial time t0 0 s
Final time T 0.025 s
Time step ∆t 0.0002 s

Table 6: Default physical and discretization parameters defined in dataFile. Variables with (*) can be
modified.

H = 50 mmHg H = 55 mmHg H = 60 mmHg
γv1 0.05 0.05 0.5
γv2 0.5 0.5 5
γp 0.05 0.1 0.1

Table 7: Continuous Interior Penalty parameters for different head pressure conditions.

tioner settings.

8.2.3. SolverFile

The solverFile, reported in Appendix 8.5.A, collects some numerical settings for the solver of the linear system.
In general, such parameters should be kept fixed for parallel runs with more than 3 processors (10 cores are
suggested to reduce computational cost). In case of serial runs or less than 3 processors, the user has to reduce
the dimension of Krylov space (kspace) to 200 and of the number of maximum iterations (max iter) to 500.
Hence, in this case use file SolverFile serial.xml.

8.2.4. Validation data

The experimental data used for the benchmark are HQ curves (H head pressure, Q flow rate), which are
standard representations of pump hydraulic performance. They are obtained during the in vitro testings in a
pump characterization bench, measuring the pressure differenceH between the outlet and the inlet (called head
pressure), and the corresponding flow rateQ generated at the outlet. The head pressure represents the hydraulic
resistance of the system (adverse pressure gradient), that has to be overcome to generate pump outflow. Figure
8.3 shows the HQ curve of the pump system when the frequency of oscillation of the membrane is fixed to
120 Hz and the amplitude of oscillation to 0.053 cm. Notice that the flow rate decreases as the head pressure
increases, owing to the higher hydraulic resistance in the pump. Raw data are provided in the Excel file
HQ curve.csv, consisting of two separate data columns with the measurements of head pressure in mmHg (1
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mmHg = 1333.22 g /cm s2) and of the outflow volume rate in liters per minute, or lpm (1 lpm = 0.06 cm3/s).
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Figure 8.3: HQ experimental curve at oscillation frequency f = 120 Hz and amplitude Φ = 0.053 cm.

8.3. Output data

The output of interest for this benchmark is the flow volume rate at the pump outlet Γout. Indeed, the goal
is to compare, for a certain input head pressure H , the corresponding estimated outflow rate Qsim with the
experimental data Qdata extracted from the HQ curves (see Figure 8.3). At each time iteration, the software
prints out the outflow computed at that time istant. Since this quantity oscillates in time with frequency f , we
need to compute the average in time of the outflow results at regime, i.e. during the last period of oscillation τ .
Thus:

Qsim =

∫ T

T−τ

∫
Γout

u(x, t) · n dx dt

Finally, a Python scrupt can be used to plot the HQ curve and the obtained numerical resultsQsim to check their
proximity and compute absolute and relative errors. The user has just to type in the simulated head pressure H .
In Table 8 we show the expected results for this benchmark for certain head pressure conditions, as reported in
[77].

∆P = 50 mmHg ∆P = 55 mmHg ∆P = 60 mmHg

Qdata 1.834 l
min 1.091 l

min 0.352 l
min

Qsim 1.792 l
min 1.039 l

min 0.400 l
min

|Qdata −Qsim| 0.042 l
min 0.052 l

min 0.048 l
min

Table 8: Experimental and simulation data for the model validation against experimental mesures.

8.4. Procedure

The aim of the proposed benchmark is to validate the FSI model via comparison of the numerical results against
experimental HQ curves in wave membrane blood pumps. In this section, we explain the steps to take to install
the software, set the data, run the FSI simulations and post-process the computed numerical results.
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8.4. Procedure

8.4.1. Step 0: Installation

The material to run the benchmark, including source files, validation data and post-processing tool, is available
in the GitHub repository at https://github.com/ROMSOC/benchmark-validation-wmbp and
can be downloaded or clone in your local machine. In addition, a docker image with the LifeV environment
and all the additional libraries required to solve this benchmark is publically available in DockerHub (free
registration to https://hub.docker.com/ is required). Then to download it, it it is sufficient to type:

docker pull martin592/lifev-validation:env

The DockerFile used to contruct such image is available in the Github repository.
Finally a Docker container can be generated using file runLifeV.sh:

./runLifeV.sh

Now you should have created a Docker LifeV container, including a copy of all the folders in the benchmark
repository and all the libraries required to run the benchmark. All the changes in the container will be copied
in the local repository.

8.4.2. Step 1: Setting input data

Move to the benchmark/ subfolder. The input data needed to run the simulations include i) the meshes/ folder,
ii) the dataFile, and iii) the solverFile. Check that all these documents are present in the working directory.
Most of the input settings need to be maintaiend fixed for this benchmark. However, the user should set the
head pressure H (in mmHg) in the pump by changing variable [OP/pressure] in the dataFile (default
value is 50 mmHg). We suggest also to change the penalty parameters at lines [penalty] of the dataFile,
according to what indicated in Table 7 to ensure stability.
Finally, in case of serial runs or for parallel runs with less than 4 processors, change the variable
[prec/paramListFile] to solverFile serial.txt. Also, move solverFile serial.txt
from paramsFile/ subfolder into the working directory.

8.4.3. Step 2: Run simulations

To run the FSI simulations in wave membrane blood pumps, it is sufficient to execute the program with the
following command from command line:

./WMBP.exe -f dataFile > benchmark_output.txt

in case of serial runs, or

mpirun -np 7 WMBP.exe -f dataFile > benchmark_output.txt

in case of parallel runs with a number of processors equal to 7.
Notice that these simulations can last for several days and require a minimum of 40 GB of RAM for serial
runs. In addition, simulation may stop due to the failure of external library tetgen, trying to solve particularly
complex geometric sub-problems, inherent to XFEM-based strategy. In this case, the user should restart the
simulation from the last saved time step, following the instructions detailed in the Appendix 8.5.B.

8.4.4. Step 3: Post-processing

The numerical results of interest for this benchmark consist of the flow rate at the outlet. At each time istant,
the software prints the computed outflow rate in the output file benchmark output.txt. Hence, move to
post-processing/ sub-directory and copy the output file benchmark output.txt in it.

Deliverable D5.3
64

https://github.com/ROMSOC/benchmark-validation-wmbp
https://hub.docker.com/


8.5. Appendix

Post-processing is structured in two steps:
1. extract the time series of the outflow rate from the output file benchmark output.txt using Python

script extract flowResults.py as follows:

python extract_flowResults.py benchmark_output.txt .

2. run the Python code validation.py

python validation.py

to compute the mean flow rate Qsim as in Equation 8.3, plot it with the HQ data curve, and compute the
numerical error.

A Python installation (version ≥ 2.7) is required, together with Python packages numpy and matplotlib.

8.5. Appendix

8.5.A. SolverFile.xml

<ParameterList>
<!-- LinearSolver parameters -->
<Parameter name="Reuse Preconditioner" type="bool" value="false"/>
<Parameter name="Max Iterations For Reuse" type="int" value="80"/>
<Parameter name="Quit On Failure" type="bool" value="false"/>
<Parameter name="Silent" type="bool" value="false"/>
<Parameter name="Solver Type" type="string" value="AztecOO"/>

<!-- Operator specific parameters (AztecOO) -->
<ParameterList name="Solver: Operator List">

<!-- Trilinos parameters -->
<ParameterList name="Trilinos: AztecOO List">
<Parameter name="solver" type="string" value="gmres"/>
<Parameter name="conv" type="string" value="rhs"/>
<Parameter name="scaling" type="string" value="none"/>
<Parameter name="output" type="string" value="all"/>
<Parameter name="tol" type="double" value="1.e-6"/>
<Parameter name="max_iter" type="int" value="4000"/>
<Parameter name="kspace" type="int" value="2000"/>
<!-- az_aztec_defs.h -->
<!-- #define AZ_classic 0 /* Does double classic */ -->
<Parameter name="orthog" type="int" value="0"/>
<!-- az_aztec_defs.h -->
<!-- #define AZ_resid 0 -->
<Parameter name="aux_vec" type="int" value="0"/>
</ParameterList>
</ParameterList>
</ParameterList>

Code Listing 3: solverFile.xml

8.5.B. Simulation - Restart

In case of running error, a restart procedure has to be carried over to continue the simulation from the last saved
timestep. At each time instant, the software exports the fluid and solid solutions in .h5 and .xmf format, that can
be used to restart the job. For instance, at time iteration 39, the exported restart files are: fsiRestartF 039
(fluid), fsiRestartS1 039 (membrane) and fsiRestartS2 039 (magnet).
The restart procedure consists of two steps:
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1. Define the settings of dataFile restart as in dataFile. In addition, the user has to specify:
i) the restart time iteration [importer/initTimeIter] (e.g. to 39), and ii) the corresponding initial time
[time discretization/initialtime] (in s).

2. restart the simulation by typing on the command line:

mpirun -np 7 WMBP.exe -f dataFile_restart > benchmark_output_restart.txt

This can be run either in serial or in parallel, as in Section 8.4.3. Check that the restart files are present in
the working directory for both the restart time iteration AND the previous one, e.g. fsiRestart* 039
and fsiRestart* 038.

Notice that for the post-processing of a simulation that required a restart, the results need to be extracted also
from output file benchmark output restart.txt. Hence, the user has to run:

python extract_flowResults.py benchmark_output_restart.txt

and join the results together in a unique file flowResults.txt.
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Part IX.
Coupled parameterized reduced order modelling of
thermo-mechanical phenomena arising in blast furnace
Nirav Shah, Michele Girfoglio, Patricia Barral, Peregrina Quintela, Gianluigi
Rozza, Alejandro Lengomin

Abstract

The benchmark cases related to coupled thermomechanical phenomena arising in blast furnace have been ad-
dressed by using open-source libraries. In this document, we provide details about the numerical implemen-
tation of the benchmark tests to verify, validate and reproduce the results of numerical experiments by aiming
towards smooth transition for next developers and students interested in detailed investigation of our work.
Keywords: Blast furnace hearth, Thermo-mechanical axisymmetric model, Finite element method, Benchmark
verification, Moder order reduction, Proper orthogonal decomposition.
Latest release: https://doi.org/10.5281/zenodo.5171821
GitHub repository: https://github.com/ROMSOC/benchmars-thermomechanical-model

9.1. Introduction

In our previous work [80], we focused on the physical problem, mathematical formulation, statement of the
benchmark problems and design of numerical experiments. We now provide the code for numerical exper-
iments, using open source libraries, with the objective of validating or reproducing the results and smooth
handover of numerical software to future developers as per best practices [81].

9.2. Prerequisites

We use python 3.6.9 as the programming language. In this project we use the libraries :
• FEniCS 2019.1.0 ([82],[83],[84],[85], www.fenicsproject.org)
• RBniCS 0.1.dev1 ([86],www.rbnicsproject.org)
• Matplolib 3.1.2 ([16],www.matplotlib.org)
• numpy 1.17.4 ([87],www.numpy.org)

from dolfin import * #FEniCS library
from mshr import * #mshr - mesh generation component of FEniCS
from rbnics import * #RBniCS library
import matplotlib.pyplot as plt #Matplotlib library
import numpy as np #Numpy library

The solutions are stored in .pvd format, which can later be viewed with Paraview (www.paraview.org).

9.3. Installation

Simply clone the public repository:

$ git clone https://github.com/ROMSOC/benchmark_thermomechanical_model

9.4. Running the benchmark cases

Source codes for input data are provided in the folder source files. Source codes for running the benchmark are
provided in folder source. After running the benchmark, results are stored in folder result files.
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9.5. Benchmark cases

Run required .py file e.g. file name.py as,

python3 file_name.py

9.5. Benchmark cases

9.5.1. Reading the mesh

We first construct the polygonal domain using the mshr tool.

# Define domain
domain = Polygon([Point(0.,0.),Point(7.05,0.),

Point(7.05,7.265),Point(5.3,7.265),
Point(5.3,4.065),Point(4.95,4.065),
Point(4.95,3.565),Point(4.6,3.565),
Point(4.6,2.965),Point(4.25,2.965),
Point(4.25,2.365),Point(0.,2.365)])

The domain is divided into triangular 30 subdomains. We define the mapping from the reference do-
main to the parametrized domain. As an example, we take the subdomain 1 whose coordinates on refer-
ence domain are (0, 0), (4.25, 0), (0, 2.365). It is deformed to the parametrized subdomain with coordinates
(0, 0), (µ6, 2), (0, µ0). The µ6 and µ0 are the 6th and 0th parameter of zero-indexed tuple Ξ. This mapping can
be defined as,

{
("0", "0"): ("0", "0"),
("4.25", "0"): ("mu[6]/2", "0"),
("0", "2.365"): ("0", "mu[0]")

}, # subdomain 1

The RBniCS computes the mapping for each subdomain and uses it during affine transformation of operators.
Similarly, the mappings and subdomains are created for other 29 subdomains.
Next, we set the subdomain marker:

# Loop over all mappings and set subdomain markers
for i, vertices_mapping in enumerate(vertices_mappings):
print(i,vertices_mapping.keys())
subdomain_i = Polygon([Point(*[float(coord) for coord in vertex]) for vertex in

counterclockwise(vertices_mapping.keys())])
domain.set_subdomain(i + 1, subdomain_i)

The mesh and subdomains are created based on subdomain markers.

# Create mesh
mesh = generate_mesh(domain, 30) #30 specifies the mesh size.

# Create subdomains
subdomains = MeshFunction("size_t", mesh, 2, mesh.domains())

We now set the boundary markers. The domain boundaries are shared across 20 subdomains, hence we define
20 classes and set markers for each of these boundaries. For example, for the boundary γs, we define the class

class Gamma_s(SubDomain):
def inside(self, x, on_boundary):
return x[0] < DOLFIN_EPS and on_boundary

and create an instance of this class and set boundary marker as 1.
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gamma_s = Gamma_s()
gamma_s.mark(boundaries, 1)

Unlike γs, the bottom boundary γ− is shared by 5 subdomains, we define 5 different classes and correspond-
ingly 5 different markers.

class Gamma_minus1(SubDomain):
def inside(self, x, on_boundary):
return x[1] < DOLFIN_EPS and x[0] < (4.255 + DOLFIN_EPS) and on_boundary

class Gamma_minus2(SubDomain):
def inside(self, x, on_boundary):
return x[1] < DOLFIN_EPS and x[0] > (4.2 - DOLFIN_EPS) and x[0] < (4.65 + DOLFIN_EPS)

and on_boundary

class Gamma_minus3(SubDomain):
def inside(self, x, on_boundary):
return x[1] < DOLFIN_EPS and x[0] > (4.55 - DOLFIN_EPS) and x[0] < (5.05 + DOLFIN_EPS)

and on_boundary

class Gamma_minus4(SubDomain):
def inside(self, x, on_boundary):
return x[1] < DOLFIN_EPS and x[0] > (4.9 - DOLFIN_EPS) and x[0] < (5.4 + DOLFIN_EPS)

and on_boundary

class Gamma_minus5(SubDomain):
def inside(self, x, on_boundary):
return x[1] < DOLFIN_EPS and x[0] > (5.25 - DOLFIN_EPS) and x[0] < (7.15 + DOLFIN_EPS)

and on_boundary

gamma_minus1 = Gamma_minus1()
gamma_minus1.mark(boundaries, 2)
gamma_minus2 = Gamma_minus2()
gamma_minus2.mark(boundaries, 3)
gamma_minus3 = Gamma_minus3()
gamma_minus3.mark(boundaries, 4)
gamma_minus4 = Gamma_minus4()
gamma_minus4.mark(boundaries, 5)
gamma_minus5 = Gamma_minus5()
gamma_minus5.mark(boundaries, 6)

In a similar manner, markers are set for other boundaries and the mesh, the boundary markers, the subdomain
markers and affine maps are stored.

# Save mesh data
os.system("mkdir ../input_data/mesh_data")
VerticesMappingIO.save_file(vertices_mappings, ".", "../data_files/mesh_data/

hearth_vertices_mapping.vmp")
File("../data_files/mesh_data/hearth.xml") << mesh
File("../data_files/mesh_data/hearth_physical_region.xml") << subdomains
File("../data_files/mesh_data/hearth_facet_region.xml") << boundaries
XDMFFile("../data_files/mesh_data/hearth.xdmf").write(mesh)
XDMFFile("../data_files/mesh_data/hearth_physical_region.xdmf").write(subdomains)
XDMFFile("../data_files/mesh_data/hearth_facet_region.xdmf").write(boundaries)
File("../data_files/mesh_data/hearth.pvd") << mesh
File("../data_files/mesh_data/hearth_physical_region.pvd") << subdomains
File("../data_files/mesh_data/hearth_facet_region.pvd") << boundaries
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At the beginning of any benchmark test, we first read the mesh, the subdomains and also read the boundary
markers. The volume of each subdomains and length of each boundary are measured. Notice that all boundary
markers with same boundary condition are combined.

# Read the mesh file from specified path.
mesh = Mesh("../../benchmarks/data_files/mesh_data/hearth.xml")
domains = MeshFunction('size_t',mesh,mesh.topology().dim()) # Read domain marker
subdomains = MeshFunction("size_t", mesh, "../../benchmarks/data_files/mesh_data/

hearth_physical_region.xml") # Read
subdomain markers

boundaries = MeshFunction("size_t", mesh, "../../benchmarks/data_files/mesh_data/
hearth_facet_region.xml") # Read boundary
markers

dx = Measure('dx', domain = mesh, subdomain_data = domains) # Volume measure
ds = Measure('ds', domain = mesh, subdomain_data = boundaries) # Boundary measure
n = as_vector(FacetNormal(mesh)) # Edge unit normal vector

d_bottom = ds(2) + ds(3) + ds(4) + ds(5) + ds(6) # Markers of bottom boundary \gamma_{-}
d_out = ds(7) + ds(8) + ds(9) + ds(10) + ds(11) # Markers of outer boundary \gamma_{out}
d_sf = ds(13) + ds(14) + ds(15) + ds(16) + ds(17) + ds(18) + ds(19) + ds(20) # Markers of

inner boundary \gamma_{sf}

9.5.2. Thermal model

We define the norm for ψ ∈ H1
r (ω),

#Computation of Hˆ1_r(\omega) norm
def compute_h1r_norm(psi,mesh):
r = SpatialCoordinate(mesh)[0]
dx = Measure('dx', domain = mesh)
a = inner(psi,psi)*r*dx + inner(grad(psi),grad(psi))*r*dx
A = assemble(a)
return sqrt(A)

Next, we define the range of polynomials degree for measuring p−convergence and an object to store the
relative error.

error_T_vector = [] #List to store error in temperature w.r.t. polynomial degree
p = range(1,4) # List of polynomial degrees

Next, we specify the relevant physical parameters, which are than later used in weak form.

k = 10. # Thermal conductivity
h_fluid = 200. # Convection coefficient on \gamma_{sf}
h_right = 2000. # Convection coefficient on \gamma_{out}
h_bottom = 2000. # Convection coefficient on \gamma_{-}

For every polynomial degree, we define the relevant ”Lagrange” function space of a particular degree. We also
define the solution field and test function in this space.

# Define function space
VT = FunctionSpace(mesh,"CG",i) # Function space for temperature
psi, T_ = TestFunction(VT), TrialFunction(VT) # Evaluate trial and test function
T = Function(VT, name = "temperature increase")
x = list()
x.append(Expression("x[0]", element=VT.ufl_element())) #r coordinate
x.append(Expression("x[1]", element=VT.ufl_element())) #y coordinate

We then define and solve the equation in weak formulation.
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# solving weak form of energy equation
a_T = k * inner(grad(psi),grad(T_)) * x[0] * dx + \
h_fluid * psi * T_ * x[0] * d_sf + h_right * psi * T_ * x[0] * d_out + \
h_bottom * psi * T_ * x[0] * d_bottom # Bilinear side

l_T = h_fluid * psi * (x[0] * x[0] * x[1] + k/h_fluid * ( 2 * x[0] * x[1] * n[0] + x[0] *
x[0] * n[1] ) ) * x[0] * d_sf + \

h_right * psi * (x[0]*x[0]*x[1]+2*x[0]*x[1]*k/h_right) * x[0] * d_out + \
h_bottom * psi * (x[0] * x[0] * x[1] - x[0] * x[0] * k / h_bottom) * x[0] * d_bottom + \
-4 * k * x[1] * psi * x[0] * dx + psi * k * x[0] * x[0] * x[0] * ds(12) # Linear side

solve(a_T == l_T, T) # Solve the variational form

After performing the computations, we store the data in format compatible with paraview for further visualiza-
tion. Also, we plot the p-convergence.

# Plotting and visualization
File("../../benchmarks/result_files/thermal_model/temperature_computed.pvd") << T
File("../../benchmarks/result_files/thermal_model/temperature_analytical.pvd") <<

T_analytical
error_temperature = Function(VT) #Function for Spatial distribution of temperature

absolute error
error_temperature.vector()[:] = abs(T_analytical.vector().get_local() - T.vector().

get_local())
File("../../benchmarks/result_files/thermal_model/temperature_absolute_error.pvd") <<

error_temperature

# Plotting and printing convergence tests
plt.figure(figsize=[10,8])
a = plt.semilogy([1,2,3],error_T_vector,marker='o',linewidth=4)
plt.xticks([1,2,3],fontsize=18)
plt.yticks(fontsize=18)
plt.xlabel('Polynomial degree',fontsize=24)
plt.ylabel('Relative error',fontsize=24)
plt.axis('tight')
plt.savefig("../../benchmarks/result_files/thermal_model/convergence_test")
plt.show()

9.5.3. Mechanical model

We define the norm for
−→
φ ∈ U.

#Computation of \mathbb{U} norm
def compute_U_norm(phi,mesh):
x = SpatialCoordinate(mesh)
dx = Measure('dx', domain = mesh)
a = inner(phi,phi)*x[0]*dx + inner(grad(phi),grad(phi))*x[0]*dx + (phi[0]**2)/x[0]*dx
A = assemble(a)
return sqrt(A)

Next, we define the axisymmetric stress and strain tensor.

# Axisymmetric strain tensor definition. Alternative could be to express strain as vector
using Voigt notation.

def eps(u):
return \
sym(as_tensor([[u[0].dx(0), u[0].dx(1), 0. ],\
[u[1].dx(0), u[1].dx(1), 0.],\
[0., 0., u[0]/x[0]]]))
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# Axisymmetric stress tensor definition. Alternative could be to express stress as vector
using Voigt notation.

def sigma(u):
return lmbda * tr(eps(u)) * Identity(3) + 2.0 * mu * eps(u)

Since, our aim is to assess p−convergence, we define the range of polynomial degrees and measure correspond-
ing relative errors.

error_u_vector = [] #List for absolute error in displacement
p = range(1,4) #Polynomial degrees

We introduce the physical properties.

E = Constant(5e9) # Young's modulus
nu = Constant(0.2) # Poisson's ratio
mu = E/2/(1+nu) # Lam\'e parameter
lmbda = E*nu/(1+nu)/(1-2*nu) # Lam\'e parameter

We now define the function space for displacement and stress. We also initialize variables for the test function
and the solution field.

# Define function space
VM = VectorFunctionSpace(mesh,"CG",i) # Function space for displacement
x = Expression(("x[0]","x[1]"), element=VM.ufl_element())
VS = FunctionSpace(mesh,"CG",max(i-1,1))
# Function space for Von Mises stress NOTE: when i=1, the VS is of degree 1 and not 0.
phi, u_ = TestFunction(VM), TrialFunction(VM)
u = Function(VM, name = "Displacement") # u[0] = u_r and u[1] = u_y

We define the variables related to the source term and the boundary data.

# Dirichlet boundary data
bcs_M = [DirichletBC( VM.sub(0), Constant(0.), 'x[0] < DOLFIN_EPS and on_boundary'), \
DirichletBC( VM.sub(1), Constant(0.), 'near(x[1],0) and on_boundary')]

# Set Dirichlet boundary. Note that only functions which satisfy zero normal displacement
on \gamma_s \cup \gamma_- are admissible.

# Source term and relevant boundary data
f0_r = - (2*E*nu*1e-4*x[0]/(1-2*nu)/(1+nu)+2*E*1e-4*x[0]/(1+nu))
f0_y = - (4*E*1e-4*x[1]/(1+nu)+4*E*1e-4*x[1]*nu/(1-2*nu)/(1+nu))

g_plus_r = 2*E*1e-4*x[0]*x[1]/(1+nu)
g_plus_y = E / (1-2*nu) / (1+nu) * (2*nu*1e-4*x[1]*x[1]+(1-nu)*1e-4*x[0]*x[0])

g_minus_r = -g_plus_r

g_sf_r = E / (1-2*nu) / (1+nu) * (1e-4 * x[1] * x[1] + nu * 1e-4 * x[0] * x[0]) * n[0] +
2 * E * 1e-4 * x[0] * x[1] / (1 + nu) * n[1]

g_sf_y = 2 * E * 1e-4 * x[0] * x[1] / (1 + nu) * n[0] + E / (1-2*nu) / (1+nu) * (2 * nu *
1e-4 * x[1] * x[1] + (1 - nu) * 1e-4 * x[0]

* x[0]) * n[1]

g_out_r = E / (1-2*nu) / (1+nu) * (1e-4 * x[1] * x[1] + nu * 1e-4 * x[0] * x[0])
g_out_y = 2*E*1e-4*x[0]*x[1]/(1+nu)

The equation in weak form is then defined and solved for computing displacement. Based on this displacement,
the Von Mises stress is computed.

# solving weak form of momentum equation
# Bilinear form
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a_M = inner(sigma(u_),eps(phi)) * x[0] * dx
#linear form
l_M = (phi[0] * f0_r + phi[1] * f0_y) * x[0] * dx + (phi[0] * g_plus_r + phi[1] *

g_plus_y) * x[0] * ds(12) + \
(phi[0] * g_minus_r) * x[0] * d_bottom + (phi[0] * g_sf_r + phi[1] * g_sf_y) * x[0] *

d_sf + \
(phi[0] * g_out_r + phi[1] * g_out_y) * x[0] * d_out
solve(a_M == l_M, u, bcs_M)

# Von Mises stress computed displacement
sigma_dev = sigma(u) - tr(sigma(u)) / 3 * Identity(3)
sigma_vm = sqrt(3 * inner( sigma_dev, sigma_dev) / 2) # Von mises stress
# Von Mises stress analytical displacement
sigma_dev_analytical = sigma(u_analytical) - tr(sigma(u_analytical)) / 3 * Identity(3)
sigma_vm_analytical = sqrt(3 * inner( sigma_dev_analytical, sigma_dev_analytical) / 2) #

Von mises stress

# Compute Hˆ1_r norm of error
error_u = compute_U_norm(u_analytical-u,mesh)/compute_U_norm(u_analytical,mesh)
error_u_vector.append(error_u)
print("Relative error in U-norm : ",str(error_u))

The data is stored in format compatible to paraview. We also plot the polynomial degree vs the relative error.

# Post-processing and visualization
File("../../benchmarks/result_files/mechanical_model/displacement_computed.pvd") << u
File("../../benchmarks/result_files/mechanical_model/displacement_analytical.pvd") <<

u_analytical
File("../../benchmarks/result_files/mechanical_model/displacement_error.pvd") << project(

u_analytical-u,VM)

error_stress = Function(VS) #Function for absolute error in stress tensor
error_stress.vector()[:] = abs(project(sigma_vm,VS).vector().get_local() - project(

sigma_vm_analytical,VS).vector().get_local()
)

File("../../benchmarks/result_files/mechanical_model/von_mises_stress_computed.pvd") <<
project(sigma_vm,VS)

File("../../benchmarks/result_files/mechanical_model/von_mises_stress_analytical.pvd") <<
project(sigma_vm_analytical,VS)

File("../../benchmarks/result_files/mechanical_model/von_mises_stress_error.pvd") <<
project(error_stress,VS)

#Convergence tests
plt.figure(figsize=[10,8])
a = plt.semilogy([1,2,3],error_u_vector,marker='o',linewidth=4)
plt.xticks([1,2,3],fontsize=18)
plt.yticks(fontsize=18)
plt.xlabel('Polynomial degree',fontsize=24)
plt.ylabel('Relative error',fontsize=24)
plt.axis('tight')
plt.savefig("../../benchmarks/result_files/mechanical_model/convergence_test")
plt.show() # To show the plots

print("Relative error in U norm: "+ str(error_u_vector))

9.5.4. Coupled model

Similar to the Thermal model (Section 9.5.2), we first solve the energy equation in weak form.
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# Define function space
VT = FunctionSpace(mesh,"CG",3) # Function space for temperature
psi, T_ = TestFunction(VT), TrialFunction(VT) # Evaluate trial and test function
T = Function(VT, name = "temperature increase")

# Known analytical solution, Thermal material properties and Boundary data
T_analytical = Expression('x[0]*x[0]*x[1]',degree = 3)
VT_analytical = FunctionSpace(mesh,"CG",3) #Space for analytical solution
T_analytical = project(T_analytical,VT_analytical)
k = 10. # Thermal conductivity
h_fluid = 200. # Convection coefficient on \gamma_{sf}
h_right = 2000. # Convection coefficient on \gamma_{out}
h_bottom = 2000. # Convection coefficient on \gamma_{-}
x = list()
x.append(Expression("x[0]", element=VT.ufl_element())) #r coordinate
x.append(Expression("x[1]", element=VT.ufl_element())) #y coordinate

# solving weak form of energy equation
a_T = k * inner(grad(psi),grad(T_)) * x[0] * dx + \
h_fluid * psi * T_ * x[0] * d_sf + h_right * psi * T_ * x[0] * d_out + \
h_bottom * psi * T_ * x[0] * d_bottom # Bilinear side

l_T = h_fluid * psi * (x[0] * x[0] * x[1] + k/h_fluid * ( 2 * x[0] * x[1] * n[0] + x[0] *
x[0] * n[1] ) ) * x[0] * d_sf + \

h_right * psi * (x[0]*x[0]*x[1]+2*x[0]*x[1]*k/h_right) * x[0] * d_out + \
h_bottom * psi * (x[0] * x[0] * x[1] - x[0] * x[0] * k / h_bottom) * x[0] * d_bottom + \
-4 * k * x[1] * psi * x[0] * dx + psi * k * x[0] * x[0] * x[0] * ds(12) # Linear side

solve(a_T == l_T, T) # Solve the variational form

Also, similar to mechanical model (section 9.5.3) , we define the U norm, stress and strain tensor. Additionally,
we define the thermomechanical stress tensor.

# Define \mathbb{U} norm
def compute_U_norm(phi,mesh):
x = SpatialCoordinate(mesh)
a = inner(phi,phi)*x[0]*dx + inner(grad(phi),grad(phi))*x[0]*dx + (phi[0]**2/x[0])*dx
A = assemble(a)
return sqrt(A)

# Axisymmetric strain tensor definition. Alternative could be to express strain as vector
using Voigt notation.

def eps(u):
return \
sym(as_tensor([[u[0].dx(0), u[0].dx(1), 0. ],\
[u[1].dx(0), u[1].dx(1), 0.],\
[0., 0., u[0]/x[0]]]))

# Axisymmetric thermo-mechanical stress tensor definition. Alternative could be to
express as vector using Voigt notation.

def sigma(u,T):
return lmbda * tr(eps(u)) * Identity(3) + 2.0 * mu * eps(u) - (2 * mu + 3 * lmbda) *

alpha * (T - T_0) * Identity(3)

# Axisymmetric mechanical stress tensor definition. Alternative could be to express as
vector using Voigt notation.

def sigma2(u):
return lmbda * tr(eps(u)) * Identity(3) + 2.0 * mu * eps(u)

Next, the physical data are specified.

T_0 = 298 # Reference temperature for zero thermal stress
E = Constant(5e9) # Young's modulus
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nu = Constant(0.2) # Poisson's ratio
mu = E/2/(1+nu) # Lame\'e parameter
lmbda = E*nu/(1+nu)/(1-2*nu) # Lame\'e parameter
alpha = Constant(1e-6) # Thermal expansion coefficient

Similar to the mechanical model (section 9.5.3), we solve the weak form.

# Define function space for displacement
VM = VectorFunctionSpace(mesh,"CG",i) # Function space for displacement
x = Expression(("x[0]","x[1]"), element=VM.ufl_element())
phi, u_ = TestFunction(VM), TrialFunction(VM)
u = Function(VM, name = "Displacement") # u[0] = u_r and u[1] = u_y
VS = FunctionSpace(mesh,"CG",max(i-1,1)) # Function space for shear component of stress

# Dirichlet boundary data
bcs_M = [DirichletBC( VM.sub(0), Constant(0.), 'x[0] < DOLFIN_EPS and on_boundary'),

DirichletBC( VM.sub(1), Constant(0.), 'near(
x[1],0) and on_boundary')]

#Boundary and source terms
f0_r = - (2*E*nu*1e-4*x[0]/(1-2*nu)/(1+nu)+2*E*1e-4*x[0]/(1+nu)-2*E*x[0]*x[1]*alpha/(1-2*

nu))
f0_y = - (4*E*1e-4*x[1]/(1+nu)+4*E*1e-4*x[1]*nu/(1-2*nu)/(1+nu)-E*x[0]*x[0]*alpha/(1-2*nu

))

g_plus_r = 2*E*1e-4*x[0]*x[1]/(1+nu)
g_plus_y = E / (1-2*nu) / (1+nu) * (2*nu*1e-4*x[1]*x[1]+(1-nu)*1e-4*x[0]*x[0]) - E*alpha/

(1-2*nu)*(x[0]*x[0]*x[1] - T_0)

g_minus_r = -g_plus_r

g_sf_r = (E / (1-2*nu) / (1+nu) * (1e-4 * x[1] * x[1] + nu * 1e-4 * x[0] * x[0]) - E*
alpha/(1-2*nu)*(x[0]*x[0]*x[1] - T_0)) * n[0
] + 2 * E * 1e-4 * x[0] * x[1] / (1 + nu) *
n[1]

g_sf_y = 2 * E * 1e-4 * x[0] * x[1] / (1 + nu) * n[0] + (E / (1-2*nu) / (1+nu) * (2 * nu

* 1e-4 * x[1] * x[1] + (1 - nu) * 1e-4 * x[0
] * x[0])- E*alpha/(1-2*nu)*(x[0]*x[0]*x[1]
- T_0)) * n[1]

g_out_r = E / (1-2*nu) / (1+nu) * (1e-4 * x[1] * x[1] + nu * 1e-4 * x[0] * x[0]) - E*
alpha/(1-2*nu)*(x[0]*x[0]*x[1] - T_0)

g_out_y = 2*E*1e-4*x[0]*x[1]/(1+nu)

# solving weak form of momentum equation
# This is not bilinear side as terms related to thermal stress are included.
a_M1 = inner(sigma(u_,T),eps(phi)) * x[0] * dx
# This is not linear side as terms related to thermal stress are not included.
l_M1 = (phi[0] * f0_r + phi[1] * f0_y) * x[0] * dx + (phi[0] * g_plus_r + phi[1] *

g_plus_y) * x[0] * ds(12) + \
(phi[0] * g_minus_r) * x[0] * d_bottom + (phi[0] * g_sf_r + phi[1] * g_sf_y) * x[0] *

d_sf + \
(phi[0] * g_out_r + phi[1] * g_out_y) * x[0] * d_out
F = a_M1 - l_M1
a_M = lhs(F) # Now a_M is bilinear form
l_M = rhs(F) # Now l_M is linear form
solve(a_M == l_M, u, bcs_M) # Solve equation

# Compute \mathbb{U} norm of error
error_u = compute_U_norm(u_analytical-u,mesh)/compute_U_norm(u_analytical,mesh)
error_u_vector.append(error_u)
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print("Relative error in U-norm : ",str(error_u))

We compute the relevant stress fields.

# Von Mises stress for computed displacement
sigma_dev = sigma(u,T) - tr(sigma(u,T)) / 3 * Identity(3)
sigma_vm = sqrt(3 * inner( sigma_dev, sigma_dev) / 2) # Von mises stress
# Von Mises stress for analytical displacement
sigma_dev_analytical = sigma(u_analytical,T) - tr(sigma(u_analytical,T)) / 3 * Identity(3

)
sigma_vm_analytical = sqrt(3 * inner( sigma_dev_analytical, sigma_dev_analytical) / 2) #

Von mises stress
# Spherical stress for computed displacement
sigma_spherical = tr(sigma(u,T)) / 3
# Spherical stress for analytical displacement
sigma_spherical_analytical = tr(sigma(u_analytical,T)) / 3
# Spherical mechanical stress for computed displacement
sigma_spherical_non_thermal = tr(sigma2(u)) / 3

Finally, we store the solution field for further visualization.

# Post-processing and visualization
File("../../benchmarks/result_files/coupled_model/Temperature_computed.pvd") << T
File("../../benchmarks/result_files/coupled_model/Temperature_analytical.pvd") <<

T_analytical
File("../../benchmarks/result_files/coupled_model/Teperature_error.pvd") << project(T-

T_analytical,VT)

File("../../benchmarks/result_files/coupled_model/displacement_computed.pvd") << u
File("../../benchmarks/result_files/coupled_model/displacement_analytical.pvd") <<

u_analytical
File("../../benchmarks/result_files/coupled_model/displacement_absolute_error.pvd") <<

project(u_analytical - u,VM)

File("../../benchmarks/result_files/coupled_model/von_mises_computed_coupling.pvd") <<
project(sigma_vm,VS)

File("../../benchmarks/result_files/coupled_model/von_mises_analytical_coupling.pvd") <<
project(sigma_vm_analytical,VS)

error_stress_von_mises = Function(VS)
error_stress_von_mises.vector()[:] = abs(project(sigma_vm,VS).vector().get_local() -

project(sigma_vm_analytical,VS).vector().
get_local())

File("../../benchmarks/result_files/coupled_model/von_mises_stress_error_coupling.pvd") <
< project(error_stress_von_mises,VS)

File("../../benchmarks/result_files/coupled_model/difference_in_spherical_stress.pvd") <<
project(sigma_spherical -

sigma_spherical_non_thermal,VS)
File("../../benchmarks/result_files/coupled_model/thermal_part_of_stress.pvd") << project

(-(2 * mu + 3 * lmbda) * alpha * (T - T_0),
VS)

error_stress_spherical = Function(VS)
error_stress_spherical.vector()[:] = abs(project(sigma_spherical,VS).vector().get_local()

- project(sigma_spherical_non_thermal - (2

* mu + 3 * lmbda) * alpha * (T - T_0),VS).
vector().get_local())

File("../../benchmarks/result_files/coupled_model/absolute_error_spherical_stress.pvd") <
< error_stress_spherical

#Convergence tests
plt.figure(figsize=[10,8])
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a = plt.semilogy([1,2,3],error_u_vector,marker='o',linewidth=4)
plt.xticks([1,2,3],fontsize=18)
plt.yticks(fontsize=18)
plt.xlabel('Polynomial degree',fontsize=24)
plt.ylabel('Relative error',fontsize=24)
plt.axis('tight')
plt.savefig('../../benchmarks/result_files/coupled_model/

Convergence_coupling_displacement_benchmark_comparison
.png')

plt.show()

9.5.5. Reduced basis method

For the affine geometric parametrization, we use 2 decorators : one for the affine shape parametrization and the
other for transfer of operators between reference domain and parametrized domain.

@PullBackFormsToReferenceDomain() #Decorator for operator transformation between
parameterized domain to reference domain

@AffineShapeParametrization("../../benchmarks/data_files/mesh_data/
hearth_vertices_mapping.vmp") #Decorator for
shape parametrization with mapping defined

in specified file

To compute the temperature field required to compute displacement for coupling model, we use another deco-
rator :

@ExactParametrizedFunctions() #Decorator for computing temperature field required for
linear side

Considering that the solution computed by finite element method is used as benchmark for assessing the ac-
curacy of the reduced basis method, we refer to the solution computed by finite element method as “Truth
solution”.

9.5.5.1. Thermal system

We first define the class HearthThermal, inherited from EllipticCoerciveProblem, for the thermal system.

class HearthThermal(EllipticCoerciveProblem):

The default initialization involves all the parameters related to the problem.

# Default initialization of members
def __init__(self, V, **kwargs):
# Call the standard initialization
EllipticCoerciveProblem.__init__(self, V, **kwargs)
# ... and also store FEniCS data structures for assembly
assert "subdomains" in kwargs
assert "boundaries" in kwargs
assert "mesh" in kwargs
assert "h_cf" in kwargs
assert "h_out" in kwargs
assert "h_bottom" in kwargs
self.subdomains, self.boundaries = kwargs["subdomains"], kwargs["boundaries"]
self.u = TrialFunction(V)
self.v = TestFunction(V)
self.dx = Measure("dx")(subdomain_data=subdomains)
self.ds = Measure("ds")(subdomain_data=boundaries)
self.subdomains = subdomains
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self.boundaries = boundaries
self.reference_mesh = kwargs["mesh"]
self.h_cf = kwargs["h_cf"]
self.h_out = kwargs["h_out"]
self.h_bottom = kwargs["h_bottom"]
self.x0 = Expression("x[0]", element=V.ufl_element())

Firstly, the affine mulitplicative terms and next the weak formulation are defined.

# Return theta multiplicative terms of the affine expansion of the problem.
def compute_theta(self, term):
mu = self.mu
if term == "a":
theta_a0 = mu[10]
theta_a1 = 1.0
return (theta_a0, theta_a1)

elif term == "f":
theta_f0 = 1.0
return (theta_f0, )

else:
raise ValueError("Invalid term for compute_theta().")

# Return forms resulting from the discretization of the affine expansion of the problem
operators.

def assemble_operator(self, term):
u = self.u
v = self.v
reference_mesh = self.reference_mesh
dx = self.dx
ds = self.ds
h_cf = self.h_cf
h_out = self.h_out
h_bottom = self.h_bottom
r = self.x0
d_bottom = ds(2) + ds(3) + ds(4) + ds(5) + ds(6)
d_out = ds(7) + ds(8) + ds(9) + ds(10) + ds(11)
d_sf = ds(13) + ds(14) + ds(15) + ds(16) + ds(17) + ds(18) + ds(19) + ds(20)
if term == "a":
a0 = inner(grad(u), grad(v))*r*dx
a1 = h_bottom*u*v*r*d_bottom + h_out*u*v*r*d_out + h_cf*u*v*r*d_sf
return (a0, a1)

elif term == "f":
f0 = h_bottom*313*v*r*d_bottom + h_out*313*v*r*d_out + h_cf*1773*v*r*d_sf
return (f0, )

elif term == "inner_product":
x0 = u*v*r*dx + inner(grad(u), grad(v))*r*dx
return (x0,)

else:
raise ValueError("Invalid term for assemble_operator().")

Using the HearthThermal class, we now perform POD-Galerkin approximation of the thermal problem. The
function space is defined first. Next, an instance of HearthThermal class, hearth problem thermal is created
and model order reduction is performed.

# 2A. Create Finite Element space (Lagrange P1)
VT = FunctionSpace(mesh, "Lagrange", 1) # For temperature

# 3A. Allocate an object of the Hearth class
hearth_problem_thermal = HearthThermal(VT, subdomains=subdomains, boundaries=boundaries,

mesh=mesh, h_cf=200., h_out=2000., h_bottom=
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2000.)
#specify and set range of each parameter
mu_range = [(2.3,2.4), (0.5,0.7), (0.5,0.7), (0.4,0.6), (3.05,3.35), (13.5,14.5), (8.3,8.

7), (8.8,9.2), (9.8,10.2), (10.4,10.8), (9.8
,10.2), (2.08e9,2.08e9), (1.39e9,1.39e9), (
1e-6,1e-6)]

hearth_problem_thermal.set_mu_range(mu_range)

# 4A. Prepare reduction with a POD-Galerkin method
#NOTE : truth_problem attribute is FEM problem and reduced_problem is RB problem
pod_galerkin_method_thermal = PODGalerkin(hearth_problem_thermal)
pod_galerkin_method_thermal.set_Nmax(100) #Maximum size of reduced basis space
pod_galerkin_method_thermal.set_tolerance(1e-4) #Maximum eigenvalue tolerance

Using pod galerkin method thermal, we perform the offline phase for the thermal system.

# 5A. Perform the offline phase
pod_galerkin_method_thermal.initialize_training_set(1000) #Initialize training set with

specified number of training parameters
reduced_hearth_problem_thermal = pod_galerkin_method_thermal.offline() #Perform offline

phase

Next, we perform the error analysis, compute the time taken for truth solution and reduced basis solution.

# 7A. Perform an error analysis
pod_galerkin_method_thermal.initialize_testing_set(50) #Initialize error analysis with

specified number of parameters
pod_galerkin_method_thermal.error_analysis() #Perform error analysis

# 8A1. Perform a speedup analysis - Compute time for truth solutions
pod_galerkin_method_thermal.initialize_testing_set(50) #Initialize truth time computation

with specified number of parameters
testing_set_speedup_analysis = pod_galerkin_method_thermal.testing_set

pod_galerkin_method_thermal._patch_truth_solve(True) #To enable cahce reading

truth_timer = Timer("parallel") #Timer for computation of FEM solution
time_thermal_truth = np.empty(len(testing_set_speedup_analysis)) #Storage of time taken

for solving FEM equation. It is a vector of
size of number of speedup analysis
parameters

# Iteration over speedup analysis parameters for measuring time taken for FEM solution
for (mu_index, mu_test) in enumerate(testing_set_speedup_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_thermal.truth_problem.set_mu(mu_test) #Set the parameter
truth_timer.start()
pod_galerkin_method_thermal.truth_problem.solve() #Solve the FEM problem
truth_time_thermal = truth_timer.stop()
print("Truth time thermal : ",truth_time_thermal)
time_thermal_truth[mu_index] = truth_time_thermal #Save time taken for truth solve

np.save("time_thermal_truth",time_thermal_truth) #Save time taken for computation of FEM
solution

pod_galerkin_method_thermal._undo_patch_truth_solve(True) #To enable cache reading

# 8A2. Perform a speedup analysis - Compute time for reduced solutions
pod_galerkin_method_thermal._patch_truth_solve(True) #To disable cache reading
reduced_timer = Timer("serial") #Timer for computation of RB solution
max_basis_function = reduced_hearth_problem_thermal.N #Size of reduced basis space
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time_thermal_reduced = np.empty([max_basis_function,len(testing_set_speedup_analysis)]) #
Storage of time taken for solving RB
equation. It is a matrix of size size of
reduced basis space \times number of speedup
analysis parameters

# Iteration over speedup analysis parameters for measuring time for RB solution
for basis_size in range(1,max_basis_function+1):
for (mu_index, mu_test) in enumerate(testing_set_speedup_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_thermal.reduced_problem.set_mu(mu_test) #Set parameter
reduced_timer.start()
pod_galerkin_method_thermal.reduced_problem.solve(basis_size) #Solve the RB problem
rb_time_thermal = reduced_timer.stop()
print("Reduced time thermal : ",rb_time_thermal)
time_thermal_reduced[basis_size-1,mu_index] = rb_time_thermal #Save time taken for RB

solve

pod_galerkin_method_thermal._undo_patch_truth_solve(True) #To disable cache reading

np.save("time_thermal_reduced",time_thermal_reduced) #Save time taken for computation for
RB solution

For any new parameter online mu, the truth solution and the reduced basis solution can be performed using
these classes.

pod_galerkin_method_thermal.reduced_problem.set_mu(online_mu) #Set parameter
T_rb = pod_galerkin_method_thermal.reduced_problem.solve() #Reduced problem solve
pod_galerkin_method_thermal.reduced_problem.export_solution(filename="

reference_domain_thermal_rb") #Save solution
for visualization with paraview

T_rb = pod_galerkin_method_thermal.reduced_problem.basis_functions * T_rb #RB solution
projected back to FEM space

pod_galerkin_method_thermal.truth_problem.set_mu(online_mu) #Set parameter
T = pod_galerkin_method_thermal.truth_problem.solve() #FEM problem solve
pod_galerkin_method_thermal.truth_problem.export_solution(filename="reference_domain_fem"

) #Save solution for visualization with
paraview

pod_galerkin_method_thermal.truth_problem.mesh_motion.move_mesh() #Deform mesh as per
geometric parameters

File("HearthThermal/reference_domain_thermal_spatial_error.pvd") << project(T-T_rb,VT) #
Spatial error

pod_galerkin_method_thermal.truth_problem.mesh_motion.reset_reference() #Restore mesh to
reference configuration

9.5.5.2. Mechanical system

We first define the class HearthMechanical, inherited from EllipticCoerciveProblem, for the mechanical sys-
tem.

class HearthMechanical(EllipticCoerciveProblem):

We specify the default initialization for this class.

# Default initialization of members
def __init__(self, V, **kwargs):
# Call the standard initialization
EllipticCoerciveProblem.__init__(self, V, **kwargs)
# ... and also store FEniCS data structures for assembly
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assert "subdomains" in kwargs
assert "boundaries" in kwargs
assert "mesh" in kwargs
self.normal = as_vector(FacetNormal(kwargs["mesh"]))
self.subdomains, self.boundaries = kwargs["subdomains"], kwargs["boundaries"]
self.u = TrialFunction(V)
self.v = TestFunction(V)
self.dx = Measure("dx")(subdomain_data=subdomains)
self.ds = Measure("ds")(subdomain_data=boundaries)
self.subdomains = subdomains
self.boundaries = boundaries
self.x0 = Expression("x[0]", element=V.sub(0).ufl_element())
self.x1 = Expression("x[1]", element=V.sub(1).ufl_element())

Next, the affine multiplicative terms, weak forms and strain tensors are defined.

# Return theta multiplicative terms of the affine expansion of the problem.
def compute_theta(self, term):
mu = self.mu
if term == "a":
theta_a0 = mu[11]
theta_a1 = 2*mu[12]
return (theta_a0, theta_a1, )

elif term == "f":
theta_f0 = 1.0
return (theta_f0, )

else:
raise ValueError("Invalid term for compute_theta().")

# Return strain tensor
def strain(self,u):
r = self.x0
return sym(as_tensor([[u[0].dx(0), u[0].dx(1), 0. ], [u[1].dx(0), u[1].dx(1), 0.], [0

., 0., u[0]/r]]))

# Return forms resulting from the discretization of the affine expansion of the problem
operators.

def assemble_operator(self, term):
u = self.u
v = self.v
dx = self.dx
ds = self.ds
r = self.x0
x1 = self.x1
n = self.normal
d_bottom = ds(2) + ds(3) + ds(4) + ds(5) + ds(6)
d_out = ds(7) + ds(8) + ds(9) + ds(10) + ds(11)
d_sf = ds(13) + ds(14) + ds(15) + ds(16) + ds(17) + ds(18) + ds(19) + ds(20)
if term == "a":
a0 = (u[0].dx(0)+u[1].dx(1)+u[0]/r)*(v[0].dx(0)+v[1].dx(1)+v[0]/r)*r*dx
a1 = (u[0].dx(0)*v[0].dx(0) + u[1].dx(1)*v[1].dx(1) + (u[0]*v[0])/(r)**2 + 0.5*(u[0].

dx(1)+u[1].dx(0))*(v[0].dx(1)+v[1].dx(0))) *
r * dx

return (a0, a1,)
elif term == "f":
f0 = - dot( v, 7460*9.81*(7.265-x1)*n) * r * d_sf
return (f0,)

elif term == "inner_product":
x0 = inner(u,v) * r * dx + inner(self.strain(u),self.strain(v)) * r * dx
return (x0,)

elif term == "dirichlet_bc":
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bc0 = [DirichletBC(self.V.sub(0), Constant(0.), self.boundaries, 1),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 2),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 3),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 4),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 5),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 6),]

return (bc0,)
else:
raise ValueError("Invalid term for assemble_operator().")

The function space and an instance hearth problem mechanical of HearthMechanical class are defined.

# 2B. Create Finite Element space (Lagrange P1)
VM = VectorFunctionSpace(mesh,"Lagrange",1) # For mechanical

# 3B. Allocate an object of the HearthThermoMechanical class
hearth_problem_mechanical = HearthMechanical(VM, subdomains=subdomains, boundaries=

boundaries, mesh=mesh)
#specify and set range of each parameter
mu_range = [(2.3,2.4), (0.5,0.7), (0.5,0.7), (0.4,0.6), (3.05,3.35), (13.5,14.5), (8.3,8.

7), (8.8,9.2), (9.8,10.2), (10.4,10.8), (10
.,10.), (1.9e9,2.5e9), (1.2e9,1.8e9), (1e-6,
1e-6)]

hearth_problem_mechanical.set_mu_range(mu_range)

Next, reduction with POD-Galerkin method is initialised and offline phase is performed.

# 4B. Prepare reduction with a POD-Galerkin method
#NOTE : truth_problem attribute is FEM problem and reduced_problem is RB problem
pod_galerkin_method_mechanical = PODGalerkin(hearth_problem_mechanical)
pod_galerkin_method_mechanical.set_Nmax(100) #Maximum size of reduced basis space
pod_galerkin_method_mechanical.set_tolerance(1e-4) #Maximum eigenvalue tolerance

# 5B. Perform the offline phase
pod_galerkin_method_mechanical.initialize_training_set(1000) #Initialize training set

with specified number of training parameters
reduced_hearth_problem_mechanical = pod_galerkin_method_mechanical.offline() #Perform

offline phase

Error analysis is performed and time taken for the computation of truth solution and reduced basis solution are
measured.

# 7B. Perform an error analysis
pod_galerkin_method_mechanical.initialize_testing_set(50) #Initialize error analysis set

with specified number of parameters
pod_galerkin_method_mechanical.error_analysis() #Perform error analysis

# 8B1. Perform a speedup analysis - Compute time for truth solutions
pod_galerkin_method_mechanical.initialize_testing_set(50) #Initialize speedup analysis

set with specified number of parameters
testing_set_speedup_analysis = pod_galerkin_method_mechanical.testing_set

pod_galerkin_method_mechanical._patch_truth_solve(True) # To disable cache reading

truth_timer = Timer("parallel") #Timer for computation of FEM solution
time_mechanical_truth = np.empty(len(testing_set_speedup_analysis)) #Storage of time

taken for solving FEM equation. It is a
vector of size of number of speedup analysis
parameters

# Iteration over speedup analysis parameters for measuring time taken for FEM solution
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for (mu_index, mu_test) in enumerate(testing_set_speedup_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_mechanical.truth_problem.set_mu(mu_test) #Set the parameter
truth_timer.start()
pod_galerkin_method_mechanical.truth_problem.solve() #Solve the FEM problem
truth_time_mechanical = truth_timer.stop()
print("Truth time mechanical : ",truth_time_mechanical)
time_mechanical_truth[mu_index] = truth_time_mechanical #Save time taken for truth solve

pod_galerkin_method_mechanical._undo_patch_truth_solve(True) #To enable cache reading

np.save("time_mechanical_truth",time_mechanical_truth) #Save numpy array of time taken
for FEM solution

# 8B2. Perform a speedup analysis - Compute time for reduced solutions
pod_galerkin_method_mechanical._patch_truth_solve(True) #To disable cache reading

reduced_timer = Timer("serial") #Timer for computation of reduced solution
max_basis_function = reduced_hearth_problem_mechanical.N # Size of reduced basis space
time_mechanical_reduced = np.empty([max_basis_function,len(testing_set_speedup_analysis)]

) #Storage of time taken for solving RB
equation. It is a matrix of size size of
reduced basis space \times number of speedup
analysis parameters

# Iteration over speedup analysis parameters for measuring time taken for RB solution
for basis_size in range(1,max_basis_function+1):
for (mu_index, mu_test) in enumerate(testing_set_speedup_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_mechanical.reduced_problem.set_mu(mu_test) #Set the parameter
reduced_timer.start()
pod_galerkin_method_mechanical.reduced_problem.solve(basis_size) #Solve the RB problem
rb_time_mechanical = reduced_timer.stop()
print("Reduced time mechanical : ",rb_time_mechanical)
time_mechanical_reduced[basis_size-1,mu_index] = rb_time_mechanical #Save time taken

for reduced basis solution

pod_galerkin_method_mechanical._undo_patch_truth_solve(True) #To enable cache reading

np.save("time_mechanical_reduced",time_mechanical_reduced) #Save numpy array of time
taken for RB solution

For any new parameter online mu, the truth solution and the reduced basis solution are computed as:

# 6B. Perform an online solve
pod_galerkin_method_mechanical.reduced_problem.set_mu(online_mu) #Set parameter
u_rb = pod_galerkin_method_mechanical.reduced_problem.solve() #Reduced problem solve
pod_galerkin_method_mechanical.reduced_problem.export_solution(filename="

reference_domain_mechanical_rb") #Save
solution for visualization with paraview

u_rb = pod_galerkin_method_mechanical.reduced_problem.basis_functions * u_rb #RB solution
projected back to FEM space

pod_galerkin_method_mechanical.truth_problem.set_mu(online_mu) #Set parameter
u = pod_galerkin_method_mechanical.truth_problem.solve() #FEM problem solve
pod_galerkin_method_mechanical.truth_problem.export_solution(filename="

reference_domain_fem") #Save solution for
visualization with paraview

pod_galerkin_method_mechanical.truth_problem.mesh_motion.move_mesh() #Deform mesh as per
geometric parameters

File("HearthMechanical/reference_domain_mechanical_spatial_error.pvd") << project(u-u_rb,
VM) #Spatial error
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pod_galerkin_method_mechanical.truth_problem.mesh_motion.reset_reference() #Restore mesh
to reference configuration

9.5.5.3. Coupling system

For the coupling system, we define the class HearthThermoMechanical.

class HearthThermoMechanical(EllipticCoerciveProblem):

The default initialization is specified,

# Default initialization of members
def __init__(self, V, **kwargs):
# Call the standard initialization
EllipticCoerciveProblem.__init__(self, V, **kwargs)
# ... and also store FEniCS data structures for assembly
assert "subdomains" in kwargs
assert "boundaries" in kwargs
assert "mesh" in kwargs
assert "hearth_problem_thermal" in kwargs
assert "ref_temperature" in kwargs
self.subdomains, self.boundaries = kwargs["subdomains"], kwargs["boundaries"]
self.u = TrialFunction(V)
self.v = TestFunction(V)
self.dx = Measure("dx")(subdomain_data=subdomains)
self.ds = Measure("ds")(subdomain_data=boundaries)
self.subdomains = subdomains
self.boundaries = boundaries
self.hearth_problem_thermal = kwargs["hearth_problem_thermal"]
self.T_0 = kwargs["ref_temperature"]
self.x0 = Expression("x[0]", element=V.sub(0).ufl_element())

Similar to mechanical system, we define the affine mutiplicative terms, weak formulation and strain tensor.

# Return theta multiplicative terms of the affine expansion of the problem.
def compute_theta(self, term):
mu = self.mu
if term == "a":
theta_a0 = mu[11]
theta_a1 = 2*mu[12]
return (theta_a0, theta_a1,)

elif term == "f":
theta_f0 = (2 * mu[11] + 3 * mu[12]) * mu[13]
return (theta_f0,)

else:
raise ValueError("Invalid term for compute_theta().")

# Return strain tensor
def strain(self,u):
r = self.x0
return sym(as_tensor([[u[0].dx(0), u[0].dx(1), 0. ], [u[1].dx(0), u[1].dx(1), 0.], [0

., 0., u[0]/r]]))

# Return forms resulting from the discretization of the affine expansion of the problem
operators.

def assemble_operator(self, term):
u = self.u
v = self.v
dx = self.dx
ds = self.ds
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T_0 = self.T_0
T = self.hearth_problem_thermal._solution
r = self.x0
d_bottom = ds(2) + ds(3) + ds(4) + ds(5) + ds(6)
d_out = ds(7) + ds(8) + ds(9) + ds(10) + ds(11)
d_sf = ds(13) + ds(14) + ds(15) + ds(16) + ds(17) + ds(18) + ds(19) + ds(20)
if term == "a":
a0 = (u[0].dx(0)+u[1].dx(1)+u[0]/r)*(v[0].dx(0)+v[1].dx(1)+v[0]/r)*r*dx
a1 = (u[0].dx(0)*v[0].dx(0) + u[1].dx(1)*v[1].dx(1) + (u[0]*v[0])/(r)**2 + 0.5*(u[0].

dx(1)+u[1].dx(0))*(v[0].dx(1)+v[1].dx(0))) *
r * dx

return (a0, a1,)
elif term == "f":
f0 = (T-T_0) * (v[0].dx(0) + v[1].dx(1) + v[0]/r) * r * dx
return (f0,)

elif term == "inner_product":
x0 = inner(u,v) * r * dx + inner(self.strain(u),self.strain(v)) * r * dx
return (x0,)

elif term == "dirichlet_bc":
bc0 = [DirichletBC(self.V.sub(0), Constant(0.), self.boundaries, 1),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 2),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 3),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 4),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 5),
DirichletBC(self.V.sub(1), Constant(0.), self.boundaries, 6),]

return (bc0,)
else:
raise ValueError("Invalid term for assemble_operator().")

We define an instance of HearthThermoMechanical class and initialise reduction with POD-Galerkin method.

# 3C. Allocate an object of the HearthThermoMechanical class
hearth_problem_thermo_mechanical = HearthThermoMechanical(VM, subdomains=subdomains,

boundaries=boundaries, mesh=mesh,
hearth_problem_thermal=
hearth_problem_thermal, ref_temperature=T_0)

#specify and set range of each parameter
mu_range = [(2.3,2.4), (0.5,0.7), (0.5,0.7), (0.4,0.6), (3.05,3.35), (13.5,14.5), (8.3,8.

7), (8.8,9.2), (9.8,10.2), (10.4,10.8), (9.8
,10.2), (1.9e9,2.5e9), (1.2e9,1.8e9), (0.8e-
6,1.2e-6)]

hearth_problem_thermo_mechanical.set_mu_range(mu_range)

# 4C. Prepare reduction with a POD-Galerkin method
#NOTE : truth_problem attribute is FEM problem and reduced_problem is RB problem
pod_galerkin_method_thermo_mechanical = PODGalerkin(hearth_problem_thermo_mechanical)
pod_galerkin_method_thermo_mechanical.set_Nmax(100) #Maximum size of reduced basis space
pod_galerkin_method_thermo_mechanical.set_tolerance(1e-4) #Maximum eigenvalue tolerance

Next, we perform the offline phase.

# 5C. Perform the offline phase
pod_galerkin_method_thermo_mechanical.initialize_training_set(1000) #Initialize training

set with specified number of training
parameters

reduced_hearth_problem_thermo_mechanical = pod_galerkin_method_thermo_mechanical.offline
() #Perform offline phase

Before performing the reduction of thermal problem, we perform the truth solution computation related oper-
ations. This is due to the reason that, we want to use temperature field computed by finite element method for
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the truth solution of displacement. We compute the truth solution at few parameters to perform error analysis
and to measure time taken for computing the truth solution.

# 6C. Perform a truth solve : Reference domain
online_mu = ( 2.365, 0.6, 0.6, 0.5, 3.2, 14.10, 8.50, 9.2, 9.9, 10.6, 10., lame1, lame2,

1e-6)
pod_galerkin_method_thermo_mechanical.truth_problem.set_mu(online_mu)
u_ref = pod_galerkin_method_thermo_mechanical.truth_problem.solve()
pod_galerkin_method_thermo_mechanical.truth_problem.export_solution(filename="

reference_domain_fem")

# 6C. Perform a truth solve : Parametrized domain
online_mu = ( 2.365, 0.6, 0.6, 0.45, 3.2, 14.10, 8.30, 9.2, 9.9, 10.6, 10., lame1, lame2,

1e-6)
pod_galerkin_method_thermo_mechanical.truth_problem.set_mu(online_mu)
u_par = pod_galerkin_method_thermo_mechanical.truth_problem.solve()
pod_galerkin_method_thermo_mechanical.truth_problem.export_solution(filename="

parametric_domain_fem")

# 7C1. Perform an error analysis - Compute truth solutions
pod_galerkin_method_thermo_mechanical.initialize_testing_set(50) #Initialize error

analysis set with specified number of
parameters

testing_set_error_analysis = pod_galerkin_method_thermo_mechanical.testing_set

truth_solution_thermo_mechanical = list()

# Iteration over error analysis parameters for measuring time taken for FEM solution
for (mu_index, mu_test) in enumerate(testing_set_error_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_thermo_mechanical.truth_problem.set_mu(mu_test) #Set parameter
truth_solution_thermo_mechanical.append(pod_galerkin_method_thermo_mechanical.

truth_problem.solve()) #Solve and store FEM
solution

# 8C1. Perform a speedup analysis - Compute time for truth solutions
pod_galerkin_method_thermo_mechanical.initialize_testing_set(50) #Initialize truth

solution with specified number of parameters
testing_set_speedup_analysis = pod_galerkin_method_thermo_mechanical.testing_set

pod_galerkin_method_thermo_mechanical._patch_truth_solve(True) #To disable cache reading

truth_timer = Timer("parallel") #Timer for computation of FEM solution
time_thermo_mechanical_truth = np.empty(len(testing_set_speedup_analysis)) #Storage of

time taken for solving FEM equation. It is a
vector of size of number of speedup

analysis parameters

# Iteration over speedup analysis parameters for measuring time taken for RB solution
for (mu_index, mu_test) in enumerate(testing_set_speedup_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_thermo_mechanical.truth_problem.set_mu(mu_test) #Set the parameter
truth_timer.start()
pod_galerkin_method_thermo_mechanical.truth_problem.solve() #Solve the RB problem
truth_time_thermo_mechanical = truth_timer.stop()
print("Truth time thermomechanical : ",truth_time_thermo_mechanical)
time_thermo_mechanical_truth[mu_index] = truth_time_thermo_mechanical #Save time taken

for reduced basis solution

pod_galerkin_method_thermo_mechanical._undo_patch_truth_solve(True) #To disable cache
reading
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np.save("time_thermo_mechanical_truth",time_thermo_mechanical_truth) #Save numpy array of
time taken for RB solution

Now, since the operations related to the truth solution are performed, we can reduce the thermal system. The
reduced basis solution of temperature field is used for computing reduced solution at few parameters. Also we
compute the reduced basis solution for error analysis and time taken for computing the reduced basis solution.

#6C. Perform an online solve : Reference domain
online_mu_reference = ( 2.365, 0.6, 0.6, 0.5, 3.2, 14.10, 8.50, 9.2, 9.9, 10.6, 10.,

lame1, lame2, 1e-6)
online_mu = online_mu_reference
pod_galerkin_method_thermo_mechanical.reduced_problem.set_mu(online_mu)
u_rb = pod_galerkin_method_thermo_mechanical.reduced_problem.solve()
pod_galerkin_method_thermo_mechanical.reduced_problem.export_solution(filename="

reference_domain_thermomechanical_rb")
u_rb = pod_galerkin_method_thermo_mechanical.reduced_problem.basis_functions * u_rb
pod_galerkin_method_thermo_mechanical.truth_problem.mesh_motion.move_mesh()
File("HearthThermoMechanical/reference_domain_thermomechanical_spatial_error.pvd") <<

project(u_ref-u_rb,VM)
pod_galerkin_method_thermo_mechanical.truth_problem.mesh_motion.reset_reference()

# 6C. Perform an online solve : Parametrized domain
online_mu_parametrized = ( 2.365, 0.6, 0.6, 0.45, 3.2, 14.10, 8.30, 9.2, 9.9, 10.6, 10.,

lame1, lame2, 1e-6)
online_mu = online_mu_parametrized
pod_galerkin_method_thermo_mechanical.reduced_problem.set_mu(online_mu)
u_rb = pod_galerkin_method_thermo_mechanical.reduced_problem.solve()
pod_galerkin_method_thermo_mechanical.reduced_problem.export_solution(filename="

parametric_domain_thermomechanical_rb")
u_rb = pod_galerkin_method_thermo_mechanical.reduced_problem.basis_functions * u_rb
pod_galerkin_method_thermo_mechanical.truth_problem.mesh_motion.move_mesh()
File("HearthThermoMechanical/parametric_domain_thermomechanical_spatial_error.pvd") <<

project(u_par-u_rb,VM)
pod_galerkin_method_thermo_mechanical.truth_problem.mesh_motion.reset_reference()

# 7C2. Perform an error analysis - Compute reduced basis solution
dx = Measure("dx")(subdomain_data=subdomains) #Volume measure
r = Expression("x[0]", element=VM.sub(0).ufl_element()) #

max_basis_function = reduced_hearth_problem_thermo_mechanical.N # Size of reduced basis
space

error_thermo_mechanical = np.empty([max_basis_function,len(testing_set_error_analysis)])
# Numpy array of size of reduced basis space
\times number of error analysis parameters

for storing error
# Iteration over error analysis parameters for measuring time taken for RB solution
for basis_size in range(1,max_basis_function+1):
for (mu_index, mu_test) in enumerate(testing_set_error_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_thermo_mechanical.reduced_problem.set_mu(mu_test) #Set parameter
rb_dofs = pod_galerkin_method_thermo_mechanical.reduced_problem.solve(basis_size) #

Compute reduced basis degrees of freddom
rb_solution = reduced_hearth_problem_thermo_mechanical.basis_functions[:basis_size] *

rb_dofs #RB solution projected back to FEM
space

# Absolute and relative error measurement
absolute_error = assemble(inner(truth_solution_thermo_mechanical[mu_index] -

rb_solution,truth_solution_thermo_mechanical
[mu_index] - rb_solution) * r * dx + inner(
hearth_problem_thermo_mechanical.strain(
truth_solution_thermo_mechanical[mu_index] -
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rb_solution),
hearth_problem_thermo_mechanical.strain(
truth_solution_thermo_mechanical[mu_index] -
rb_solution)) * r * dx)

error_thermo_mechanical[basis_size-1,mu_index] = np.sqrt(absolute_error / assemble(
inner(truth_solution_thermo_mechanical[
mu_index],truth_solution_thermo_mechanical[
mu_index]) * r * dx + inner(
hearth_problem_thermo_mechanical.strain(
truth_solution_thermo_mechanical[mu_index]),
hearth_problem_thermo_mechanical.strain(

truth_solution_thermo_mechanical[mu_index]))

* r * dx))

np.save("HearthThermoMechanical/error_analysis/error_thermo_mechanical",
error_thermo_mechanical)

# 8C2. Perform a speedup analysis - Compute time for reduced solutions
pod_galerkin_method_thermo_mechanical._patch_truth_solve(True) #To disable cache reading

reduced_timer = Timer("serial") #Timer for computation of RB solution
time_thermo_mechanical_reduced = np.empty([max_basis_function,len(

testing_set_speedup_analysis)]) #Storage of
time taken for solving RB equation. It is a
matrix of size size of reduced basis space \
times number of speedup analysis parameters

# Iteration over speedup analysis parameters for measuring time taken for RB solution
for basis_size in range(1,max_basis_function+1):
for (mu_index, mu_test) in enumerate(testing_set_speedup_analysis):
print(TextLine(str(mu_index), fill="#"))
pod_galerkin_method_thermo_mechanical.reduced_problem.set_mu(mu_test) #Set parameter
reduced_timer.start()
pod_galerkin_method_thermo_mechanical.reduced_problem.solve(basis_size) #Solve the RB

problem
rb_time_thermo_mechanical = reduced_timer.stop()
print("Reduced time thermomechanical : ",rb_time_thermo_mechanical)
time_thermo_mechanical_reduced[basis_size-1,mu_index] = rb_time_thermo_mechanical #

Save time taken for reduced basis solution

pod_galerkin_method_thermo_mechanical._undo_patch_truth_solve(True) # To disable cache
reading

np.save("time_thermo_mechanical_reduced",time_thermo_mechanical_reduced) #Save numpy
array of time taken for RB solution

9.6. License

• FEniCS and RBniCS are freely available under the GNU LGPL, version 3.
• Matplotlib only uses BSD compatible code, and its license is based on the PSF license. Non-BSD

compatible licenses (e.g., LGPL) are acceptable in matplotlib toolkits.

Accordingly, this code is freely available under the GNU LGPL, version 3.

9.7. Disclaimer

In downloading this SOFTWARE you are deemed to have read and agreed to the following terms: This SOFT-
WARE has been designed with an exclusive focus on civil applications. It is not to be used for any illegal,
deceptive, misleading or unethical purpose or in any military applications. This includes ANY APPLICA-

Deliverable D5.3
88
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TION WHERE THE USE OF THE SOFTWARE MAY RESULT IN DEATH, PERSONAL INJURY OR SE-
VERE PHYSICAL OR ENVIRONMENTAL DAMAGE. Any redistribution of the software must retain this
disclaimer. BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU AGREE TO
THE TERMS ABOVE. IF YOU DO NOT AGREE TO THESE TERMS, DO NOT INSTALL OR USE THE
SOFTWARE.
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